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Gauge invariance and infrared divergences in spinor quantum electrodynamics
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We apply to spinor QED a new technique developed by Bergere and Szymanowski in the case of
scalar QED. This method expresses QED in terms of a manifestly gauge-independent theory.
Moreover, exponentiation of the infrared divergences arises naturally.

I. INTRODUCTION

Within QED, the infrared-divergence problem was
solved by Yennie, Frautschi, and Suura' (YFS) through a
factorization of the divergent terms of scattering ampli-
tudes. Their method is to extract the divergent part of
each graph and collect these terms in an exponential.
Grammer and Yennie improved this technique of separa-
tion of divergent parts but they still have to examine each
graph separately. Bergere and Szymanowski (BS) intro-
duced a new formulation of scalar QED which is mani-
festly gauge invariant and leads naturally to YFS ex-
ponentiation.

The purpose of this paper is to apply this technique to
spinor QED. To cope with renormalization, the action
may be regularized and counterterms included. As in Ref.
3, an examination of the renormalization procedure is not
our purpose and we shall not mention these difficulties.

In Sec. II, we define notations and present the
functional-integral formalism of standard spinor QED.
In Sec. III, we introduce a nonlocal transformation of
matter fields. It defines a transformed theory in which
vertices are transverse and interacting fields exhibit the
same gauge invariances as free fields. The transformed
theory is equivalent to the standard one, giving the same
on-mass-shell S matrix, but its Green's functions are dif-
ferent (off mass shell) and exhibit new infrared diver-

gences. In Sec. IV, we eliminate these divergences
through a subtraction procedure. Then we show that the
transformation of Sec. III may be chosen in such a way

I

that the subtracted theory is in fact free of any IR diver-
gences and is manifestly gauge invariant. The exponentia-
tion of IR-divergent terms in standard theory arises natur-
ally when it is expressed in terms of the subtracted one.

II. THE FUNCTIONAL PRESENTATION
OF THE STANDARD THEORY

A. The generating functional

In the standard theory, the Lagrangian describing the
interacting system of electrons, positrons, and photons
reads

~(g,g,A„)=Wp(g, g)+ Wp(A„)+ W;„t(P,Q,A„),
(2.1)

where

~P(0 4)=
2

4&0

is the free fermion-field Lagrangian,

W,(A„)= ——,
' (a„A„—a„A„)'

is the free photon-field Lagrangian, and

W;„,(p, p,A„)= —el(A it

is the interaction Lagrangian.
The generating functional of Green's functions is

Z(g, ri, Xp)= f DQDQDA~exp i f d x[W(Q, Q,A~) (npAp) +r7—$+frI+XpAp] (2.2)

where q and r) are anticommuting sources for the electron-positron field, X& is a source for the photon field, and

—(1/2A, )(npA~ )

is the usual gauge-fixing term.
In terms of the Fourier transforms of the fields,

p(x)= 2 f d p'p(p')e1

(2~)

A„(x)= f d "k A~(k)e
(2n. )

@(x)= f d "p g(p)e'i'" .
(2~)

(2.3a)

(2.3b)

(2.3c)
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The functional integral (2.2) may be written

Z(g, g,X&)= f DA&ZO(g, ri,A&)exp i f d x Wo(A&) — (n&A&) +g&A& (2.4)

where Zo(g, g,A& ) is the partial generating functional
T

Z, (q, q,A )= f DQDfexp i f d pd"p'P(p)F '(p,p', A„)g(p')+i f d p[g(p)rl(p)+v1(p)f(p)]

in which
r E

F '(p,p', A„)=D '(p) 5(p' p) —e f—5 k D(p)A(k)5(p —p' —k)

with D '(p) =p —m and 5 k =d kl(2m) .

