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We review, extend, and give some further applications of a method recently suggested to solve the
renormalization-scheme-dependence problem in perturbative field theories. The use of a coupling
constant as a universal expansion parameter is abandoned. Instead, to each physical quantity de-

pending on a single scale variable is associated an effective charge, whose corresponding
Stuckelberg —Peterman —Cabell-Mann —Low function is identified as the proper object on which per-
turbation theory applies. Integration of the corresponding renormalization-group equations yields
renormalization-scheme-invariant results free of any ambiguity related to the definition of the
kinematical variable, or that of the scale parameter A, even though the theory is not solved to all or-
ders. As a by-product, a renormalization-group improvement of the usual series is achieved. Exten-
sion of these methods to operators leads to the introduction of renormalization-group-invariant
Green s function and Wilson coefficients, directly related to effective charges. The case of nonzero
fermion masses is discussed, both for fixed masses and running masses in mass-independent renor-
malization schemes. The importance of the scale-invariant mass m is emphasized. Applications are
given to deep-inelastic phenomena, where the use of renormalization-group-invariant coefficient
functions allows to perform the factorization without having to introduce a factorization scale. The
Sudakov form factor of the electron in QED is discussed as an example of an extension of the
method to problems involving several momentum scales.

I. INTRODUCTION

The completion in the last few years of several next-to-
leading-order perturbative calculations' in quantum chro-
modynamics (QCD) has focused much attention on the
question of renormalization-scheme (RS) dependence, and
the related issue of the convergence of the perturbative
series. This problem has been extensively analyzed in the
literature, ' ' to which we refer the reader for a more
complete discussion. We only recall here that finite-order
perturbative results are arbitrary, to the extent that they
depend on the RS, i.e., the choice of the expansion param-
eter, although the exact result is independent of it. The
purpose of this paper is to review, extend, and give some
applications of a recently developed approach to these
questions, based on the renormalization group, which en-
joys the following features.

(i) It provides a RS-invariant formulation of perturba-
tion theory, even though the theory is not solved to all or-
ders, which generalizes to all orders and all processes the
well-known A„scheme.

(ii) It gives a RS-invariant, and experimentally testable,
necessary condition for the validity of perturbation theory
for each process, and identifies the proper objects on
which perturbation theory applies as the
Stuckelberg —Peterman —Gell-Mann —Low functions asso-
ciated with effective charges defined by each physical
quantity.

(iii) The method is free of any ambiguity related to arbi-
trariness of parametrization. For instance, it yields results
independent of the definition of the kinematic scale of the
process, or of the definition of the scale parameter A of
QCD.

(iv) It leads to a renormalization-group improvement of
perturbation theory, giving quantitatively different predic-
tions in those cases where large perturbative corrections
occur.

It is often pointed out that, whereas the RS-dependence
problem is in principle the same in QCD and in QED, its
resolution appears to be a less pressing issue in the latter
theory, because of the existence of a "natural" canonical
RS, where perturbation theory appears to converge quite
well. We would like to observe that there is another facet
to this remark: While the problem is indeed less academic
in QCD, it is also clearer how to solve it in this theory.
Indeed, the solution suggested in Ref. 8 is based on a
specific feature of renormalizable theories, viz. , the di-
mensional transmutation" which also exists in QED, but
is more conspicuous in QCD. The point is that in a renor-
malized field theory, the free parameter which corre-
sponds to the coupling constant in the Lagrangian is a
scale parameter. Consequently, the coupling constant
"runs, " and predictions for physical quantities o in QCD
are ultimately of the form cr=F(Q /A ), where no di-
mensionless coupling constant explicitly appears, and
where the free parameter A cannot obviously be used at
the same time as an expansion parameter (as is the case
for the fine-structure constant a in QED). This fact
makes the RS-dependence problem almost trivial, since it
now reduces to the mere freedom of rescaling A (or Q).
To the problem so drastically simplified, the approach of
Ref. 8 brings an equally simple answer, which is based on
this most basic feature of the renormalization-group
analysis, rather than on general properties of "approxima-
tion theory. " Furthermore, we shall see that the RS
problem can be solved on the same basis in low-energy
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QED (high-energy QED is identical to QCD from the
point of view of RS dependence), provided one makes the
dimensional transmutation manifest by considering cx as a
function of the electron mass m.

The paper is organized as follows. In Sec. II, the
method of Ref. 8, for which we shall adopt the name'
"method of effective charges, " is reviewed, and its main
features discussed. Section III gives its connection with
ordinary perturbation theory, and shows that it represents
a renormalization-group improvement of perturbation
theory, such that the general Stiickelberg-Peterman
renormalization-group equations are automatically satis-
fied. In Sec. IV, we show that Careen's functions and Wil-
son coefficient functions can also be related to effective
charges, associated with renormalization-group (and RS-)
invariant Greens functions and Wilson coefficient func-
tions. Section V extends the method of effective charges
to the case where fermion masses are present; both fixed
masses and running masses in mass-independent RS's are
considered. We emphasize the use of the scale-invariant
mass as allowing to give a RS-invariant solution (within
the class of mass-independent RS's) and, for zero-
momentum observables, we introduce a new Callan-
Symanzik function, which represents the variation with
respect to the scale-invariant mass. Some applications are
considered in Sec. VI. We show how the use of
renormalization-group-invariant operators and Wilson
coefficient functions allows us to get rid completely of the
"factorization scale ambiguity" in deep-inelastic processes,
and recover and generalize some simple formulas due to
Bardeen and Buras, ' which are naturally associated with
effective charges. We discuss in some detail the longitudi-
nal structure function in electroproduction. The Sudakov
form factor of the electron in QED is discussed as an ex-
tension of the method to multiscales problems. Section
VII contains our conclusions. The connection of the
present method with Stevenson's approach is discussed in
Appendix A. For completeness, we also comment on the
alternative procedure of Brodsky, Lepage, and Mackenzie
in Appendix B.

II. THE METHOD OF EFFECTIVE CHARGES:
A GENERALIZED GELL-MANN —LOVE APPROACH

In this section, we shall restrict ourselves for definite-
ness to the case of quantum chromodynamics (QCD) with
massless quarks, although most of the following con-
siderations apply equally well (with obvious changes) to
any renormalizable field theory with a single dimension-
less coupling constant in the Lagrangian.

Consider a dimensionless physical (or more generally,
renormalization-group-invariant) quantity o.(Q ), depend-
ing upon a single kinematical scale variable Q, and cal-
culable for large Q in perturbation theory [as a standard
example, one may think of R' ' (Q )
=cr(e+e ~hadrons)/o(e+e ~p p )]. Assume the
expansion of o. in powers of a renormalized coupling con-
stant a, (p ) (p is the renormalization point) takes the gen-
eric form

o(Q )=3+&[a,(p )] [1+o.i(Q /p')a, (p')

+ cr2( Q'/p')a, '(p )+ . ],

o( )=A +B2 1

Piln(Q /A )

d

oi(1)+dCPi —d(P2/Pi)lnln(Q /A )
X 1+

Piln(Q /A )

(2.2)
pi and p2 are, respectively, the one- and two-loop p func-
tion coefficients:

p', =P(p) = Pip' —P2p'+—.
Op

(2.3)

Pi ——11—,f—
Pp

——102—"
,f—(f =number of flavors),

where we put, for convenience p—=a, /4m and C is a con-
stant which depends solely upon the definition of the
QCD scale A (or that of the external scale Q). The only
arbitrariness in Eq. (2.2) reduces to the freedom of rede-
fining A (or Q): performing the rescaling A~A=A, A [or
Q~Q=(1/A, )Q], C changes to C=C —(ink, )/Pi. These
transforrnations do not leave Eq. (2.2), truncated to any
finite order, invariant, but the scheme dependence can
now be parametrized with just one number I,.

The solution to the RS problem proposed in Ref. 8
takes care in the simplest possible way of this remaining
difficulty, since it yields, in effect, the expansion of the in-
Uerse function Q /A =F '(cr ). Clearly, dealing with
F '(cr) allows us to get rid of any ambiguity related to the
definition of A (or of Q), a redefinition of one of these
scales resulting only in a trivial, and controllable, overall
rescaling of F '(cr) Furthermor. e, the latter property
remains true euen if the theory is not solved to all orders,
i.e., when the exact F '(o)is replaced by an appro. xima-
tion. Apart from this rescaling, F '(o ) depends solely on
the physical quantity considered, and is therefore a RS-
invariant object. To obtain the expansion of F (cr), one
introduces the coupling constant a, (Q ) of the particular
RS where all higher-order corrections to o. vanish, i.e.,
a, (Q ) is defined through all orders by the identity

cr(g ) =2 +8 [a,(Q )]". (2.4)

We call a, the effectiue charge associated to o.. It coin-

(2.1)

where d may be noninteger, and A, B are constants. It is
well known that Eq. (2.1), when truncated to any finite or-
der, is afflicted by ambiguities, related to the arbitrariness
of the definition of a, (p ), which leads to the so-called
renormalization-scheme-dependence problem. ' ' This
problem is greatly simplified when one considers, instead
of Eq. (2.1), the asymptotic expansion of
o(Q ):F(Q—/A ) in powers of 1/1n(g~/A ) (where A is
the scale parameter of QCD). Using the renormalization
group one gets
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cides with the strong coupling constant effectively extract-
ed by experimentalists from a leading ord-er analysis of the
experimental data for o [since Eq. (2.4) looks like a
leading-order result]. The QCD prediction for a, (Q )

[from which that for o(Q ) follows trivially knowing A,
B, and d] is done in the standard way in terms of the gen-
eralized Gell-Mann —Low function p associated to o, de-
fined by the equation

Q' =P(p )= Pip'—P2p—' P3p—+
8 2

(2.5)

(2.6a)

where p=a, /4m. p is associated to cr just in the same
way as the Gell-Mann —Low function g is associated to
the Fourier transform of the potential between two
charges in QED, a particular example of o(Q ). The first
two coefficients p~ and p2 are universal and given in Eq.
(2.3). Higher-order coefficients p3, p4, etc. , are process
dependent, parameter free predictions of QCD, and, togeth-
er with the scale introduced below, summarize in a RS-
invariant manner the information contained in the Feyn-
man diagrams for o. It is convenient to write the exact
solution of Eq. (2.5) in the form

p)ln 2
= —+ ln(P0o)+K)Q 1 P2

p Pi

1 1 1

p(p) Pi p'
P2 i

Pi p

P3

Pi

This approximation gives

p 2

-p 2 (2.10)

p)ln =—+ 1n(p(p)+K, +0 (p) .
Q' i P2
A' p P)

(2.11a)

Alternatively, one may use the standard two-loop approxi-
mation to p, i.e., keep only the first two terms in Eq. (2.5),
which gives

that the RS dependence of A and IC~ cancels in Eq. (2.9).
Comparison of Eqs. (2.4) and (2.6a) yields immediately

the function F '(o). Since Eq. (2.6a) is exact, and X& is
known from a next-to-leading-order calculation of o, any
approximation to Eq. (2.6a) can be viewed as an approxi-
mation to the p function. We therefore arrive at the im-
portant result that perturbation theory, in the present ap-
proach, is essentially the perturbative expansion of each p
function. Dropping the integral on the right-hand side of
Eq. (2.6a), one obtains a simple approximation, which cor-
responds to keeping only the first two terms in the expan-
sion of 1/P:

x ) x p(x)

where K&" is the coefficient of the next-to-leading-order
correction to p(Q ) at p =Q in the RS characterized by
the coupling constant p(p ), i.e., we have (see Sec. III)

P(ln = —— ln —+Q 1 P2 1 1 P2

P i i p

+K, +O(p) . (2.11b)
2

p(Q') =p(p') 1+ —Pi» 2 +&i p(i2')+
p

(2.7)

Correspondingly, A is the scale parameter associated in
the standard way to this scheme,

p(p )
2 1

&'-" pin"
A

ln ln p
2 A

Pi
p in"

A

(2.8)

with no 0 (1/ln p /A ) corrections.
A useful equivalent form of Eq. (2.6a) is

Q 1 P2
P&ln = —+ ln(P~p)

A p

+ f' dx
P2 1 Pi—+
Pi x p(x)

(2.6b)

A 2

P)ln =K( .
A

(2.9)

A is a RS-invariant, but process-dependent, quantity,
which represents the boundary condition for Eq. (2.5), and
is related to P by the obvious analog of Eq. (2.8). Note

where we absorbed the constant K& into an "effective
scale" A defined by the relation

Equations (2.11a) and (2.11b) are, of course, equivalent, up
to O(P) terms. To this order, and to this order only (be-
cause of the two-loop universality of P), they are also
equivalent to the choice

Ei
p =Q exp (2.12)

P2+
2

P2
p+O(p ) .

