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Quantization in nonlinear coordinates via Hamiltonian path integrals
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Difficulties of using Hamiltonian path integrals as a method of quantization in nonlinear coordi-
nates are discussed. It is shown that a straightforward generalization of Pauli-DeWitt
configuration-space path integrals to canonical path integrals fails even for simple systems.

I. INTRODUCTION

The Feynman path-integral method is one of the most
attractive alternatives to canonical quantization. ' The
central object of this formulation is the propagator
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Dividing the interval (t', t") into n parts) ' ' ' ) ti & t' and using the group property (1) one easily
gets
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The quantization proceeds by giving a prescription for the short-time propagator and using it in the right-hand side of
Eq. (2). The path-integral representation for the propagator is obtained in the limit n ~ ao. It is well known that in or-
der to avoid ambiguities in the definition both the normalization as well as the path for the short-time propagator must
be specified. We prefer the Pauli-DeWitt expression '
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where S(q"t"
~

q't') is the action computed along a classi-
cal trajectory having end points q', t' and q",t" and D is
the van Vleck determinant

t

theories" and are believed to be superior to the Lagrang-
ian functional integrals, they have an unsatisfactory
feature, ' viz. , the Hamiltonian path integrals are not in-
variant under point transformations, let alone under a full
set of canonical transformations. This awkward feature
manifests itself in the fact that H(q, p) appearing in the
path integral

where N is number of degress of freedom. If we approxi-
mate (q"t"

~

q't') by the expression (3), Eq. (2) defines the
path integral completely.

The Feynman path-integral approach to quantization is
based on the Lagrangian formulation and is invariant
under point transformations, hence the quantization can
be done in any set of generalized coordinates. Although
the usual Schrodinger approach to quantum mechanics
rests on the Hamiltonian form of dynamics there does not
exist a satisfactory Hamiltonian path-integral method of
quantization. There has been considerable interest in rep-
resentations of canonical transformations in quantum
mechanics, and Hamiltonian path integrals can provide a
way of attacking this problem. The equivalence of the ex-
isting canonical path integrals ' to the configuration-
space path integrals has been demonstrated only in Carte-
sian coordinates. ' A general proof of the equivalence of
the two path-integral formalisms does not exist. Al-
though the phase-space path integrals are widely used to
quantize complex systems like singular Lagrangian field

(q"t"
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q't') = f f Wp&qexp —f [pq H(q,p)]dt—

must differ from the classical Hamiltonian by terms
which depend on the choice of canonical coordinates in
phase space even for the simplest systems. Almost all pa-
pers' on this subject focus attention essentially on getting
these extra terms from the usual Schrodinger formalism
or from Lagrangian path integrals. In this paper our in-
terest is neither in discussion of these papers nor in mak-
ing fresh attempts in this direction. 8'e would like to in-
vestigate if it is possible to use Hamiltonian path integrals
to quantize a classical system in nonlinear coordinates in a
way which is invariant at least under point transformation
and if possible under a full set of canonical transforma-
tions also. Thus the path integral must be based on the
classical Hamiltonian formalism and must not assume any
knowledge of Lagrangian path integrals or any other
inethod of quantization.
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II. CONSTRUCTING THE CANONICAL
PATH INTEGRALS J S'p &q exp —J (pq &—)dt

%'e start by making some observations on the Pauli-
DeWitt expression (3). It has the following interesting
properties.

(i) The expression (3) is also the semiclassical approxi-
mation to the exact propagator. In some special cases it
already gives the exact propagator.

(ii) S(q"t"
l

q't') appearing in the exponential is the
generator of a classical canonical transformation taking
q(t') to q(t"). The Pauli-DeWitt expression is also the
semiclassical expression for the transformation matrix
specifying the quantum analog' of the classical canonical
transformation.

(iii) The approximate expression (3) obeys the group
property (1) if the integral is computed in the stationary-
phase approximation. '

Just as the Lagrangian path integral can be built by
folding the short-time propagators, the Hamiltonian path
integral can be built up from the short-time approxima-
tion to the matrix elements

(q le ' " ''lp)=—(qt" lpt')

and

&pt" lqt'&—= &p le ' "" "lq&
Then we would replace (3) by

(q "t"
l
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l
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Here we wish to investigate if the following assump-
tions can be used to generate the Hamiltonian path in-
tegral and hence to quantize the system:

results if we keep only first-order terms in t"—~ and w —t'
in Eqs. (6) and (7). It is, therefore, expected that the as-
sumptions (6) and (7) are good candidates for generating
canonical path integrals. This expectation is, however, not
borne out. As we will show, by means of a simple exam-
ple of a free particle in two dimensions using polar coordi-
nates, the propagator based on Eq. (6) does not obey the
correct Schrodinger equation. This result is quite surpris-
ing and it is not clear why quantization based on (6) and
(7) fails to be equivalent to the usual Schrodinger equa-
tion.

It is of interest to note that in the nth-order approxima-
tion the paths in configuration space contributing to the
propagator are specified as follows:

(i) Subdivide the interval (t' t") in—to n + 1 parts

(ii) At each intermediate time tk, value of coordinates
are fixed at qk. The path in the time interval (tk, tk+&) is
taken to be the classical trajectory joining qk and qk+&. It
must be noticed that the momenta will, in general, be
discontinuous at times t 1, , . . . , t„.

(iii) The intermediate values qk, %= 1, . . . , N, are al-
lowed to take all possible values.