We integrate the Gaussian integral (2.5) for the anticommuting variables p and 1' to obtain

Zo(ri, t),A&) =det[F '(p,p', Az)]exp —i f d p d p'ti(p)F(p, p', Az)q(p')

(2.5)

(2.6)

(2.7)

B. Generalized vertices and matter loops

By inverting the distribution (2.6), we define generalized vertices

F(pp', A„)=D(p')5(p' —p)+ g, f +5"k;W„.. .„(pp', k, , . . . , k„) +A„(k;)5 p —p' —g k;
n=1 i=1 i=1 i=1

with, for instance,

~„(p,p', k) = —D(p)y„D(p'),

(P P kl k2) D(P)r D(P +k2)rv (P }+D(P}rD(P +kl )y D(P

(2.8)

(2.9a)

(2.9b)

etc. The generalized vertices, which are symmetric in the exchange of the photon variables Ik,pI, are the sum of all

Feynman tree graphs of the usual presentation at the corresponding order.

In the same way, the determinant in (2.7) is developed:

det[F '(p,p', A„)]=det[F '(p,p', 0)]det[F(p,p', 0)F '(p', p,A„)]

=det[F '(pp', 0)]exp g, f Q5 k;Q„.. .„(k,, . . . , k„) QA~ (k;)5 g k;
n=1 i=1 i=1 i=1

(2.10)

The denominator of the Gell-Mann —Low formula will

cancel F '(p,p', 0).
The Q& . . . & (k~, . . . , k„) is the sum, at a given order,

of all fermion loops of the usual presentation. We have,
for instance,

A„(k)~A„(k)—ik~a(k),

q~T(a)ri,
(2.14)

We also verify that Zo(ri, ri, A&) is invariant under the

gauge transformation

Q„.= ——,
' f d'P Tr[D(p)r. D(p+ki)r~

(2.11a) where

T(a)=exp ie f 5 —ka(k)rz (2.14a)

etc.
+D(p)y„D(p+kq)y„], (2.11b)

C. The Ward- Takahashi identities

where r ~ ~ k is the operator performing the indicated
momentum translation which leads to

k„W~ . . .~ (p,p', k), . . . , k„)
i I n

As in the case of scalar QED, we easily verify that
Zo(O, O,A„) is invariant under the gauge transformation = Fp ~ ~ ~ p. ~ ~ ~ p pip +."ii "li ~ ~ ~ ~ ki i. . . , k„)'n'

A&(k)~A„(k) ik&a(k) —.
This invariance leads to

kq Q„.. .„(k), . . . , k„)=0.

(2.12}

(2.13}

—F (p k, ,p', k,

(2.15)
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p=p+ gkJ
equivalent to the standard one in the sense of the
equivalence theorem, ' is manifestly gauge invariant.

where the caret means omission of the variable. The
equations (2.13) and (2.1S) are the Ward-Takahashi identi-
ties in the generalized-vertices formalism.

A. The transformation

We express the field f(p') in terms of a new field g(q'),

III. THE TRANSFORMED THEORY

In this section, we express the standard theory in terms
of a transformed theory. This new theory, which is

P(p')= f d q'S(p', q', A„)g(q'),

where

(3.1)

S(p', q', A„)= 5(p' q'—) e —f 5 k S„(q',k)A„(k)5(p' q' —k)—
2

f 5 ki5 kiS»(q', ki, k2)A&(ki)A„(k2)5(p' —q' —ki k2)+ ' ' ' (3.2)

is a nonlocal transformation which may contain Dirac matrices.
The fermion Lagrangian of the standard theory may be written

f d pd p'f(p)F '(p,p', A„)g(p')= f d pd p'd qd q'P(q)S(q, p,A~)F '(p,p', A„)S(p',q', A~)g(q')

in which S=yoS yo. Equation (3.3) allows us to define

F (q, q', A~ ) = f d p d p'S(q, p,A& )F (p,p', A& )S (p', q', A~ ) .