Pi'
(2.13)

In such a way, a systematic expansion of Q /A as a func-
tion of p (or, equivalently, of o.) is achieved. It is therefore
clear that the present effective-charge method works in an
unambiguous way to all orders, not just to next-to-leading
order; beyond two loops, however, it is no more equivalent
to a choice of renormalization point. To conclude this
section, we stress the following points.

(1) The method of effective charges abandons the use of
a universal, fixed RS, and deemphasizes the discussion of
convergence properties of ordinary perturbation series in

which makes the next-to-leading-order correction in Eq.
(2.7) vanish' (see Sec. III). The O(p) corrections to Eq.
(2.11) depend on the three-loop coefficient p3. For in-
stance, if the expansion Eq. (2.10) is used, one gets

p)ln = —+ in(p)p)+K(Q 1 P2
A' p P)
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powers of a fixed renormalized coupling constant u, (p )

[there are no more such series left with the definition of
Eq. (2.4)]. Instead, each physical quantity o. is completely
characterized in a RS-invariant manner, by an effective
scale A (related to some standard scale parameter A of
QCD) and a generalized Cjrell-Mann —Low function P.
The various P functions so obtained are now recognized as
the relevant perturbative objects. Such a step is quite
natural in a theory like QCD where, by the effect of di-
mensional transmutation, the only parameter (for zero
mass quarks) is a scale A: Eq. (2.6) takes into account this
basic fact in the most direct manner. %"e note in this
respect that the use of a fixed renormalized coupling con-
stant to parametrize physical quantities in the continuum
limit does not seem to be necessary at a more fundamental
level, in a nonperturbative approach to renormalization.
In fact, such an object does not need to appear explicitly
in the exact QCD prediction o=F(Q ./A ), where A can
be defined to be any "spontaneous" mass scale, such as the
proton mass, or the string tension, with no reference to a
renormalized coupling constant; for such nonperturbative
definitions of A, Eq. (2.6a) still makes sense, but IC& is no
more calculable by Feynman diagrams, of course.

(2) Consequently, the convergence of perturbation
theory, for a given process o and energy range Q, depends
now essentially on the nontrivial convergence properties of
each P function (i.e., on the behavior of P;, i &3). The
fact that Eq. (2.4) looks (by construction) like a leading-
order result is completely irrelevant in this respect. No ar-
tificial and suspicious "fastest apparent convergence"
(FAC)' criterion needs to be invoked. In fact, the present
method provides an unambiguous criterion' for the valid-
ity of perturbation theory for each process: one has sim-
ply to require that the effective charge p be small enough
for the expansion of P(p) to converge (in the asymptotic-
series sense). Up to two loops, this requirement gives the
condition

2
p&&1.

1

(2.14a)

In particular, the magnitude of P3, the first nonuniversal
coefficient, has to be checked. Alternatively, one must re-
quire that Q be large enough so that condition (2.14a) is
satisfied. In the two-loop approximation, this requirement
gives the condition

Q »A =A exp (2.14b)

which also ensures that a solution to Eq. (2.11), when
solved for p, exists. Conditions (2.14) are RS invariant,
but the domain of validity of perturbation theory becomes
now a process-dependent question, which is physically
natural.

The usefulness of this condition with respect to higher or-
ders rests on the essential physical assumption (to be
checked case by case by detailed calculations) that higher-
order P s are well behaved, in the sense that

Pz
(2.15)

We further note that the approximations to Eq. (2.6a)
based on the expansions of P or 1/P [Eqs. (2.5) or (2.10)],
are not equivalent, to a given order in p, to a truncated ex-
pansion in 1/ln(Q /A ). In particular, the solutions to
the transcendental equation (2.11) contain all powers in
1/ln(Q /A ). Nevertheless, one can check that, when
condition Eq. (2.14b) is satisfied, these solutions are given,
to a good approximation, by the analog of Eq. (2.8):

p(Q') =
Q2

Ij,ln
A

ln ln
P2 A

Pi Q'
Piln

A

(2.16)

(3) When the next-to-leading-order correction term in
Eq. (2.7) is large, the use of Eq. (2.11) [or equivalently,
choosing p as in Eq. (2.12)] amounts, if both the effective
charge p and the RS are "well behaved" (in a sense to be
explained in Sec. III), to a resummation of the most im-
portant higher-order corrections to Eq. (2.7): a
renormalization-group improvement of perturbation
theory is achieved (see Sec. III). Conversely, small next-
to-leading-order corrections in a given RS [in particular,
zero corrections with p as given in Eq. (2.12)] imply essen-
tial agreement between Eq. (2.11) and ordinary perturba-
tion theory, as we have already mentioned. The extent to
which the agreement between the method of effective
charges and ordinary perturbation theory [with p chosen
as in Eq. (2.12)] will persist in higher orders is also dis-
cussed in Sec. III.

(4) The present method generalizes to all processes and
to all orders the well-known A„scheme introduced in the
second-order analysis of deep-inelastic scattering [see, in
particular, Eq. (2.16)]. The process dependence of the
various effective scales A [Eq. (2.9)] is the neatest test of
the so-called next-to-leading-order QCD effects. The fact
that the A„scheme can be so naturally extended to all or-
ders clarify, we believe, its theoretical meaning.

(5) The results obtained by the present method may de-
pend crucially on the choice of the physical quantity to
which it is applied. ' For instance, if R~ and R2 are two
distinct physical quantities, the prediction for the ratio
R =R, /R2 (or the sum S =R&+R2) may depend sensi-
tively on whether the effective-charge method is applied
separately to R

&
and R2, or directly to R (or S). As a pre-

liminary, but not precise enough, general orientation, we
shaH stick to the rule that the first procedure is the correct
one, if R] and R2 are related to Feynman diagrams refer-
ring to different processes, since R (or S) is in this case
more an artificial construct. This viewpoint also has the
advantage to exploit more completely the information
contained in the Feynman diagrams for R

&
and R2. Un-

fortunately, this prescription is not always sufficient to re-
move all ambiguities (see Sec. Vl C for an example). We
conclude that the choice of the "right" physical quantities,
for which the associated effective charges and P functions
can be expected to be well behaved [see Eq. (2.15)], be-
comes now the relevant theoretical question (which re-
places the previous question' of the choice of a "good"
RS).
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III. CONNECTION %ITH ORDINARY
PERTURBATION THEORY:

RENORMAI IZATION-GROUP-IMPROVED
PERTURBATION THEORY

1 2 2 A
ci(Q /p )= —ln +ln

dx p dx
0 P(x) 0 P(x)

' (3.2)

A. Renormahzation-group structure
of perturbative coefficients

Since the effective charge P is just a particular example
of a renormalized coupling constant, the properties of the
perturbation expansion of p (hence of cr) in powers of
another renormalized coupling constant p follows from
(more or less} well-known general renormalization-group
relations which we now recall. Subtracting from Eq.
(2.6b) its analog for p(p ),

Piln 2
———+ 1n(Pip)p 1 P2

A' p Pi

~p P(p)
Bp g2y~2 P(p)

(3.3)

Equations (3.2) and (3.3) are completely symmetrical with
respect to p and p. We are now going to take an un-
symmetrical viewpoint, by looking at them as implicit
equations for p, considered as a function of the two vari-
ables ln(Q /p ) and p. Solving for p in Eq. (3.2) as a
power series in p, one obtains

where a limit process is understood at the lower ends of
the integrals in Eq. (3.2), and the two-loop universality of
P and P guarantees a finite result is obtained. Taking the
derivative of both sides of Eq. (3.2) at fixed Q /p (and
A /A ) gives the relation

+ f' dx

one gets the exact relation

P2 1 Pi+
Pi x P(x)

(3.1) p=p[ I+ci(Q'/p')p+c3(Q'/p')p'

+c3(Q Ip )p'+c, (Q Ip )p + ]
with

2 A 2

ci(Q /p )= —Piln +Piln
p2 A2

1 P~ P~-
ci(Q /p )+—

1

1 P2 P~ P~-
6 Pi Pi

c2(Q /p )=ci (Q /p }+ ci(Q /p )+z 2 3 P2 2 2

1 1

5 P2. . . 3P3 2P3
c3(Q /p )=ci (Q /p )+— ci (Q /p )+

1 1 1

c4(Q /p')= ci (Q /p )+ ci'(Q'/p')+ 6 —3 +— ci'(Q'/p')P3 P3 3 P2'

2P4 P4
3

P2 P3 P3 1 P3 P3 5P3 6P 1 Ps Ps-
Pi

(3.4)

where P; are the coefficients of the P function.
The general structure of the perturbative coefficients is

seen to be

c (Q / )=c (Q /p')+p (3.5)

with

c,(Q'Ip') = g a,„ci'(Q'Ip'),
j=0

where a„„=1, the aj „depend only on the P;,P; coeffi-
cients with i (n, and ao „&0only for n & 4. In particular,
we recover Eqs. (2.7) and (2.9). Noting that ci(Q /p2)
can be rewritten as

2 2

ci(Q /p, )= —P, ln +P, ln (3 6)

We deduce from Eq. (3.4) that the RS dependence of the
c s is entirely controlled by the quantities ln(p /A ) and
the P; s, which is not surprising, since they determine the
expansion parameter p by Eq. (3.1). On the other hand,
the effective charge~ depends solely on the RS-invariant
quantities' ln(Q /A ) and P; [cf. Eq. (2.6b)]. The latter
are the only physically relevant objects and we see they are
mixed in a rather complicated way in the c; s with ir-
relevant RS-dependent parameters. We note that the
scheme-dependent and scheme-invariant parameters are
clearly separated in Eq. (3.2), which represent an explicit
solution, in terms of the generalized
Stuckelberg —Peterman —Gell-Mann —Low function P, to
the Stuckelberg-Peterman-' Callan-Symanzik' equations
(which express RS independence in differential form):
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+P;(p) p(Q /A, PJ,p, A.; ) =0,
Big Bp

I Op 1 p e I ~ (3.7)

and

A,0=in, A,;= (i & 1)
p' P +2
A' ' '

P,
(3.8)

where we consider p as a function of p and the RS labeling
parameters A,; (at fixed Q /A and PJ ):

B. Renormalization-group-improved
perturbation theory

The use of Eq. (3.2) with P,P (or 1/P, 1/P) truncated to
n th order clearly amounts to a resumm ati on to al 1 orders
of the first n leading powers of c ~ (plus some parts of the
other nonleading powers) [see Eq. (3.4)]~ Generalizing
standard practice, we cal 1 this resummation
renormalizati on -group-&mproued perturbation theory. As
an example, we give the one- and two-loop
renormalization-group-improved formulas (using the ex-
pansion of the inverse P and P functions):

Bp c ~ (Q /p ) = — ——— (one loop),2 2 = 1 1

p P
(3 ~ 12)

[p is itself an implicit function of the A,;, through Eq.
(3.1)].

