
PHYSICAL REVIE%' D VOLUME 29, NUMBER 2 15 JANUARY 1984

Is the usual notion of time evolution adequate for quantum-mechanical systems'?
II. Relativistic considerations
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The measurement of nonlocal properties of relativistic quantum-Inechanical systems, the corn-

patibility (or lack of it) of two or more such measurements, and various other of their characteristics
are considered; and with these notions in hand an old problem (which is to produce a covariant
description of the state reduction associated with the measuring process) is attacked, and succumbs.
The solution requires us to depart (not as we did in part I of the present work, but in an entirely dif-
ferent direction) from the usual picture of the time evolution of quantum states.

INTRODUCTION

Suppose that a certain particle may be in any one of
three boxes' (which are located at the positions X&, Xz,
and X3), and that this particle is initially prepared in the
state

( ~X, ) here represents the state wherein the particle is in
the box at X~). At time t~, an experiment at X& finds that
the particle is not located at X&, and at time t2, an experi-
ment at Xq finds that the particle is not located at X2, and
these experiments are arranged such that the points
(X„t)) and (Xz, tz) are separated by a spacelike interval.
A Lorentz observer for whom (X&,t ~ ) precedes (Xz, tz) will
describe the following sequence of states for the particle:

~a) for t&t,

I P & =—
I
Xz ) +

I
X3) for t& & t & tz

~
X3 ) for t ) tz

An observer in some other frame, for whom (Xz, tz) pre-
cedes (X~,t~), will describe, instead, this sequence:

IX'i &+ —IX3) for tz &t&tl,
~X3) for t &tI

The first observer will judge that the system is for a cer-
tain time (t~ &t &tz) in the state

~
p) (more precisely, he

will judge that, within that interval, any measurement of
S, where B

~
p) =p

~
p), will with certainty yield B =p);

the second will judge that it is never in that state (nor in
~ts Lorentz transform

~

p')) but, rather, is for a certain
time in the state

~ y) albeit that these two states and the
two histories [(2) and (3)] of which they form parts are pa-
tently not Lorentz transforms of one another. There will
in addition be an observer for whom (X~,t~) and (Xz, tz)
are simultaneous; for whom, that is, no intermediate inter-

II. SYSTEM SUBJECTED TO NO STATE REDUCTIONS

Consider what can be said of a system which evolves
from t = —Oo to t =+ Oo without any disturbance whatso-
ever. Suppose that a particle is prepared in the state

I&&—= IXi&+ IXz&* DI&&=&I&& (4)

at t= —Oo (and suppose, as we have above, that D is a
constant of the motion) and evolves undisturbed until
t =+ ao, whereupon it is verified once again to be in the
state

i
5).

We have elsewhere (Ref. 3) described Gedankenexper
imente whereby the state

~
5) can be verified in an arbi-

trarily short time entirely by means of local interactions
between the particle and the measuring apparatus. The
procedure for verifying that a particle is in the state

~
5)

at some particular time t involves two simultaneous local
interactions at Xl and X2- at tl. If the system has been
prepared in the state

~
5) this procedure will with certain-

ty record that D =6, and furthermore it will leave the sys-

val exists at all.
We would like in this paper to address the question of

whether any covariant quantum-mechanical description of
such a system can be given. We have elsewhere exam-
ined the attempts of various authors to deal with this
question within the ordinary language of time evolution,
and found them wanting; and we shaH argue here on very
general grounds that such a description cannot possibly
take the form of a covariant function of space-time.

A somewhat more profound departure from the non-
relativistic language is necessary, in our view, and we sha11
describe it here in three stages: first, for a system subjected
to no state reductions whatever; second, for a system sub-
jected to only one such reduction; third, for a system sub-
jected to a sequence of more than one state reduction, such
as we have described above. It will emerge that each of
these involves qualitatively different problems.
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29 IS THE USUAL NOTION OF TIME EVOLUTION. . . ? II. 229

tern in precisely that state at the end of the arbitrarily
short interval wherein the interactions occur. Nothing
prevents us from repeating the same procedure as often as
we like, and so it can in principle be verified to any
desired accuracy that the particle is in precisely the state
15) at all times —oo & t & oo (Fig. 1).

So, it can be said of a particle such as the one we have
des"ribed above that it is at all times in the state 15) in
this sense: Any attempt to verify that D =5 at any time
or at any set of times will uith certainty find that D =5.

Suppose that a verification experiment is carried out for
15) involving interactions at X& and X2 which are simul-

taneous in some particular Lorentz frame K. These can-
not be simultaneous in any other frame (K', say), and it
turns out (see Ref. 3) that within the interval separating
these two interactions the evolution of the system is sig-
nificantly disrupted by the measuring procedure, to wit:
The system is not in the state 15') within that interval
(that is, if, within the interval, a verification experiment
for 15') were to be carried out by means of interactions at
X& and Xz simultaneous in K', it would not necessarily be
found that D =5'), nor is the system necessarily a one-
particle system at all within the interval. It is at that
time, rather, in a mixture of states (including zero-particle
and two-particle states); in a state correlated to the state of
the apparatus (Fig. 2).