We define naturally the infinite set of new vertices I (&) by

(3.3)

(3.4)

n n. n

F '(q, q', A )=D '(q)5(q' q) g — — f + 5 k;I „.. . „(q,q', k„.. . , k„) QA„(k;)5 q —q' —g k; . (3.5)
n=1 i=1

These "transformed" vertices are expressed in terms of S(&) .

I p(q, q', k) = —y~ —Sp(q, —k)D '(q') —D '(q)S~(q', k),
I'»(q, q', ki, k2) = S&„(q,—ki,—k2)D '(q') D—'(q)S&„(—q', ki, k2) —S (q, k2, )y& y&S—„(q',k2)—

S„(q, k2)D—'(q'+—ki)Sq(q', ki) Sp(q, —ki)y— yP'p(q', ki)—
—S„(q,—k, )D '(q'+ k, )S (q', k&),

(3.6a)

(3.6b)

We impose on the interacting transformed fields the
condition that they satisfy the same gauge-invariance
property as the free ones, that is to say, (3.4) has to be in-
variant under the gauge transformation

k„.S„.. .„(q',ki, . . . , k„)

= —S„.. . „- . . .„(q',ki, . . . , k;, . . . , k„) . (3.10)

As in Ref. 3, we shall use transformations of the type
Ap(k) ~A„(k) ik~a(k) . —

It is easy to prove that this condition leads to

kq I'„.. . q (q, q', k i, . . . , k„)=0 .

(3.7)

(3.8)

S(p', q', A„)= exp —e f 5 kg„(q', k)A~(k)rp

X5(p' —q') (3.1 1)

This is equivalent to the conditions in which p&(q', k) may contain Dirac matrices and has to
satisfy

k~Sp(q', k) = —1, kqS~(q, —k) = 1, (3.9) k~p~(q', k) = —1, k„q)„(q, —k) = 1 . (3.12)

and, in general,
When the gauge transformation (3.7) acts on (3.11) we

have

S(p', q', A„—ik&a(k))=exp ie f 5 k a(k)rz—~ k S(p', q', A&) .

The partial generating functional (2.5) expressed in terms of the transformed field is

(3.13)
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Zo(g, g,A„)= f DQDQ(detSS} 'exp i f d q d q'P(q)F '(q, q', A„)g(q')

+i f d q'd p'[P(q')S(q', p', A„)g(p')+g(p')$(p', q', A„)f(q')]

where we have introduced the Jacobian of the variable transformation (detSS)

(3.14)

B. The transformed generalized vertices and spinor loops

We integrate the Gaussian integral (3.14}for the anticommuting variables g and g. We have

Zo(g, g,A„)=[detF '(q, q', A&)]exp i—f d qd q'd pd p'q(p)S(p, q, A„)F(q,q', A&)S(q',p', A&)g(p')

where we used

(detSS) 'detF ' =detF

which exhibits that, as in Ref. 3, the matter loops are not affected by the transformation.
We invert I ' to obtain

(3.15)

n n

F(q, q', A„)=D(q')@q' q)+ g—
, f +5'k; W„, . . .„(q,q', k, . . . , k„) QA„, (k;)5 q —q' —g k;

n=1 i=1 i=1 i=1

which defines "transformed" generalized vertices

W&(q, q', k) =D (q)I z(q, q', k)D(q'),

W& (q, q', ki, k2) = D(q)I &„(q,q', ki, kz)D(q')+D(q)I (q, q'+ki, k2)D(q'+ki)I &( q' +kiq', ki)D(q')

+D(q)r„(q, q'+k„k, )D(q'+k, )r„(q'+k„q', k, )D(q ),
etc. These transformed generalized vertices are obviously transverse. In the transformed theory we have

kp 8'p . . . p
—0,

kp. gq, . . .q
——0 .