Reciprocally, one can obtain the coefficients of the P
and P functions from the knowledge of the single
ln(Q /p ) and the constant terms in the c s. The relevant
formulas are essentiaHy contained already in the original
articl e of Gel 1-Mann and Low. ' Expanding p and p in
powers of ln(Q /p ), one writes

2 2

p =50(p) +5~(p)ln +52(p)ln + . .
p p

2 2

p=yo(p)+y, (p)», +@2(p)»', +
(3.9)

Using Eq. (3.3), one easily derives the relations

5„(p)
P(p) =n 5'„,(p)

P(p) =n
y, (P)

y„' ((p)

(3.10)

where a prime means the derivative with respect to p,p
and also

P(p) =5~(p)

with (3.1 1)

p= 50(p) ~

Equation (3.10) displays the well-known fact that the
knowledge of the single ln(Q /p ) and constant terms
determine all higher-order logarithms, as well as the P and
P functions. In practice, however, it is easier to get the
n + 1 P coefficient P„+&

from the knowledge of c„andc„
[see Eq. (3.5)), i.e., the first n perturbative coefficients,
once the first n + 1 P coefficients of a given base RS [say,
the minimal-subtraction (MS) scheme] have been comput-
ed in a simpler way by standard means (i.e., from the ver-
tex and wave-function renormalization constants); note
also that c„+~ can in turn be predicted. For instance, Eq.
(3.4) shows that P3 is known from the knowledge of P~, P2,
P3 and c ~,c2, which in turn predicts c3.

c)(Q /p )= — ———+ ln
P2

p p P~ p
(two loop) . (3.13)

We note that the one-loop improved formula coincides
with the ordinary next-to-leading formula for the expan-
sion of the inverse charge 1 /p. The usefulness of
renormalization-group-improved perturbation theory de-
pends essentially on the magnitude of

~

c
& ~

. ~e distin-
gui sh two cases:

(a) Large
~

c
& ~, i.e.,

~

c ~
~

&&P2/P&. This is the case
where the improved formulas are expected to be useful,
since the dominant part of each c; are then resummed,
provided the P and P functions are "well behaved" in the
sense of Eq. (2.15), i.e.,

P;+i
P;

P;+)
P;

P2

Pi

We stress that there is no correl ation, a prio ri, between the
magnitude of

~

c ~
~

and that of the P; and P; coefficients:
c ~ expresses a relation between two couplings, whereas P;
and P; are intrinsic to each coupling. Now,

~

c
& ~

may be
large either because

~

ln( Q /p )
~

is large, or because-

~

ln( A /A )
~

(the "constant term") is large: these two
kind of logarithms play an entirely symmetrical role. The
case of large

~
ln(Q /p )

~

is the most familiar one, but
that of large

~

ln( A /A )
~

has attracted much attention
since the advent of next-to-leading-order QCD calcula-
tions, where

~

c ~ ~

was found to be large in usual schemes
even after putting p =Q. Actually, the distinction be-
tween these two cases is essentially a matter of convention:
one can always pass from large

~
ln(Q /p )

~

to large
~

ln(A /A )
~

merely by redefining Q (or p), for given
values of p and p (hence without changing the value of c

& );
in particular, there is always a convention for which
ln( A /A ) =0, for given p and p. It should therefore be
clear that the present method represents a
renormalization-group improvement of perturbation
theory in the most classical sense.

Assuming P and P are well behaved, there is still a limi-
tation on the applicability of improved perturbation
theory, which stems from the condition that the solution
of Eq. (3.2), considered as an implicit equation for p with
P and P (or their inverses) truncated at a given order, ex-
ists and satisfies the consistency condition Eq. (2.14a) [as-
suming p satisfies the analog condition (P2/P& )p « 1].
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For instance, the solution of Eq. (3.12),

P
1 —ci(Q /p )p

exists only if

(3.14)

ci(Q'/p')p & 1 (3.15a)

[the value p=1/ci(Q /p ) is the Landau ghost], and
furthermore condition Eq. (2.14a) requires

+c,(Q /p') p&1. (3.15b)

So, if (Pz/Pi)p & 1 and ci &0, the conditions Eqs. (3.15)
are automatically satisfied, but they impose a restriction
on cip if ci )0; in particular, next-to-leading corrections
cip larger than 100% cannot be handled in this latter case
simply because p becomes too large.

Another way to see that c~p(1 when c»0 is to let the
renormalization point p~ 00 (for given p and Q); then

2

ci(Q /p )-Piln
A

but

On the other hand, the improved formula for p, with the
P and P functions truncated to three loops, predicts, when
reexpanded in powers of p [see Eq. (3A)]:

c3(Q /p )=ci(Q /p )=0,
which means that improved and nonimproved formulas in
fact agree to O(p ). Actually, this exact agreement is an
accident, peculiar to this order, and to the use of truncated
expansions for P and P; if instead the inverse P and P
functions had been truncated to the same order, the reader
can easily check that the improved and nonimproved re-
sults would differ to 0 (p ) by the amount

6—P3 P2
X Xp

i.e., the relative correction is (p2/pi)p, which is still satis-
factory when (Pz/P, )p « 1.

C. %ell-behaved RS: Definition of good
universal conventions

The previous results suggest that we define a well-
behaved RS as one whose P function is well behaved, i.e.,
satisfy the condition

ci(Q'/I ')p= —A» —,p
A

p2 ln(Q /A )

A p&
„

ln(p /A )

i.e., the correction tends to 100% from below.
(b) Small

~
ci ~. In such a case, one naturally expects

agreement between ordinary and improved perturbation
theory. We note that it is always possible to choose p as
in Eq. (2.12), in such a way that ci ——0 (Ref. 13). Let us
examine the consequences of this choice, in the two-loop,
and beyond the two-loop, approximation for P and P.

(i) Up to two loops. We wish to compare the predic-
tions of Eq. (3.13) with those of ordinary perturbation
theory in next-to-leading order:

P =P[1+c i (Q'/V')p]

P3 133, —
p p 1+ p2

Pi
(3.16)

When c~ ——0, it is clear that they are the same, i.e., they
both predict p=p [assuming (P2/Pi)p&1, (P2/Pi)P& 1].
Therefore, in this approximation, all charges are universal
when ci ——0. This fact is an immediate consequence of the
two-loop universality of the P functions, which implies
that all effective charges are related by a mere rescaling of
their argument up to two loops.

(ii) Beyond two loops. It is clear from Eq. (3.4) that, if
P; and P; are well behaved, the coefficients c; are under
control when c~ ——0, so that the ordinary perturbation ex-
pansion converges and should give an answer close to that
obtained from the improved formulas [provided
(P2/Pi)p«1]. For instance, going to third order in the
ordinary expansion, and putting c ~

——0, one gets

(3.17)

Ordinary perturbation theory in such RS will then give re-
liable results for those physical quantities whose associat-
ed P function is also well behaved [in the sense of Eq.
(2.14a)], provided the renormalization point p, is chosen as
in Eq. (2.12), so that ci ——0. For these well-behaved RS,
and well-behaved effective charges p, the fastest apparent
convergence choice of Eq. (2.12) is therefore a posteriori
justified. We conclude that the method of effective
charges is compatible with the existence of a well-behaved
RS, i.e., of a "good universal convention" in the sense of
Ref. 10, and actually, if successful, implies its existence,
although such RS are by no means unique. Examples of
well-behaved RS are easy to find, and in fact all familiar
RS's seem to share this property. The most convenient
one is probably the MS scheme, its P3 coefficient has
been computed and it is well behaved,

Pi P2=7.92, =6.16 (for 4 flavors) .
P2

'
Pi

We also note that the 't Hooft RS, defined by

P(p) = Pip' 132 p—— —

(3.18)

(3.19)

is well behaved by construction. Momentum-subtraction
RS's also appear to be well behaved (see below). Anyway,
there is no particular interest to use these RS's to make
predictions, since the latter can be given in a simpler and
entirely RS-invariant way using the P functions only.

What about well-behaved effective charges? Once a
well-behaved RS has been adopted, and p chosen as in Eq.
(2.12), the appearance of anomalously large higher-order
coefficients in the expansion of p is a signal that the P
function is not well behaved. There is then little hope to
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make perturbative predictions for p. To the author' s
knowledge, calculations allowing to extract the values of
three-loop P3 coefficients for effective charges of physical
interest have not yet been completed. A plausible model
for such effective charges, however, is provided by the
(gauge-dependent) coupling constants defined by various
three-point vertices. For the latter, the two-loop calcula-
tions needed to extract P3 [once P3 is known (Ref. 28)]
have been performed, and one finds that their P3 are also
well behaved (which also shows that momentum-
subtraction schemes are examples of "good universal con-
ventions"' ).

IV. RENORMALIZATION-GROUP-INVARIANT
OPERATORS, GREEN'S FUNCTIONS,

AND WILSON-COEFFICIENT FUNCTIONS

In this section, we show that not only physical quanti-
ties, but also Green's functions (and Wilson coefficients)
can be related to renormalization-group-invariant effective
charges.

Og(p )= lim Ob(M )Z '(p, M ),
M2 —+ oo

(4.1)

where M is the cutoff, p is the renormalization point,
Z(p, M ) the operator wave-function renormalization
constant, and Oz(p ) the cutoff-independent renormalized
operator. Consequently, the anomalous dimension
y~(p ), defined by the relation

p Bz(p,M )
yg(p )= lim p '~ Z '(p, M ), (4.2)

Bp

is cutoff independent. Let us from now on assume that
terms which vanish as M —+(x) have been dropped from
Z(p, M ), order by order in perturbation theory, and that
only logarithmic-divergent and constant terms have been
retained. Then the Hmit operation in Eqs. (4.1) and (4.2)
can be omitted, i.e., we have

( 2) 2 P ~ Z —i( 2M2) (4.3a)
Bp

identically in M . We now observe that Eq. (4.3a) implies
that the p and the M dependences of Z(p, M ) factorize,
i.e., that we can write

Z(p, M )=Z~(p )Zb '(M )

with (4.4)

y~(p )=p, Z~ (p»
Bp

where the functions Zz and Zb depend, respectively, on
the operator renormalization scheme and the regulariza-

A. Renormalization-group-invariant operators

Consider the simplest case of a multiplicatively renor-
malizable bare operator 0b which does not mix under re-
normalization. The basic statement of multiplicative re-
normalizability, in the framework of cutoff regularization,
is that

tion method considered. From Eq. (4.1) (with the limit
operation omitted), and Eq. (4.4), we deduce

O~(p2) &&Z~(p ) =Ob(M ) &&Zb(M ):—0;„„,(4.5)

'BZb= —M Zb '(M ),
BM

(4.3b)

where yb(M ) is the anomalous dimension describing the
cutoff dependence of Ob(M ) in the continuum limit.
Equations (4.3) are equivalent to the Callan-Symanzik
equations

, +y~(p') O~(p')=o
dp

(4.6)

M +yb(M ) Ob(M )=0,
dM

which show the analogy between cutoff and the renormal-
ization point. The cutoff dependence of a bare operator
has the same form as the renormalization-point depen-
dence of a renormalized operator. In fact, the bare opera-
tor can be identified, in the continuum limit, with an
operator renormalized by "minimum (cutoff) subtrac-
tion. " The functions yb and y~ (and Zb and Zz) can be
computed in perturbation theory (see next section). Gen-
eralization of the previous considerations to the case of
operator mixing is easy: Zb and Zz (and yb and yz) are
simply replaced by N XN matrices if Ob is an N-
component operator. Equation (4.5) then defines an N-
component renormalization-group-invariant operator (Ob
and O~ are row vectors) defined up to an arbitrary con-
stant matrix multiplication.