Our assumptions (6) and (7) correspond to the phase-
space paths described in the nth-order approximation by
specifying values of q's and p's at alternate times, and the
path in any one time interval is a classical trajectory with
specified values of coordinates q at one end point and of
momenta at the other end point. Of course now momenta
and coordinates will be discontinuous for the path so
specified at alternate intermediate times.
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III. FREE PARTICLE IN TWO DIMENSIONS
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Here p, q" are the values of momenta and coordinates at
the two ends of a trajectory between times ~ and t"
(t"~ r), and S++ is the generator of canonical transfor-
mation taking p(r) to q(t"). S is similarly defined.

The expressions (6) and (7) have properties similar to
the properties of the Pauli-DeWitt formula (4) mentioned
at the beginning of the section; for example, (6) and (7)
share the property (ii). In addition, Eq. (5) gives the
Pauli-DeWitt formula for (q "t"

l
q't')z when Eqs. (6) and

(7) are used and the p integrals are calculated in the
stationary-phase approximation. It is easily checked, us-
ing appropriate generalizations of Eqs. (9) and (10) of the
next section, that the usual phase-space path integral

We now consider a free particle in two dimensions us-
ing polar coordinates. We construct the first-order ap-
proximation to the path integral using Eqs. (5)—(7). We
will show that the discrepancy between the equation
obeyed by the first-order approximate expression and the
correct Schrodinger equation does not go to zero as
t'~t".

To get the first-order approximation subdivide the time
interval (t', t") into two parts (t', ~) and (r, t") by intro-
ducing an intermediate time ~. Let I ~ and I 2 be the clas-
sical trajectories followed during the two intervals (t', r)
and ( tr"), respectively, when coordinates are held fixed at
extreme points and the momenta have values at intermedi-
ate time ~ as specified below:

t =t', q'=(r', 8'),

t =r, p=(prie) ~

q"=(r",8") .
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In general the q's will not be continuous at time t =~. Let
values of (r, 8) at time r for the two trajectories I, and I z

be (r„8&) and (r2, 8z), respectively. Then S++ (Ref. 16)
are Legendre transforms of the classical action for the two
trajectories

S++(q"t"
i
pr) =p„r2+pg82+ f «t,

S (pr i
q't') = p„r—& —pg8, + J„Ldt .

1
(10)

Using the equations of motion, r&, 8i and r2, 82 and the
two integrals can be expressed as power series in 5=~—t'
and e.=t" ~—.After some straightforward computation
we get
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e terms proportional to E and higher are not important for our discussion below. ' Computing D++ and D we
have

2 2

Therefore, we have
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Using the explicit expressions for D++ and S++ the first
two terms cancel in the lowest important order in e. Re-
taining only terms of first order in e in the exponential of

and integrating over p„,p~ gives'

iR „+ V„. (q"t"
~

q't')ca
Bt" 2m

2
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q't'), +O(~e) . (17)
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It is, therefore, seen that the propagator so constructed
will obey the equation

functions and operators is a linear one.
The difficulty encountered in the Hamiltonian path in-

tegrals is certainly not due to anything inherent in the
path-integral formalism, because the same difficulties ap-
pear when we attempt to use canonical quantization in the
nonlinear coordinates directly. The canonical quantiza-
tion in r, o directly should proceed by taking H as in Eq.
(20) where the operators p„, ps, r, 8 must obey canonical
commutation relations

[r,p, ]=i fi, [O,ps] =i A .

I'he representation of the operators p„p~ is

iR K =(Hp+ V tt)K,
Bt

where

iA
pp =lA +, pg =EA

Br 2r 8{9

The expression (21) when substituted in (20) gives
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K—= (q "t"
~

q't'),
which differs from the Schrodinger equation by the V,ff
term. Hence in order that K may satisfy the correct
Schrodinger equation, one must not use the classical Ham-
iltonian H,~,

' instead H, ~
—Vd~ must be used to construct

the generators S++ and S . By any such ad hoc addi-
tion of V,ff to H, ~ requires knowledge of the Schrodinger
equation and defeats the original objective of formulating
canonical path integrals entirely in terms of classical
phase-space formalism quantities without assuming any
knowledge of quantum mechanics.

V. CONCLUDING REMARKS

It must be emphasized here that although the operator
representing the Hamiltonian in general nonlinear coordi-
nates has ordering problems, in the example chosen above
we do not have any of these problems because the classical
Hamiltonian

H, ~ p„ /2m +pe /——2mr

gives a unique operator

H =p„ /2m+p~ /2mr (20)

assuming that the correspondence between phase-space

V2+
2m 8mr 2

which is precisely the operator Ho+ V,~~ appearing in Eq.
(18). This clearly shows that the problem of K not satisfy-
ing the correct Schrodinger equation is independent of the
problems of the functional-integral formalism or the
factor-ordering problems of defining quantum-mechanical
operators as long as the correspondence rule used is linear.

It may be remarked that though Eqs. (6) and (7) are
natural generalizations of Pauli-DeWitt expressions, there
is nothing sacrosanct about these expressions. One may
attempt to modify the assumptions (6) and (7) by changing
the normalization factor. If we multiply the right-hand
sides of (6) and (7) by a function f then we must have

f=1+O (~')+O(6')

as the terms linear in e, 5 can be absorbed as terms in-
dependent of e, 5 in the Hamiltonian. Then it is certainly
possible to adjust f so that the correct equation is obeyed
for the example of Sec. V. However, a function f with
simple form which could be generalized to arbitrary coor-
dinates in higher dimensions was not found. This point,
we believe, does not merit further discussion.
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