These equations are the Ward-Takahashi identities of the transformed theory.
The transformed generalized vertices depend on the generalized vertices of the standard theory. We have

F(p,p', Az ) = f d q d q'S (p, q, A& )F(q,q', A& )S(q',p', A& ),
which gives

W„(p,p', k) = W„(p,p', k)+D(p)$„(p, k)+S„(p',k)D—(p'),

W~„(p p&' &kk )2= Wp„(p p&' &ki&kq)+D(p)S~„(p& —ki, k2)+Si&„(p'&k—i&kz)D(p')

(3.17)

(3.18a)

(3.18b)

(3.19a)

(3.19b)

(3.20)

(3.2 la)

S„(p k2& k2) Wl& (p'+—k i &p'&k i ) + W„(p&p'+ k i &k2)$1&(p'+ k ) &

—kg )

ki~k2
+ S„(p —k„k,)D(p'+k, )S„(p'+k„—k, )+ (3.21b)

Now, it is necessary to discuss briefly the ultraviolet
behavior of the transformed generalized vertices. Equa-
tions (3.12) show that S&, . . .„behaves as 1/k" when all
k's go to infinity. In (3.21a), if q' is fixed,
D(q)&p„(q, —k)-1/k, p„(q', k)D (q')-1/k, and W„
—1/k. We infer that W„—1/k and behaves like W&.
More generally, W(&} behaves like W(&) . Thus, the ultra-
violet divergences of the transformed theory are not worse
than the divergences of the standard one. Finally it can be
proved, as in Ref. 3, that the transformed theory and the
standard theory are equivalent, giving the same S matrix.

C. The transformation and Dirac matrices

The condition (3.12a) is not sufficient to determine
completely y&. Its transverse part is really undetermined.
A proper definition of the longitudinal component of p&
allows us to restrict the dependence on the Dirac matrices
to the part of q&„which does not act to make the vertices
transverse. Let us give a useful example.

In practical applications, we often have to calculate
1&(q,q', k)u(q') where u(q'} is a solution of the Dirac
equation D (q')u (q') =0. The calculations are simpli-
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fied if we have I &u(q')=0. Equations (3.6a) and (3.12)
lead to

k„kw„'= g„.— k
r„u (q') =[—y„—D-'(q)q, ]u(q'),

which vanishes when

y&u (q') = D(—q'+k)y&u (q') .

This can be satisfied, for example, by taking

(3.22)
krak

Ap ——

k

and the transformation may be written

k„A„—i " S(p', q', A '), (3.28)—2q„' —g y„
2k.q'+k

with q =q'+k and q &m .
y& may be split into a longitudinal part tp& and a trans-

verse part q„' by

s 2q„'+
(3.23b)

2k q'+k
k„o.„~ (3.23c)2k.q'+k

(3.23a)

When k ~0, we verify
I

l qp
fp (3.24)

and

kp
(p k'

vp
g7p lkv

k

(3.25a)

(3.25b)

S becomes a unitary (for the Dirac scalar product)
transformation (S=S ').

On the other hand, for any y&, we may define a trans-
verse component by

gp= gpv
krak„

f'v (3.26a)

We shall see, in Sec. IV, that this behavior clarifies the IR
divergences. When k~ 00 we verify

where T( ik„—A„jk ) is a gauge transformation in which

kpA~(k)
a(k) = i-

k

By (3.27), to take A„' is equivalent to taking S with
qpt, which gives transverse ve~ices rp . . . p for n)1,In
while for n =1, kzl &

———1(:&0. Similarly, to perform
T '( ik&A—& jk ) is equivalent to taking S with
which makes I „transverse.

We also easily prove that the special transformation

+P k2
kp

(3.29)

is a unitary transformation which leads to a transformed
theory with only one nonvanishing vertex, the transverse
vertex:

(3.30)
k„k

V XP gjMV

This theory is, in fact, the standard one in which A& is
expressed in the Lorentz gauge (k&A& ——0). This interest-
ing result shows that any Feynman diagram of the stan-
dard theory in the Lorentz gauge may be rewritten in
terms of transverse vertices. In an arbitrary gauge, we
would have to sum over all diagrams, at a given order, to
exhibit transversality.