B. Renormalization-group-invariant Green's functions

Next, we consider Green's functions. Take as a simple
example the bare propagator (chosen to be dimensionless):

(/blab) = jd x e'~ "(0
~
Tpb(x)pb(0) I 0)

=Gb(P /M, Pb), (4.7)

where pb is some bare elementary local field operator, and
pb the bare coupling constant. We assume Gb is rnultipli-
catively renormalizable. Then, we can extract the cutoff
dependence of Gb using the relation

where we introduced 0;„„,the renormalization-group-
invariant operator ' associated to 0b. 0;„,depends nei-
ther on the cutoff M, nor on the renormalization point p.
Its overall normalization is, however, arbitrary, since one
can always "renormalize":

Zb~lzb, Zg~kzg (where A, is a constant)

without changing Z(p, M ) in Eq. (4.4).
We note also that Eq. (4.4) implies the relation

2 2z-'( 'M')M'z'p M '= (M )p 3 b
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1
rhb(x) =rh;„„(x)wb w lllv

[Z (M2)]]/2

Hence

is the "integrated effective charge" defined by

d lopG
A—PH

dp
(4.16)

Gb(p /M, pb)=6;, (p )Zb '(M )

with

(4.8)

GR(p /p, p)=G;„„(p)ZR '(p ) . (4.10)

Equation (4.8} suggests a very simple way to compute
6;„„(p). Taking the logarithmic derivative of Eq. (4.8)
with respect to p, we get

BGb( /M ) ) [6 ( /M b)]
Bp

6;„„(p)= f d xe' "('0I TP;„„(x)P;„„(0)IO} . (4.9)

Equation (4.8} shows that the p and M dependences of Gb
factorize. We call 6;„,the renormalization-group-
invariant Green s function associated to Gb. Similarly, if
GR(p /p, p) is the corresponding renormalized Green's
function, the p and p dependences factorize, and we
have32

In summary, we have shown that the invariant Green's
function G;„„canbe described in terms of an effective
charge pH (or its integral pg). For completeness, we men-
tion that 6;„„canalso be derived easily from the familiar
solution of the renormalization-group equation for GR (or
Gb),

(p2)
GR [p'/p', p] =GR [ l,p(p') ]exp f dx

P X

(4.17)

where we considered y~ as a function of the coupling p,
rather than of the scale p . Isolating the singularity at
x =0 of the integrand in Eq. . (4.17), one recovers Eq.
(4.10) with

ZR '(p ) = const X [p(p )] '

P&Pl'~ 'yR(X} y'I 1
&&exp —f dx

0 X ) X

Bp

=H(p ) . (4.11)
We see that H(p ) is cutoff independent, and computable
in perturbation theory. In general, no 0(pb) term is
present, and H(p ) is given by the expansion, in powers
of the bare coupling constant pb.

H(p')=yi[pb+ci(p /M')Pb'+ ' ' ' ]=yiPH(p ),—(4.12)

where y& is the one-loop anomalous dimension of pb, and

PII the effective charge associated to H. We note that H is
simply the anomalous dimension of pb in the familiar re-
normalization convention

GR(p /S p) Ip. „2=1 (4.13)

since, in this case, 6;„(p}—:ZR(p ) [see Eq. (4.10)].
H(p ) can be calculated directly from the Feynman dia-
grams for Gb [see Eq. (4.11)]. Then, a simple integration
yields G;„„(upto an arbitrary multiplicative factor). Let
us integrate Eq. (4.11) in terms of the effective charge pH.
Using

d 2f "P, p (p')=fd
p H X

where pII is the p function associated to pH, we get

lnG;„„(p}=— lnpG(p )+const,

and

(4.18)

G;„„(p)=GR[l,p(p )]ZR(p )

Gbj=, , (i,j = 1, . . . , K) .(AbObkb }'=
(y', y', )

Then we have

(similar equations hold for Gb with fhe substitutions
GR~Gb, ZR~Zb, yR~yb, p~pb, p~M). We stress that
G;„„(p) is operator and coupling-constant RS invariant:
In particular, the overall normalization constant in Eqs.
(4.14) and (4.18) is completely independent of yR and of
the definition of p. We disagree with Ref. 33 on this ques-
tion.

Generalization to other Green's functions is straightfor-
ward. For instance, if one considers the Green's function
(pbObpb }obtained by insertion of the multiplicatively re-
normalizable local operator Ob, carrying zero momentum,
all the previous considerations are still valid: One simply
has to replace the factor Zb '(M ) in Eq. (4.8) by
Z

b
'(M }Zg '(M } (where Z~ and Zg are the wa

function renormalization constants relating pb and Ob to
P;„„and0;„„).To treat the case of operator mixing, . one
introduces the N XN matrix Gb whose elements are

1.e.,
6/~(p /M, pb)=G';„"„(p)[Zg, '(M )]"i, (4.19)

G;„„(p)=constX[pg(p )]

where

PH I p)X
pg ——pH exp — dx —+0 X H X

(4.14)

(4.15)

Ob(M )[Zg (M )]J =0,"„„. (4.20)

The following matrix equation then replaces Eq. (4.11):

where Zg '(M ) is the inverse of the wave-function re-
b

normalization matrix of Ob, which satisfies
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2 ~+ 2 Inv

=H(p ), (4.21)

where H(p ) is an N &&N matrix, calculable in perturba-
tion theory, and whose elements can be related to effective
charges. Given H(p ), integration of Eq. (4.21) yields
Ginv

Subtractiuely renormalizable Green's functions may also
be related to renormalization-group-invariant Green's
functions and effective charges. For dimensionless
Green's functions, such as the hadronic vacuum polariza-
tion Iib(Q, M ) in QCD, only the corresponding "Adler
function" Q dIIbldg has physical significance, and is
related to an effective charge p (Q ) defined by

dHb
Q =A+Bp (Q ), (4.22)

(g2) CQ4 (g2) (4.23b)

where C is a calculable constant, and p~ an effective
charge. Since the subtraction term depends on Q only
through the overall factor Q, we have Pb(Q =O,M )

=P;„„(Q=0). Note also that P~(Q, M ) is 0(pb ),
whereas P;„„(Q) is 0(pb).

C. Renormalization-group-invariant
Wilson-coefficient functions

We consider as the simplest example the operator-
product expansion of the nonsinglet part of the product of
two electromagnetic currents J(x)J(0), which we write
symbolically as

J(x)J(0) —QO"(p )C"(x,p ),
x—+0

(4.24)

where only the leading twist-two contribution has been

where A and B are calculable constants. Qn the other
hand, dimensional Green's functions appear to have physi-
cal meaning: their values at zero momentum are often re-
lated to physical quantities. A well-known example is the
correlation function

Pb(Q )=i f d x e'~'"(0~ T(a,FF(x),

a,FF(0))
~
0)

~ „,„„k,,

where FF(x) is the topological charge density. Qb(Q =0)
gives the small™0dependence of the vacuum energy and,
in the large-N limit, is related to the g' mass. However,
in perturbation theory Pb(Q ) requires a subtractive renor-
malization. The corresponding renormalization-group-
invariant Green's function P;„„(Q) is defined by the rela-
tion

Ps(Q, M )=P;„,(Q )—CQ"pb[1+0(pt, )] . (4.23a)

The second term on the right-hand side of Eq. (4.23a)
represents the unphysical, M-dependent subtraction term,
and

written, the sum runs over spin-n, twist-two nonsinglet
operators 0", renormalized at point p and C"(x,p ) are
the corresponding coefficient functions. Since the elec-
tromagnetic current operator J(x) does not need to be re-
normalized, the product J(x)J(0) is p independent, and so
is each term 0"(p )C"(x,p ) in the expansion. We can
therefore write

0"(p )C"(x,p )=0,".„„C,"„,(x ),
where

(4.25)

and

0,"„„=0"(p )Z "(p')

C,"„„(x)=[Z"(p )] 'C"(x,p ) . (4.26)

Equation (4.26) defines the p-independent,
renormalization-group-invariant coefficient function
C;"„„(x) corresponding to C"(x,p ). Note that C,"„„is
defined only up to an arbitrary normalization. Generali-
zation to the singlet case, where operator mixing occurs, is
easily done by considering Z in Eq. (4.26) as a matrix,
and C" as a column vector. C,"„„(x) is then defined up to
an arbitrary constant matrix multiplication. We note that
with the use of 0,"„„andC,"„„,the explicit p dependence of
the right-hand side of Eq. (4.24) has disappeared, which is
useful in many applications: one does not have to worry
about the choice of p (the "factorization scale" ).

V. EXTENSION TO THE CASE
OF NONZERO FERMION MASSES

, = —x[1+)' (p)] (5.la)
dp

where x=—[mz(p )/p], p is the RS coupling constant,
and y (p) the mass-anomalous-dimension function. In-
tegration of Eq. (5.1a) gives

We now consider @CD (or QED) with a single massive
fermion (for simplicity). Extension of the method of ef-
fective charges to this case is rather straightforward. Ac-
tually, there is now a further difficulty due to the addi-
tional freedom in the definition of the renormalized fer-
rnion mass. The treatment we shall suggest gets rid only
of the RS ambiguity related to the definition of the renor-
malized coupling constant when a fixed mass definition
(such as the pole of the fermion propagator) is used.
However, the use of the "scale-invariant" renormalized
mass parameter m ' (associated to running masses in
mass-independent RS) leads to an essentially RS-invariant
treatment. The reason is that the parameter nz is univer-
sal, i.e., is the same for all mass-independent RS, and
parametrize the cutoff dependence of the bare mass in the
continuum limit. Since this question, to the authors
knowledge, has not been treated in much detail in the
literature, we sketch the basic arguments which lead to the
previous statements.

Let mz(p ) be the running mass in a mass-independent
RS (such as the MS scheme). We recall that its p depen-
dence is given by the equation
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mti'(P, )= m [P1P(P')] '

m p
X 1+ 7 1

p(p)+
1

(5.2a)

Q =P(p, m /Q ) . (5.6a)

Actually, for p=p(Q, m, M,pb) one can define two oth-
er P functions:

where we put y (p) =yi p +y2 p + .
Similarly, the cutoff dependence of the bare mass in the

continuum limit is given by the analog of Eqs. (S.la) and
(5.2a):

(i) P~(p, m /Q )=m
Qm QM pb

(ii) pM(p, m /Q )=M2
g2, m2 p

(5.6b)

M = —xb[1+yb (pb)],
dM

(5.1b)

where xb=[mb(M )/M], mb is the bare mass, pb the
bare coupling constant, M the cutoff, and

(5.6c)
QQ2 m&gg2, M& p

Homogeneity of p implies the relation

mb (M )= mb [pipb(M2)] '
p+p~+pM ——0. (5.6d)

m

X &+
Pi

P2 V l, b
pb(M )+

1 1

with

(5.2b)

Yb (Pb ) Y l,bPb +1 2, bPb +
We note that we must have

Ptl =Pub

Y1 3 1,b

(5.3)

A. Nonzero external momentum

l. Fixed renormalized mass

We assume mass renormalization has been performed,
using a fixed mass definition (such as m =pole of fermion
propagator). The obvious generalizations of Eqs. (2.4) and
(2.5) are

o(Q, m )=A(m /Q )+B(m /Q )[4mp(Q, m )]s

(5.5)

(we assume d is a constant), and

in order that the mass-renormalization constant
mb (M )/mii (p ) be a power series in p (or pb) with
mass-independent coefficients, with the O(p ) term nor-
malized to unity; we then get the familiar looking result

mb (M2)
=1+p(p ) —y1 in +const

ming (p2) p

(5.4)

Equation (5.3) states the universality of m, as well as that
of the one-loop mass-anomalous diinension yi ——6&& —, in

@CD (two-loop anomalous dimension yz are not univer-
sal, however, as is well known). Coming back now to the
method of effective charges, it is convenient to distinguish
the cases Q&0 and Q =0, where Q is the external momen-
tum.

The pM function is specially useful for physical quantities
cr(Q, m, M,pb) defined with on-shell external fermions
(Qi=m ), such as the electron g —2 in QED, or the quar-
konium gluonic width in QCD (see Sec. V BI). We also
note that Eq. (5.6c) is no more difficult to integrate than
the zero-mass equation, since m /Q is fixed.

Predictions for the effective charge p can be done in
terms of p and a boundary condition A [related to the
large-Q behavior of p by Eq. (2.16): we assume that
p(p, m /Q ) has a zero-mass limit, and that p coincide
with an effective charge of the zero-mass theory at large
Q; these assumptions are certainly true in QCD ]. How-
ever, one can easily check that the functional form of
p(p, m /Q ), as well as the definition of the effective
charge P, depend in fact on the definition chosen for m;
given one definition, all other possible choices are generat-
ed by relations of the form

m =mI1+cp(m )[1+O(p)]I . (5.7)

It is clear that once Eq. (5.7) is substituted into Eqs. (5.5)
and (5.6), a new effective charge p and (or) p(p, m /Q )

function will result.