More generally, the projector on the longitudinal part
may always be taken free of Dirac matrices, in such a way
that the fermion spin does not appear in the part of tp&

which is useful for us.

Then, because of (3.12), we have

k„
k2 (3.26b)

which does not contain Dirac matrices (this splitting is
not the same as the splitting performed on the preceding
example). Thus, we have

P P I 2 (3.27)

where similarly

IV. THE SUBTRACTED THEORY

The S transformation does not make worse the superfi-
cial degree of UV divergence because y& behaves like 1 jk,
but this behavior is disastrous when k~0. As in Ref. 3,
we define a subtraction to regularize the integrals. This
operation induces a new subtracted theory which will not
be equivalent to the preceding ones because the transfor-
mation is too singular. We shall see that this subtracted
theory, which is free of any IR divergence, describes a dif-
ferent physical system, related to the original one by a
simple exponential factor containing all the infrared diver-
gences.

A. The subtracted transformation

We define the subtracted transformation

S (p', q', A„)=exp —e f 5 kg„(q', k)A~(k)[rp ~ k —y(k)] 5(p' —q'), (4.1)
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(4.3)

and subtracted vertices

where y(k) is any function sufficiently decreasing at k ~ oo, and satisfying y(0) = 1 and y(k) =yt( —k).
A gauge transformation acts on Sr as

Sr(p', q', A& ik—&a(k))=e ~T(a)S&(p', q', A&), (4.2)

where ar is a constant phase: ar= f 5 ka(k)y(k). Thus, the subtraction does not alter the properties of the S
transformation, that is to say, the vertices will still be transverse.

As in Sec. III, this transformation Sr defines a new field,

f(p')= f d q'S (p', q', A„)f (q'),

Fr '(q, q', A„)= f d p d p'Sr(q, p,A„)F '(p,p', A„)Sr(p', q', A„),
ao en n n

F '(q, q', A„)=D '(q)5(q' q) —y—
, / 5 k;r„" . . .„/A„,(k;)

n=1 ' i=1 i=1

with, for instance,

I &r(q, q', k) =I „(q,q', k)5(q q' k)—+ [D—'(q)y„(q', k) +q&„(q, k)D —'(q') ]y(k)5(q' —q),
I „(qq',k„k )= I „(q,q', ki, k2)5(q —q' —ki —k2) (jt ip„„—+g /tip„+g„y„+y„y +I „„)y(ki)5(q—q' —k2)

(j 29 +2+29 +O' y +3 A +r )3 (k2»(q q' ki)— —

(4.4a)

(4.4b)

(4.Sa)

(4.6)

and

+(r,„+q,y.+y~, +q.y, +y,q.+&iq,.+&2q p +O'Pl%'p+f'p2q )y(ki)y(k2)5(q

in which y&„——T(y&tp„+y~&). We easily verify that these vertices are transverse. As in Sec. III, the fermion loops are
those of the standard theory.

We define subtracted generalized vertices

F(p,p', A„)= f d qd q'Sr(p, q,A„)F~(q,q', A„)Sr(q',p', A„)

n

F (q, q', A„)=D(q')5(q —q')+ g ', f g5'k, W~ . . .„gA„.(k, )
n=1 i=1 i=1

with, for instance,

W „"(q,q', k) =D (q) I ~r(q, q', A„)D(q'),

W&„(qq', k'i, k2)= D(q)I r„(q,q', ki, k2)D(q')+ f d p D(q)I r(qp, ki)D(p)l r(p, q', k2)D(q')

+ f d pD(q)I r(q, p, k )D(p)l ~(p, q', k, )D(q') .

(4.7)

(4.8a)

(4.8b)

11m g~k o" kq' (4.9a)

B. Cancellation of IR divergences~

The elimination of off-mass-shell IR divergences
proceeds as in scalar @ED. On the mass shell, a naive
power counting shows that the dangerous generalized ver-
tices are the vertices built only with the one-photon vertex
I ~.