2. Running masses in mass-independent RS:
Use of the scale inuariant mass m-

As we have argued above, m can be considered as a
RS-invariant parameter. However, if one merely substi-
tutes into the unrenormalized (or renormalized in any
mass-independent RS) Feynman diagrams for o the ex-
pression Eq. (5.2b) for mb [or the expression Eq. (5.2a)
for m~ ], the result will have a very complicated structure
with respect to pb (or pMs) and no clear effective charge
picture will emerge. This, difficulty can be circumvented
if one uses a small-mass expansion (for m &&Q ) or a
heavy-mass expansion (for m &&Q ), depending on the
kinematical region of interest. Consider for instance the
small-mass expansion of cr:
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2

o= oo(g /M, pb)+ 2 oi(g /M, pb)

4 2

g2(g /M, pb)+o2(Q /M, pb)ln

+ I ~ ~ (5.8)

o = cro(g'/M', pb)+, &)(Q /M', pb)

w 4

&2(g /M, pb)+cr2(g /M, ps)ln

where we used the fact that the strongest singularity at
zero bare mass is presumably of the form mb lnm& (by
analogy with a similar result of Ref. 40, for the singularity
at zero renormalized mass in a mass-independent RS}.
Next, substituting Eq. (5.2b) for mb, we obtain an expan-
sion of the form

where each term is a function of the zero-mass theory,
and can be associated to an effective charge. Of particular
interest is the case where o.p—=0: o. is then an observable
appropriate to the study of light-quark masses. For in-
stance, the leading term in the small-mass expansion of

0F5(g~) =
(dg')'

where gz(g ) is the correlation function:

(where A„is the charged strangeness-nonchanging axial-
vector current) has the form ' in the MS scheme in QCD
(for two quark flavors of equal mass):

F (Q2)= 3 ~ g
1

4+11
(Q2)+

3 P +'''

+0 ln (5.10)
g4 g2

+ t ~ ~ (5 9) Upon substitution of Eq. (5.2a) (at p =Q ), one obtains

w 4

r

A m w 4 w 2

8 2 (5.11)

[see Sec. VB2].

Qp

g2=m2

B. Zero-momentum observables

Typical examples are the electric charge in QED or the
derivatives of the hadronic vacuum polarization at Q =0
in QCD.

1. Eixed renormalized mass

Hence, through the effective charge p(g ), we get a RS-
invariant prediction for F5(Q ), in leading order in the
chiral-symmetry-breaking parameter m.

Finally, we mention that for effective charges
p(g, m ), defined with on-mass-shell external fermions
(Q =m ), one can give RS-invariant predictions in terms
of the new P function

m =p(p) .
8771 pb, ~

(5.12)

Equation (5.12) is the analog of the Callan-Symanzik
function associated to the electric charge in QED.

We note that the mass variation can equally be per-
formed at fixed ~(,p ) in any mass-independent RS, lead-
ing to the same p function. Also, the structure of the per-
turbation expansion of p(m } in any mass-independent RS
is given by the analog of Eq. (3.4), with Q replaced by m.
However, the resulting p function now depends upon the
definition of m beyond two loops. If' m~ and m2 are two
different definitions, and p~(p), p2(p) the corresponding
Callan-Symanzik functions, we have, putting

2

a(m )=A+8[p(m )]

and we introduce the generalized Callan-Symanzik func-
tion

When Q=O, the derivative with respect to Q in Eq.
(5.6) is no more available, but it can be replaced by a
derivative with respect to the renormalized mass m. If the
zero-momentum observable o has the expansion (where
mass renormalization has been performed)

o(m )=A+B(pb) [1+a)(m /M2)p~+ . ],
we define again an effective charge p by the identity Hence

1 1

p~(p) p~(p)

d lny 1 d~2 1

dp nz2 dp pb, ~ m ~ dp pb, ~

(5.13)
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1
inq = I'dx

P2(x) Pi(x)
(5.14)

A similar formalism can be applied to those effective
charges p( Q, m, M,pb ) defined with on-mass-shell
external fermions (Q =m ), although they are not
genuine zero-momentum observables. According to a re-
mark made earlier (Sec. V A 1), they can be determined by
the PM function [see Eq. (5.6c)], i.e., equivalently, the
mass derivative

2
m

&
———pbr p, 2

——1 . (5.1S)
Bm ming~=i, pb bI~ Q2

2
Ptl fP2b—'Yb (Pb )mb P Pb

8mb M

where pb is the bare coupling p function

BPb
M =pb(pb) .

Homogeneity gives the relation

2 ~P ~2 ~P
Bm BM

(5.18)

(5.19)

2. Scale-invariant mass m

A completely RS-invariant solution (within the class of
mass-independent RS) can be given if one considers the
following modification of the Callan-Symanzik method.
Instead of taking the variation of the zero-momentum ef-
fective charge p (we drop the bar for ease of notation) with
respect to the renormalized mass m at fixed pb and M,
consider the variation of p with respect to the bare mass
mb at fixed pb and M:

2
mb

M 2 +pb(pb) p, pb
——0

BM ~Pb M
(5.21)

and we defined

&b(Pb)
bPb =

I +)'b (pb )

which allows us to put Eq. (5.18) in a modified form,
where mb plays a purely passive role (like an external
kinematical scale variable),

BM,b p

(5.16a)

I3ipb —«z &i—l'i, b )P—b + (5.22)

where we introduced the modified Callan-Symanzik func-
tion P(p). The fact that the bare-mass derivative in Eq.
(S.16a) is finite has been known long ago in QED, where
the particular zero-momentum observable considered was
the electric charge. The physical content of this property
becomes clear when one realizes that Eq. (5.16a) is
equivalent to the relation

dp dPb

P(P) (~b(Pb )
(5.23)

Equation (5.21) is of a standard type, and to solve it we
note that together with Eqs. (S.16)a) and (5.20), it implies
the relation

m =P(p),
Bm pb, M2

(5.17)

i.e., the bare-mass derivative, at fixed pb and M, is simply
the derivative with respect to the scale-invariant mass m.
The latter statement is an obvious consequence of the fact
that mb is proportional to m at fixed pb and M [see Eq.
(5.2b)]. We also note that the same P function is obtained
if one takes the derivative of p with respect to the running
mass m~, at fixed pz and p, in any mass-independent RS
(such as the MS scheme)

mg ——P(p)
BNzg p p2

(5.16b)

(where pz is the coupling constant associated to the con-
sidered RS).

Let us now discuss, in terms of the P(p) function, the
ultraviolet structure of the expansion of the zero-
momentum observable p in powers of the bare charge pb,
when no mass renormalization has been performed (i.e.,
we are interested in p as a function of pb, mb, and M ).
We shall show that P can be computed without perform-
ing any explicit mass renormalization. We start from the
Callan-Symanzik equation which expresses the cutoff in-
dependence of p:

Hence, by integration,

K]
M P)

dx ~b dh

P(x) P (x)
(5.24)

where the lnmb /M term arises from taking into account
Eq. (5.16a), and Ki is an integration constant. The pro-
cedure used here is simply the reverse of the one followed
in Sec. III, Eq. (5.24) being the direct analog of Eq. (3.2)
with the substitutions

P= =P P=pb

Q ~mb, @~M
P==P, P~Pb,

and

A'
ln—

A' Pi

Actually, all the results of Sec. III are valid with these
substitutions; in particular, the P function can be obtained
from the single ln(mb /M ) and the constant terms in the
bare expansion of p. In short, at zero momentum, if we
do not perform explicit mass renormalization, we have a
new effective renormalization group characterized by the
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various P functions. The latter are two-loop universal, as
follows from Eq. (5.23), but differ, beyond one loop, from
the corresponding P functions [see Eq. (S.22)]. Further-
more, the "new renormalization-group-improved" relation
between two zero-momentum effective charges p and p
now reads, with obvious notations,

L) E]
(5.25)

Pi Pi
dx ~ dx

' P(x) ' P(x)

M ~b dx
ln

Ab' 0 Py(x)
' (5.26)

where Ab is the regularization-dependent physical scale
occurring as a boundary condition to Eq. (5.19), and

mb Pb 1
2

ln = dx
m ' ' Ps(x)

I

pb(x)
(5.27)

[Eq. (S.27) follows from integrating Eq. (5.1b), and using
Eqs. (5.22) and (5.26)]. We thus getI' &i ~ dx

Ab Py 0 P(x)

where integrals like

~ dx
0 P(x)

have to be interpreted as

(5.28)

P2
in(Pjp)+ f dx — —+1 P21 1

ip Pi' P(x2 Pi2 x x

In accordance with similar previous remarks, we stress
that all the above results also hold if one considers the ex-
pression of p in any mass-independent RS, mb being re-
placed by the running mass, pb by the running coupling
constant associated to this RS, and M by the renormaliza-
tion point.

Finally, we mention that effective charges P(Q, m ) de-
fined with on-mass-shell external fermions (Q =m ), al-
though not strictly zero-momentum objects, can also be
described in terms of the P function defined by

m ' „;=P(P)
BUl g~=m2

(5.29)

Typical examples where this remark applies are the g-2 of
the electron in @ED or the quarkonium gluonic width in
@CD.

Equation (5.25) provides an alternative to the similar
renormalization-group improvement obtained using ordi-
nary P functions associated to fixed-mass definitions.

We also note that the solution of Eq. (5.17), including
the proper boundary conditions, may be derived from. Eq.
(5.24). For this purpose, we eliminate the "unphysical"
parameters m~ and M from Eq. (5.24), using the relations
which express the bare coupling dependence of the cutoff
and of the bare mass. These are

VI. APPLICATIONS

This section is a brief survey, intended to illustrate the
main features of the method of effective charges and, also,
to point out some problems it encounters. Since most of
the physical quantities o. depend upon more than one
kinematical momentum scale, we have first to mention the
straightforward extension required when several scales are
present: one simply considers 0. as a function of one
overall momentum scale, keeping all the external momen-
ta in fixed ratios to each other (as is usually done when
one deals with renormalization-group equations). We are
then back in effect to a one-scale problem, but it is clear
that useful results (i.e., well-behaved effective charges) will
be obtained only if one stays in the "deep Euclidean re-
gion, " where the ratios of kinematical invariants take on
finite values, away from any phase-space boundary.
When two or more distinct scales are involved in an essen-
tial way (in the sense that their ratio becomes large),
deeper physical understanding is required: one has to find
a way to go back to a one-scale problem before defining
the relevant effective charges (see, however, Sec. VIE).
This is what happens for those deep-inelastic processes
where a factorization between long and short distances has
been established. Using renormalization-group-invariant
operators and coefficient functions (see Sec. IV), one then
recovers and generalizes some very simple formulas, origi-
nally due to Bardeen and Buras' in the case of structure-
function moments, which have the following features.

(i) No "factorization scale" need be introduced; hence,
no factorization scale ambiguity arises.

(ii) Factorization between long and short distances is
implemented in the neatest way: all the Q dependences,
calculable in perturbation theory, are contained in the
renormalization-group-invariant coefficient functions and
directly related to effective charges; whereas the nonper-
turbatively calculable part is isolated into some constant,
scale-independent, RS-invariant normalization factors,
which represent the hadron matrix element of
renormalization-group-invariant operators. We now turn
to some specific processes.

A. Moments of deep-inelastic structure functions
(nonsinglet case)

We shall use in general in the following the notation of
auras. ' Starting from the standard operator-product ex-
pansion result for the nonsinglet moments Mk (n, Q )
(k = 1,2), and introducing renormalization-group-
invariant operator and coefficient functions, we get, keep-
ing only twist two operators,

Mk (n, Q )=A„(p)CP„(QIp, p, )

gNS( 2)ZNS( 2)[ZNS( 2)]—1( Ns(Q2y 2
)

(6.1)

(p2) is the hadron matrix element of the non-
singlet, twist-two, spin-n operator O„(p) «normahzed
at point p, Cp„(Q2jp2,p) is the Fourier transform of the
associated Wilson coefficient function and A and
CP (n, Q ) are the corresponding renormalization-group-
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invariant quantities. The long-distance physics is con-
tained in A„,which is a constant (at fixed n), RS-
independent, parameter-free prediction of QCD (defined
up to an arbitrary overall normalization), but noncalcu-
lable perturbatively. All the Q dependence is contained in
Ck (n, Q ), which is given, up to next-to-leading order, by
the expansion'

CNS(nQ2)[p(Q2)]Ns[1 +@p(Q2)+]
=—[p, '(n, Q')] ", (6.2)

where dNs ——yNs/p( (yNs is the one-loop anomalous di-
mension of Ogs), and Rk„can be found (or easily de-
duced) from Ref. 12. The use of the effective charge
pk (n, Q } is equivalent, up to next-to-leading order, to
the A„scheme, as mentioned in Sec. II.

We note incidentally that the fact that A
„

is not cal-
culable perturbatively does not prevent the method of ef-
fective charges to be applied to the perturbatively calcu-
lable part Ck (n, Q ), which is well defined. The latter
may be obtained from the standard solution of the
renormalization-group equation for Ck „(Q/)L(, ,p),

B. Moments of structure functions (singlet case)

The operator-product expansion gives in this case

Mk(n Q'}= g Ari(V')Ck, .(Q'/p'p}
a=@,G

A ((u )[Z„(p))"[Z„']'
a, b =I|),G

x Ck, „(Q'/p,p)

A '„C/(n,Q ), (6.6)

where Z„((M ) is the 2)&2 wave-function renormalization
matrix of singlet quark and gluon twist-2 operators
0„'(p ), defined as in Eq. (4.20) [with M replaced by )M,

and 0b(M ) by 0„'(p)]. Similar to A„,A'„ is a RS-
independent constant two-dimensional vector (defined up
to an arbitrary constant matrix multiplication), which
contains the long-distance physics. In perturbation
theory, one finds, ' with a particular choice for the arbi-
trary constant matrix,

Ck „(Q/)M, p)=Ck „[l,p(Q )]exp —f dx
P X

(6.3)

C/(n, Q')=[p(Q')] ' [I+&/, ,p(Q')+ . ]
dig—= [P'k«Q')l ' (1=+ —» (6.7)

by the analogs of Eqs. (4.10) and (4.18):

Ck„(Q /p p)=Z„(p }Ck (n, Q )

with

1 nypZNs( 2) [ ( 2)) 'Ms~i t

I

p(p') }'Ns(» rNs 1
&& exp f dx

0 X 1 X
(6.4)

where d;"=y,"/P( (y„"are the eigenvalues of the one-loop
anomalous dimension matrix) and Rk „canbe easily de-
duced from results in Ref. 12. Each moment of the sing-
let structure function can therefore be described in terms
of two effective charges pk(n, Q ) (i =+,—). We note
that the associated effective scales Ak(n) are different,
which should be taken into account in a phenomenological
analysis of leptoproduction data. The invariant coeffi-
cient functions C/, (n, Q ) may be obtained from the solu-
tion of the renormaliz ation-group equation for
Cl', „(Q/p, p). One finds, '

and

Ck (n, Q )=[Z„(Q)] 'C„„[1,P(Q )] .

(Q) "x
(Q2/P2 P) = X T exp —f dx

b=g, G X

&& Ck,.[I p(Q'}]
Alternatively, one can make a prediction in terms of the
effective charge pk (n, Q ) associated ' to the derivative

d~NS dcNS
[MNs) —1Q2 k [CNS] —1Q2

dQ2 dQ2

[Z.()L('))"C/ «Q'»

where y "(x) is the anomalous dimension matrix

(6.8)

(6.5) (p) +
Z„((L(, ) = V„(p)U„ dn

(p)
(6.9a)

Equation (6.5) is a physical all-orders generalization of
the Altarelli-Parisi equation in moment space.

The procedure suggested here is similar to the method
used in Sec. IV A to compute renormalization-group-
invariant Green s functions; in particular, the relation be-
tween p k (n, Q ) and pk (n, Q ) is given by the analogs of
Eqs. (4.15) and (4.16).

where the 2X2 matrices V„and U„canbe found in Ref.
12, and

C/, (n, Q )= g [Z„'(Q)]"Ck„[1,P(Q )] . (6.9b)
a=/, G

Calculation of C/ (n, Q ) may also be done using
Altarelli-Parisi matrix-type equations for the singlet quark
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and gluon structure-function 2)& 2 matrix

M'2 ~(n, Q,p ) M i ~(n, Q,p )

M2 G(n, Q,p ) M& G(n, Q,p )
M'(n, Q,p )= (6.10a)

C2 (n, Q ) Ci+(n, Q )
2 =

( Q')C ( Q')

by the physical Altarelli-Parisi equation

(6.10b)

[M ] Q' [C] 'Q'
dQ2 dQ2

=——I(n, Q ),
where the elements of the matrix I (n, Q ) are given by ef-
fective charges, and we used the fact that

(p is the parton momentum square) related to the 2X2
invariant coefficient function matrix

—NS
TABLE I. The values of A~ (n)/P Ms for four flavors.

2
4
6
8

10

A ] (n)/AMS

1.05
1.66
2.01
2.28
2.49

A2 (n)/P-MS

1.34
1.79
2.10
2.34
2.54

separately to M~ (n, Q2) and M2 (n, Q ), then deduce

M (n, Q )=M (n, Q ) M—, (n, Q ) .

(ii) Or one can attempt to apply it directly to
Ml (n, Q ), since the next-to-leading-order corrections to
ML (n, Q ) have recently been computed.

Let us consider in turn these two approaches
(i) Using Eqs. (6.1) and (6.2), we get

M'(n, Q, p)=A„(p )C(n, Q ),
where A„(p ) is a Q-independent 2 &&2 matrix.

C. Violation of the Callan-Gross relation

(6.12) M (n, Q )=M (n, Q )—M, (n, Q )

ANSI [
—NS( Q2)] Ns [

—NS( Q2)] NSI

(6.13)
Hence

As an application of the previous results, let us discuss
the QCD prediction for the moments

1

ML (n, Q )= J dxx" FL (x,Q )

of the longitudinal nonsinglet structure function

FL (x, Q )=F2 (x,Q ) —2xFP (x,Q ),
which vanish in the parton model (Callan and Cxross, Ref.
48). This will give us an example of a typical problem the
method of effective charges has to face. The problem is
that the prediction for Ml (n, Q ) can be done a priori in
at least two different ways, which are not obviously com-
patible.

(i) One can apply the method of effective charges

NS 2 —NS (6.14)
M2 (n, Q ) p2 (pg, Q2)

The p k (n, Q ) are computed from Eq. (2.16) in terms of
the scale A of a standard RS, using the relation (Para and
Sachrajda, Ref. 2)

ANS( )
'

RNS
=exp (6.15)

2pid Ns

Values of A k (n)/A are given in Table I for A =AMs (the
values for k =2 had already been obtained by Para and
Sachrajda, Ref. 2).

(ii) Alternatively, we have, in any RS,

MNS( Q2) g NS(RNS R S )[ (Q2)] Ns[1+R (Q2)+. . . ]

g NS(RNS RNS )[
—NS( Q2)]~+dNs

Hence

(6.16)

[p2'«, Q')] "' (6.17)

(iii) Actually, there is a third way to compute the ratio MI (n, Q )/M2 (n, Q ) from the relation [we used Eq. (6.4)]

~."'[Z."'(Q')] 'C2, '. [1 p(Q')]

=(R2 „—R ) „)p(Q )[I+(RL„—R2 „)p(Q )+ ]
C2, '[I p(Q')]

(R NS R NS
)
—(Q2) (6.18)
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P bP (n) dNS
Ns Ns . (6.19)
2, lt 1 7l

At the present time, two calculations of R q „have been
performed. ' In view of the rather large discrepancies
between them, we avoid giving detailed numerical results.
For illustrative purposes, however, we shall use the result
Rl „&——33.05 (in the MS scheme for four flavors) of
Ref. 49 to compare the predictions for the n =4 value of
the ratio Ml (n, Q )/MP(n, g ) obtained using the three

I

We shall discard the latter alternative, since the effective
charge p„(Q ) is a more artificial construct, less directly
related to Feynman diagrams. Furthermore, in case of
discrepancy between approaches (i) and (ii), we tend to
favor approach (i), which treats more symmetrically
M1 (n, g ) and M2 (n, g ), which both start in order

dn0( '). This means we assume both p1 (n, g ) and

p2 (n, g ) have well-behaved p functions (for not too
large n) If. one takes this point of view, it is not necessary
to compute Rl

„

to make a well-defined prediction for
Ml (n, g ) W.hat is then the new information contained
in Rl „?It appears that the knowledge of RL

„

is equiv-
alent to that of

gpNS( ) pNS( ) pNS(

where Pq k(n) (k =1,2} are the three-loop coefficients of
the P functions associated to pk (n, g ), i.e., for the first
time we have an indication of the deviation from univer-
sality for three-loop physical P functions. Indeed, it is
easy to derive the relation

gNS gNS
RNS (1 dn )Ln + NS 2dnNS

methods described above. We choose Q=50AMs. The
values obtained for ML, (n=4, Q )/M2 (n =4,Q ) using
methods (i), (ii), and (iii) above are then, respectively,
0.018, 0.054, and 0.020. We see that (i) and (ii) differ by a
factor of 3, whereas (i) and (iii) are consistent with each
other. As explained previously, we tend to favor the result
of method (i). We also mention that the results of Ref. 49
give smaller values of

~
bp2 (n}

~

than those of Ref. 50.
For instance, for n = 10 we get [using Eq. (6.19)]

hPq (n =10) =0.5

with the result of Ref. 49, whereas

b,p3 (n =10) = —1.7
P2

with the result of Ref. 50. In any case, both results are
compatible with the assumption that p3 2(n) and p3 1(n)
are well behaved (we recall P2/P& ——6.16 in QCD for four
flavors), and both show that hp2 (n) decrease with in-
creasing n.

D. Effective charges
for structure functions (nonsinglet case)

Effective charges may also be related directly to struc-
ture functions, without having to introduce the moments.
The simplest example is probably afforded by the kernel
of the physical Altarelli-Parisi equation in the nonsinglet
case [which is the inverse Mellin transform of Eq. (6.5)]:

, dF (,Q')
Q =Fk (x,g )sPk [x,p(Q )], (6.20)

where is the convolution product, and

Pk"'[x p(Q'}1=[p1'(x)p(g')+p2, ~(x)p'(Q'}+ ]+
NS

= P1 (X) P(Q')+ Ns P'(Q')+
NS( )

[ Ns( ) NS( g2)] (6.21)

In Eq. (6.21),

1
2

pN'(x) =2X—
3 1 —x

is the one-loop nonsinglet Altarelli-Parisi kernel, and p2 k(x)/p1 (x) as well as the whole effective charge pp(x, g ), are
ordinary functions of x, not distributions [note that pP(x, Q ) is not the inverse Mellin transform of pk (n, Q )]. Equa-
tion (6.20) can be formally integrated, with the result

1nIFk (x,g )I =2k (x)—
NS

2 1 NS P2 NSinp(g )+ p2, k(x) — p1 (x) p(Q )+
1 1 1

NS

=Ak (x)—NS P1 —NS 2lnpk (x,Q ) (6.22}
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where (x,Q ) is the "integrated effective charge" [Eq.
(4.15)) corresponding to pk (x,g ), and Ak (x) is an
integration constant. Furthermore, in~IFk (x,g )I is the
inverse Mellin of inMk (n, g ). All the complexities of
integrating the Altarelli-Parisi equation in x space are now
reduced to the mathematical problem of constructing the
quantity in~ [Fk (x,g I, given Fk (x,g ). It has been
shown ' that this result may be obtained by very simple
analytic formulas, assuming some simple analytic fit for
Fk (x,g ). We stress that the x dependence of the effec-
tive scales Ak (x) [or Ak (x)] associated to Pk (x,g ) [or
pk (x,g )] constitutes the cleanest test of the next-to-
leading-order QCD effects in x space.