From (3.22), (3.23a), and (3.24), we conclude that a p&
satisfying

any IR divergence. Again, we notice that the Dirac ma-
trices do not appear in the part of yz which is useful for
us.

C. The standard theory in terms
of the subtracted theory

The result just obtained shows that we may always
choose y& free of Dirac matrices and calculations are
greatly simplified. Then, from (3.20) and (4.6) we have

F(q, q', A&) = exp i f 5 k j&~(—q, q', k)A&(k)

or

lim y&-
k o" kq (4.9b)

gives a finite generalized vertex at k ~0 and avoids the IR
dangerous terms. Thus, the subtracted theory is free of

in which
XFr(q, q', Ap)

j&~(q, q', k) =ie [y„(q,k)+q&„(q', —k)]y(k) .

If p& satisfies (4.9), j&r behaves like

(4.10)

(4.11)
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I

qpie
'q k.q

at the limit k —+0. This is the classical current created by
a particle of charge e, which is suddenly accelerated from
q to q'. The transformed theory describes that electronP P'
which would be described by the subtracted one, but in-
teracting, in addition, with a current j„.When k~0, this
current is the classical current created by the scattered

I

electron.
We may conclude that the subtraction cancels, from the

physical system described by the transformed theory, the
classical behavior of the scattered fermions. As the sub-
tracted theory is free of IR divergences, this exhibits that
it is this classical behavior which produces IR diver-
gences.

Any Green's function which describes a scattering of
2m fermions and n photons in the transformed theory
may be written

1
G„, . . . „(k), . . . , k„)=

and we will note

externalP
photon

i —i™g o gF p;,p, i — detF i—
+P perm i =1 P6X P

of p,.
'

Xexp ——,
' f d kX„(k)II„„(k)X„( k)—

P

(4.12a)

G„, . . .„(k), . . . , k„)=G„,. . .„(X„)~g p,

where II& (k) is the photon propagator and o. is the parity of the permutation.
Using (4.10), one finds that

r

G„, . . .„(X~)=exp —f 5 k J~r G ~r . . .„(X„),
P

whe«J& = g; & J&(p;,p, k). In (4.13), the exponential is a translation operator on X . Thus, we finally have

G„, . . „(X~)~r .0 ——G~r, . . . „(X„)~

P P

(4.12b)

(4.13)

(4.14)

As in scalar QED, we may write the scattering matrix of the standard theory in terms of the scattering matrix of the
subtracted theory:

d'k
Xexp f —

J~r (k)II„(k)Jr( —k)(2'�)' (4.15)

in which

S~r . . . p ——[Gpr . . . ~ (k), . . . , k„)+e f 5 k Jr~11~„G~r„.. . ~ + . ](',), (4.16)

where (a) and (ms) mean amputated and on mass shell.
This result is formally equivalent to the BS one.

The expansion (4.15) has a finite number of terms.
Each term represents the current —external-photon in-
teraction. The expansion (4.16) has a finite number of
terms at each order of perturbation which represent the
current-vertices interaction. All the IR divergences are in
the exponential term of (4.15) which represents the
current-current interaction.

The BS method which is applied here to spinor QED
leads to exponentiation of IR divergences in a simpler and
more natural way than the YFS technique.

V. CQNCLUSIGN

We exhibited that the fermion spin is not relevant for
both making the theory manifestly gauge invariant and

I

exponentiating the infrared divergences. Thus, it was ob-
vious that our results would have to be forma11y identical
to those of Bergere and Szymanowski. Applications to
Bloch-Nordsieck cross sections, to Kinoshita-Lee-
Nauenberg probabilities, and to amplitudes between
coherent states would be calculated as BS did it.

Now, we shall attempt to generalize this technique to
QCD. It is a more difficult problem because the gluon
field is self-interacting and thus the transformation has to
act upon it.
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