E. A comment on the x —+1 behavior
of the Altarelli-Parisi kernel

From the explicit calculation ' of p2 k(x), it is known
that

c)(x)= Ns
—P)ln

p", s(x) x-i 1 —x
(6.23)

[g/ANS( )]2 Q ( —x)
A A

(6.24)

On the other hand, no singularity appears as x~1 at
fixed 8' =Q (1—x)lx. Kinematical considerations
suggest that 8' is the natural variable in the x ~1 region.
In fact, it has been argued that the leading singularities
as x —+1 in each order of perturbation theory are repro-
duced by performing the rescaling Q ~g (1—x) in the
argument of the running coupling constant in the
leading-order Altarelli-Parisi kernel

p ~ (x)p(Q') ~p ~ (x)p[Q'(1 —x)] . (6.25)

Concerning nonleading singularities, the simplest possibil-
ity would be that the effective charge pk (x, Q ) has a fin-
ite limit as x~ 1 at fixed W order by order in perturba-
tion theory in p, i.e., that the rescaling Q ~g (1—x),
performed in each order, absorbs all x = 1 singularities. In
such a case, pk (x, Q ) would be a well-behaved effective
charge as x~1 provided the limit is taken at fixed 8' .
The simple change of variable Q ~8' would then have
reduced the problem to an essentially single-scale problem,
and renormalization-group-improved perturbation theory
would be applicable in the region 8' &)A at x =1.

F. Sudakov form factor of the electron in QED

This is a well-known case of a so-called "double-
logarithm" resummation problem, which provides us with
another typical example of the possibility, mentioned in
the introduction to Sec. VI, of decomposing, in some

Equation (6.23) implies that perturbation theory (both im-
proved and nonimproved) for the effective charge

pk (x,g )=p(g )[I+ci(x)p(g )

+ c,(x)p'(Q')+ . . ]

[or p k s(x, g2)] breaks down as x~ 1 at fixed Q, since it
implies

kinematical limits, a two-scale amplitude into several
functions of a single scale, to each of which the method of
effective charges may in turn be applied. I.et
F~(g/m, a, A, /m) be the Dirac on-shell electron form fac-
tor, where Q—:—q & 0, q is the momentum transfer, a
the fine-structure constant, m the electron mass, and A, a
photon mass used as infrared regulator. It is well known
that the infrared divergences exponentiate:

F~(g/m, a, i, /m) =exp B—(g/m)ln F(g/m, a),a

2
1 4 31 3
2 18

229+
72. 3

t +const +

(t =lng/m) . (6.27)

We shall now make use of the new information that the
structure of the "Sudakov logarithms" t" is governed by
the following equation:

m +aP(a)8
Bm Bcx

(Qyo(a)+y~(a)lng/m F a) =0,
m~

(6.28)

where, coming back to standard conventions, we define

m =aP(a),Bcx

Bm

2
CX CXP(a)=P —+P — +. . .

(6.29)

and yo(a), y&(a) are anomalous dimension-type functions.
To solve Eq. (6.28), it is instructive to proceed as fol-

lows. %'e first rewrite it as

d 1nF
m

" =yo(a)+y, (a)ln
cjm m

where

(6.30)

m =—m +aP(a)d a
dm Bm Ba

and differentiate both sides of Eq. (6.30) with respect to
lng:

(6.26)

where B is a known function, and the "reduced form fac-
tor" F(g/m, a) is free of infrared divergences. We are in-
terested in the large-momentum transfer behavior
Q/m —mao, and shall therefore deal with the asymptotic
reduced form factor E„(g/m,a), defined by dropping all
terms which vanish as m/Q~0, order by order in pertur-
bation theory. E (g/m, a) is known up to O(a ):

2

F„(Qlm, a) = 1+— t'+ , t 1—+——
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d lnm d lng
=r ( )=r —+ri — +".

(6.31)

Then, integrating Eq. (6.31) with respect to lnm, we get

The coefficients e~ and 5~, which determine the effec-
tive scales associated to p(g) and a(m), are easily ob-
tained, expanding Eq. (6.35) in powers of a, and compar-
ing with Eq. (6.27). One gets (using also P~

———,,

P2/Pi = ,' )—

where

d lnF

dg
yii

1
a(m)
p(Q)

(6.32)

65 m.

e& ——— +36 4

47 m
6) ——— +

36 4

(6.37)

Aa(m) =a 1+—5~+

is an m-dependent "integrated" effective charge solution
of the equation

(together with y~~/P~ ——3 and d = —I+~ /12).
~e note that Eq. (6.35) can be cast into the alternative,

perhaps more familiar looking form

lnF„(g/m, a) = — I ln —p(k)
&dk Q

m

and

d — 1
m (lna) = y&(a)

dm
(6.33) 'Y t i p(m)

ln +D (a),
a(m)

(6.38)

where the effective charge p(g) is the "derivative" of p(Q)
lnp(Q)

is a (Q-dependent) integration constant, expressed in terms
of an effective charge

p(Q)=a 1+—P, ln +e,
m

m +aP(a) p(Q/m, a) =0a
Bm

(6.34)

The latter satisfies the homogeneous Callan-Symanzik
equation

Qd(l )
Pp(g)

dg vr

and is given by the expansion

p(g) =a 1+—P, ln +e ) +a g P2

m P)

p(g) is very simply related to F„bythe equation

d lnF y),
p( ),

(d lng)2

which is the RS-invariant version of Eq. (6.28).

(6.39)

(6.40)

and is therefore a function of the zero-mass theory (no m

dependence remains if p is expanded in a mass-
independent RS, with an arbitrary renormalization point
p).

The last step is to integrate Eq. (6.32) with respect to
lng, thus getting

lnF (Q/m, a) =—yii f & dk p(k)
ln +D a

P& m k a(m)

(6.35)

where

CX aD(a) =d—+0
'2

aa yii a(m)
m =yo(a)+ ln

()m p(m)
(6.36)

Equation (6.35) shows that F (Q/m, a) can be expressed
in terms of three effective charges p(g), a(m), and
(n./d)D( ), eaach depending upon one scale variable only.
(Q or m), the mass singularities being isolated into a(m)
and D (a).

is an m-dependent integration constant related to yo(a) by
the relation

VII. CONCLUSIONS

Let us now summarize the main points of the present
method.

(1) The standard perturbative QCD prediction for a
physical quantity o. goes through two steps.

(i) One expands o in powers of some renormalized cou-
pling constant a, (g ).

(ii) One solves the renormalization-group equation for
a, (g ) and expands the solution in powers of
1/ln(g /A ).

Thus, in the standard approach, perturbation theory is
defined in terms of two different series expansions, one for
o and the other for the RS P function. Instead, in the
method of effective charges, these two series are viewed
only as intermediate computational steps, devoid of fun-
damental significance, which exist only to be merged in
the single series for the P(p) function associated to the
corresponding effective charge. Integration of the result-
ing renormalization-group-equation then yields the Q
dependence of P in the form Q /A =F '(p), free of any
scale ambiguity. In practice, the simplest way to obtain
the function F '(p) is to proceed in the reverse order to
the standard approach. First, one solves the
renormalization-group equation for the RS coupling a,
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used in the calculation, getting a function
Q /A =F '(a, ), and second, one inverts the expansion
of p in powers of a, and substitute for a, as a function of
p in F '(a, ). Consideration of the "inverse function"
F '(p) is also extremely natural from the following
viewpoint. The QCD prediction for any physical quantity
having dimension of mass takes the form m;/A=C;,
where C; is a pure number, depending, however, on the
definition of the quantity m;. Now, the scale Q can be
looked upon as such a physical mass scale, defined by the
value of p (or o); the function F '(p) is then simply the
number C; corresponding to Q, the p dependence of F
reflecting the definition dependence of Q.

This approach, which takes from the start into account
the dimensional transmutation of the renormalized theory,
represents a straightforward extension of the Gell-
Mann —Low theory to all physical quantities. In fact, it is
closer in spirit to the method of Gell-Mann —Low than to
that of Stuckelberg-Peterman-Callan-Symanzik: it solves
the renormalization-group equations of the latter in terms
of the various physical RS-invariant P function. Conse-
quently, perturbation theory is recognized as being essen-
tially the perturbative expansion of each P(p) function.
From this point of view, the importance of the coming
generation of higher-order perturbative QCD calculations
stems from the fact that they will allow us to extract the
values of the physical three-loop P-function coefficients,
these being the first nonuniversal coefficients which could
give a true indication of the convergence of perturbation
theory for physical quantities.

(2) The method of effective charges gives RS-invariant
predictions, in the sense that these predictions depend on
no arbitrary quantity foreign to the physical quantity cr of
interest. In this respect, it can be viewed as giving its full
meaning to one of the main advantages of the minimal-
subtraction scheme, to wit, that it is possible to give renor-
malized predictions without having to compute other
Feynman diagrams than those belonging to the quantity
under consideration. In fact, no other coupling constant,
apart from those which automatically appear, i.e., the ef-
fective charge p and the bare coupling pb (or, equivalently,
the MS coupling pMs) need be introduced. Furthermore,
the structure of the bare expansion of o (with cutoff regu-
larization), or, equivalently, of its expansion in the MS
scheme, can be disentangled in terms of the P~ (or PMs)
function and the P function, which appear in a quite
symmetrical way, although only the latter contains the in-
variant physical information.

Nevertheless, we have shown that, if the P function is
well behaved and its expansion in powers of p converge,
the fastest apparent convergence choice of the renormali-
zation point [Eq. (2.12)] will give reliable results, in essen-
tial agreement with the method of effective charges, in
any well-behaved RS (like, presumably, the MS scheme).
We find it, however, both simpler and nicer to give predic-
tions invariant under the general Stuckelberg-Peterman re-
normalization group in terms of P.

(3) The method of effective charges makes use only of
the kinematics" of renormalizability, it has no dynamical
content. It applies in a straightforward way only to those
problems where no more than a single energy scale is in-

volved: The one scale which must necessarily accompany
the cutoff to make a dimensionless argument in the ultra-
violet logarithms. When more than one scale is involved,
the present method can a priori offer no guidance: specific
study is required to learn how to reduce the problem to a
single-scale one, two typical examples being offered by the
factorization theorem, and the equation governing the Su-
dakov form factor of the electron in QED.

(4) The present method solves the ambiguity related to
the choice of RS. Indeed, for a given effective charge, the
prediction obtained is essentially unique, up to the ordi-
nary ambiguity related to the use of perturbation theory
for the P(p) function (e.g., use of truncated expansion of
P, or of I/P, or any other reasonable form of approxima-
tion). The latter ambiguity poses no problem in practice,
if perturbation theory is applicable to P(P). However, one
has to identify a priori the "good," well-behaved effective
charges, to which (renormalization-group-improved) per-
turbation theory may safely be applied; this identification
may in some cases be the source of a new kind of ambigui-
ty.

(5) When corrections in usual RS are large (for instance,
in quarkonium decay), quantitatively different,
renormalization-group-improved results are obtained.

(6) In deep-inelastic processes, where a factorization be-
tween long and short distances has been established, we
have shown that effective charges appear in a natural way
in a formalism free of any factorization scale ambiguity,
since factorization can be performed without introducing
a factorization scale. The difference between the pro-
cedure here proposed and the standard one is easy to see
explicitly in lowest order. If

M(p, g ) =1+p —y&ln +const + .
p

is a parton structure-function moment, the standard fac-
torization reads

2

M(p, g )= 1+p —y, ln
2 +const

M1+p —y~ln +const +. . .
p

where M is the factorization scale, whereas we suggest to
write instead

2

~(p, g )= p 1+p —/3iln 2 +const
p

X p 1+p —P&ln +const +p
p

where p is the renormalization point of the coupling p,
and each factor is separately renormalization-group in-
variant. These remarks apply not only to the classic
light-cone-dominated processes, but also timelike process-
es, or Drell-Yan58 (assuming it factorizes ), as is clear
from the formal similarity between operator-product ex-
pansion and the cut-vertices formalism. We also note
that the possibility of eliminating completely the factori-
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zation scale may simplify the study of other processes
beyond deep-inelastic scattering, such as that of nonlep-
tonic decays. '

(7) Finally, we mention that a straightforward extension
of the present method to the case where the theory de-
pends upon n bare coupling constants leads to a system of
n coupled differential equations, relating a given effective
charge to its first n —1 derivatives with respect to Q .

APPENDIX A: COMMENTS ON STEVENSON'S
OPTIMIZED PERTURBATION THEORY

Stevenson has proposed to solve the RS ambiguity by
requiring properly defined finite-order approximations to
be stationary with respect to the RS-labeling parameters
A.; [see Eq. (3.8)]. We would like (i) to present a general
argument, and an explicit example, to show that his "prin-
ciple of minimum sensitivity" (PMS) method yields re-
sults equivalent to the method of effective charges, at least
as long as renormalization-group-improved perturbation
theory is applicable (this equivalence has been demonstrat-
ed in low orders in a different way il~ Ref. 62); and (ii) to
point out some obvious advantages uI the method of effec-
tive charges over PMS. I,et us review these points in turn.

(i) First of all, one should note the close connection be-
tween Stevenson's invariants p; and the p-function coeffi-
cients p; associated to a given physical quantity cr. They
are essentially the same objects, being related by simple
algebraic relations. For instance, assuming o=—p=—a, /Ir,
and putting

P(P) = —g P„(p)",
n=1

we have

can be performed using different definitions of the origi-
nal finite-order noninvariant approximations; for instance,
one can use approximations based on the truncation of
1/p instead of p itself (see below). A similar arbitrariness
exists in the method of effective charges, which makes no
commitment concerning the unknown p s, apart from the
assumption they are well behaved [Eq. (2.15)], and can
accommodate any guess for them, as long as this guess is
consistent with the well-behaved behavior assumed to be
checked in the known, calculated p s. In Sec. II, we sug-
gested the two simplest, obvious guesses (truncation of p
or 1/p). But the PMS guess for p is also admissible (al-
though more complicated), since the values suggested by
PMS for the unknown P s can only be algebraic combina-
tions of the known p s, i.e., the known p s and presum-
ably (at least in low orders) are consistent with condition
Eq. (2.15) (assuming the known p s satisfy it). Conse-
quently, any PMS prediction for P can also be considered
as a prediction of the method of effective charges. Let us
make the previous arguments more concrete by the fol-
lowing example. Consider the simplest approximation of
the method of effective charges, Eq. (2.11a), based on the
truncation of 1/p at second order. One can solve Eq.
(2.11a) as an expansion in powers of 1/lnQ /A, and ob-
tain the standard result

1 P2 lnln(Q /A )

piln(Q /A ) PI piln(Q /A )

ink
, + ~ ~ ~, (A2)

ln(Q /A2)

where we made the further approximation of truncating
the expansion beyond third order, and we put

P2=
Pi 4 Pi

A'
ink, = =ln

PI A2
(A3)

1 P4
P3= 2Pi '

etc. The easiest way to obtain these relations is to com-
pare the "improvements formulas" and Eq. (5.26) of the
first paper in Ref. 9 with our general forinulas Eq. (3.4).
Also, the invariant p, is essentially p, ln(Q /A ). Now,
any approximated prediction p =F,»(Q /p, p), invariant
under the renormalization group, and having a well-
defined perturbative expansion around p =0, can be
characterized by an effective P»~(p) function, with a
well-defined expansion around p=0 (these conditions are
met by the PMS ansatz). Consequently, any two such pre-
dictions can only differ by the values assigned in p»~(p)
to the unknown (i.e., not yet calculated at a given order of
perturbation theory) higher-order coefficients of the exact
p(p) function (the known, calculated p s must necessarily
coincide). In particular, the PMS choice for these higher
order p s represent one such arbitrary ansatz. This arbi-
trariness is a reflection of the arbitrariness of the trunca-
tion of the p function pointed out in Ref. 33, which comes
in the definition of the finite-order approximations con-
sidered by Stevenson; note, in particular, that optimization

Pilnk, opt = 111in
P2 Q' P2

(A4)

Hence

P..«Q')=p 1 —
2 p

I

with

Q 1 Pz p2
p ln =—+ ln(p p)+

A p I

(A5)

As the reader can easily check, following the method of
Ref. 9, Eq. (A5) is precisely the PMS ansatz for p in
second-order optimized perturbation theory, where the
perturbative approximations are defined with the inverse

Equation (A2) is ambiguous, since it depends on the arbi-
trary choice of the parameter A (or A,). One can then try
to solve this ambiguity by applying the optimization idea
of Stevenson directly to Eq. (A2), i.e., find the "optimum"
values of A, [hence, using Eq. (A3) of A] and of p(Q ), by
requiring approximation Eq. (A2) to be stationary with
respect to variations of A (at fixed A: note that A, becomes
a function of A). The result of this exercise is



2336 G. GRUNBERG 29

P function truncated at second order (instead of the P
function itself as used in Ref. 9). Therefore, optimization
in second order can be viewed as an approximate solution
of the two-loop renormalization-group equation (2.11a)
for the effective charge P. It is clear, however, that there
is no particular advantage to substitute Eq. (A5) to the
simpler relation (2.11a). This remark leads us to our
second point.

(ii) Let us list a few advantages of the method of effec-
tive charges.

(a) It is simpler than PMS. One does not need to go
through a complicated optimization procedure, especially
in higher orders.

(b) Its use allows discussion of the convergence of per-
turbation theory in terms of the convergence of successive
approximations to a single well-defined function P(p),
directly related to Feynman diagrams (Sec. III). The op-
timization method does not introduce such a function. To
deal with a well-defined function, rather than a sequence
of optimized approximants, is also advantageous from the
point of view of the question of the resummation proper-
ties of perturbation theory to all orders. Indeed, the
method of effective charges makes no a priori commit-
ment on the resummation properties of P(p) (as seems
natural), leaving open the possibility of applying any
specific resummation procedure which will emerge as an
outcome of future progress in this field. On the other
hand, Stevenson's framework appears to be artificially re-
strictive, since the sequence of optimized approximants
automatically either converge or diverge, leaving no free-
dom for further improvement. The renormalization
group cannot by itself provide a "built-in" resummation
procedure, as the present method, which satisfies
renormalization-group invariance (see Sec. III), explicitly
demonstrates. Furthermore, even if a particular sequence
of optimized approximants do converge, the answer may
well depend on the arbitrary way the original nonopti-
mized finite-order approximations have been defined.

(c) If one tries to optimize the second-order result for
the expansion of the inverse effective charge 1/p, the
PMS method runs into spurious difficulties, which are
not present in the method of effective charges. The latter
recognize the origin of these difficulties to stand in the
fact that the one-loop renormalization-group-improved
perturbation theory formula for p coincides with the ordi-
nary second-order perturbation theory expression for 1/p
[see Eq. (3.12)]. Hence, in second order, the optimization
is in some sense already performed, and there is nothing to
improve upon.

(d) Stevenson's approach uses the renormalization group
in a twofold, and from the present viewpoint, unnecessari-
ly awkward manner: a first time, in a standard way, at the
level of the definition of the approximants to which the
optimization is intended to be applied (since one uses the
p dependence of the running coupling constant as given
by the renormalization group); a second time, in a more
unorthodox manner, in the process of optimization itself.
Note that the p dependence of the running coupling con-
stant is obtained, even in Stevenson's approach, by in-
tegration of the renormalization-group equation, and not
by applying a PMS procedure. In contrast, the method of

effective charges uses the renormalization group in a uni-
form and most standard manner, at the level of the
renormalization-group equation for p. Clearly, once it is
recognized that p(Q) defines a particular RS, there is no
need to treat the Q dependence of P in a different way
from the p dependence of the other couplings. Further-
more, the resulting solution for p is invariant under the
general Stuckelberg-Peterman renormalization group, as
pointed out in Sec. IIIA. In fact, with a given approxi-
mation for P and P, p as given by Eq. (3.2) satisfies Eq.
(3.7) identically: there is no need to look for a stationary
point.

As a last point, we note that the PMS was originally in-
spired from examples taken outside field theory, where
no analog of the P(p) functions exists. Whereas PMS
seems a perfectly sensible procedure in these examples, the
existence of the P functions in field theory (reflecting the
dimensional transmutation) renders the whole PMS pro-
cedure unnecessary here.

APPENDIX B: COMMENT ON THE
BRODSKY, LEPAGE, AND MACKENZIE CRITERION

Inspired by intuitive considerations based on @ED,
Brodsky, Lepage, and Mackenzie (BLM) have proposed
to fix the renormalization point p of the running coupling
constant by requiring all flavor-dependent terms in the
next-to-leading-order coefficient in the expansion of a
given physical quantity to be absorbed into the coupling,
by means of a flavor-independent change of p.

To explain their procedure, we note that the expansion
of an effective charge p(Q) in an arbitrary RS can be writ-
ten, up to next-to-leading order, as

p(Q)=p(1+cip+ . ) (B1)

c, = —P, ln, +d', +c', ,
p

where P&
——11 2fl3 in QC—D, and di and c& are f

independent constants. BLM suggest to fix p in such a
way that ln(Q Ip )+di ——0, leaving no explicit f depen-
dence in c~. Although the value c~ ——c~ thus obtained de-
pends on the initial choice of RS, the difference between
the ci 's associated to two effective charges is RS invari-
ant. This property allows one to give a RS-invariant
classification of effective charges, since one can group in
the same class those charges which have the same (or
close) values of ci. In fact, BLM found that most effec-
tive charges have rather similar values of c &, except in the
case of Y decay. This result substantiates their claim that
perturbation theory is not reliable for Y decay.

On the other hand, as explained in this paper, all the
RS-invariant information concerning a given physical
quantity is contained in its associated effective scale A,
and the P-function coefficients. Furthermore, we saw that
the value of A is the only invariant information available
in the next-to-leading-order coefficient, which seems to be
contradicted by the BLM finding that some additional in-
formation is in fact contained in c~. The question thus
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naturally arises as to what is the nature of this new infor-
mation, and of its eventual bearing on the issue of the reli-
ability of perturbation theory.

It turns out that cI has a very simple interpretation in
the framework of the method of effective charges, based
on the observation that it satisfies the relation

p2 ———107,

=14.25 .
2

On the other hand, for the ratio

P3-
c) =— (82)

81treb z I g(Y~hadrons)a'
10(~'—g) r(Y i +i -)

where P3 and P3 are, respectively, the effective charge and
RS three-loop P-function coefficients, and the asterisk in-
dicates that the various quantities are evaluated at
f=33/2. To prove Eq. (82), we note that c; is also the
value of ci in a world'where Pi ——0 [see Eq. (81)], which
happens for f=—", . On the other hand, the second rela-
tion in Eq. (3.4) tells us that

—=(4srp~)',

where I'g is the gluonic width of the Y, a the electromag-
netic coupling constant, and eb ————, is the charge of the
b quark, one gets, in the MS scheme,

c] ~——18.67 .

Hence

(cp —ci )Pi ——Pzci+P3 133 . — (83)
=33.12=(2.3) (85)

Since the c s are polynomial in f, the left-hand side of Eq.
(83) vanishes as f~—", , hence Eq. (82) follows.

Equation (82) gives a nice proof and interpretation of
the above-mentioned properties of c&. whereas c& is RS
dependent (through the p3 factor), it contains invariant in-
formation (through the p3 factor). However, this infor-
mation is only relevant to the world of f= —", flavors,
which solves the previously mentioned contradiction. The
BLM observation can thus be restated as the fact that
"most" processes have similar values of P3, except Y de-

38 28 2851 5033cay. Using P2 102——,f——and P3 Ms i,g f
+",,' f, one finds

We conclude that, although the three-loop effective-
charge P~-function coefficient turns out to be about twice
as large in the case of Y decay, compared to the PMs
three-loop coefficient (which is perhaps not such a large
variation), this result is only relevant to the world of
f=—", flavors, very far from the @CD case (at f= —", the
theory is not even asymptotically free). In particular, Eq.
(85) says nothing about the behavior of P3 ~ around f=4,
which is the real issue, and therefore we cannot, on the
basis of Eq. (85) alone, endorse the statement of Ref. 7
that perturbation theory is endangered for Y decay.
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