In the absence of the interactions simultaneous in K,
however, the measurement in K' would with certainty con-
firm that D =6', and could be repeated as often as desired
so as to confirm to any desired accuracy that the particle
is in the state 15') at all times in IC', —oo &t'& oo

(Fig. 3).
All of this begins to suggest something curious about

the covariance of the state vector. A measurement which
is judged by an observer in K to verify 15) without dis-
turbing the system will necessarily disturb the system,
during some finite interval, as judged by an observer in E .
The measuring process, so far as K is concerned, disrupts
(as it were) the transformation properties of the state and
disrupts its covariance, without in any way disrupting the
history of the state itself. If, furthermore, both observers
were to attempt to monitor the state history of the system
in their own frames and in overlapping regions of space-
time, these two monitoring procedures would disrupt one
another as in Fig. 2.

Suppose (as we would like to distinguish more precisely
between those qualities of the system which survive the
measuring procedure and those which are disrupted by it)
that we associate with each equal-time hypersurface t, in

/
/
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FIG. 2. A Lorentz-transformed version of Fig. 1.

each Lorentz frame E, a separate and independent state
'0, (X) of the particle. If the particle is permitted to evolve

t

from t = —oo to t =+ 00 without any disturbances, then
it happens that all of the 4", (X) conspire together to form

a single covariant function of space-time %'(X, t;), such
that

% (X,t; ) =4,"(X)=0,",' (X'), (5)
t

wherein (X,t;) is related to (X', t ) by the appropriate
Lorentz transformation. But if it happens that the system
was initially prepared in 15) and subsequently 15) is ver-
ified by means of interactions simultaneous in K at time
tj, then, whereas (up to an overall phase) 4,"(X) Vi,X will

t

be entirely unaffected by such a procedure, %'",, (X'), as we
I

have seen (supposing that tt and tj intersect between X,
and Xz, as in Fig. 2), will be entirely disrupted by it, so
that (5) will here be invalid, and so much so, indeed, that
the state at tr' in X' will not be necessarily be any state of
a one-particle system.

Heretofore we have taken our system to be confined to
one (or to a superposition) of two small boxes at X& and
X2. Suppose now that we conceive of systems whose wave
functions may have nontrivial values at many points in
space, and of experiments which may entail many separate
local interactions. It becomes possible now to imagine ex-
periments wherein each of the separate interactions is
spacelike separated from each other, and wherein,
nonetheless, the interactions do not all lie within any sin-
gle equal-time hypersurface in any Lorentz frame. Such
experiments surely do not measure anything about the sys-
tem at any time in the frame (they do not measure any-
thing, that is, along any of the surfaces we have just now
considered). Suppose, then (as we should like to say pre-
cisely what about the system these are measurements of)

I I
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I I

I
I
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FICx. 1. A verification experiment for 15) is carried out at t,
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FICx. 3. A sequence of two verifications of 15)' are carried
out by means of interactions simultaneous in E''.
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that we associate with every spacelike hypersurface o. (of
which every equal-time hypersurface in every frame is a
small subset) a state %' (y), where y is some parameter of
the surface o..

We shall require a dynamics appropriate to this
language; a dynamics, that is, not merely for evolving V(t)
into %(t') for arbitrary times t and r', but, more generally,
for evolving 4 into %'~ for arbitrary spacelike hypersur-
faces a and P. As above, there will (for the purposes of
this present section) be two cases to consider.

Imagine first that the system is allowed to evolve
without any disturbance. For this case, a dynamics of the
kind we are seeking was written some 40 years ago by
Dirac and Tomonaga and Schwinger roughly as follows.
We begin with the basic covariant equation of motion:

ibid,
~
p(r)) =H(t)

~
g(r)) (6)

and we now consider this to represent an infinite set of
equations of the form

8
~
1i(r.(x)))

ih =A (x)b, V
~
g(t (x ))),

dt (x)

wherein the function t (x):a(x) def—ines the position of
the surface in space-time, ~(x) is the local Hamiltonian
density operator at X, and AV is an infinitesimal three-
dimensional volume element at X. If (7) is integrated over
a r (x ), which describes an equal time hy-persurface, (6) is
recovered. We now define an operation 5/5o. (x) which
measures the variation of any quantity with respect to in-
finitesimal variations of the surface o. in the vicinity of
the point X:

isolated systems are concerned, these will constitute two
equivalent languages.

Suppose, on the other hand, that a certain state is veri-
fied along o. by means of local interactions disturbed along
that surface. In that event, the states along various sur-
faces which intersect cr will be disrupted (by analogy, say,
with Fig. 2, but the topology here may be somewhat more
complicated). Equation (10) will be untrue. If we should
not like to encounter difficulties of this kind, we must in-
clude the measuring apparatus as a dynamical part of our
system, as a part, that is, of what is described by the states

This is certainly possible, as no collapse is entailed
here; the measuring apparatus, since it functions only to
Uerify a preexisting state, operates throughout determinis-
tically and in accordance with the equations of motion.
But now the same difficulties arise with respect to verifi-
cations of the state of this composite system, and if they
are similarly avoided there, they wiH arise on the next lev-
el. Let it suffice for the moment to say that this begins to
suggest something curious about the relationship between
these two descriptions. In the next section, distinctions
between these descriptions will emerge which are far more
pl o found.

Finally, we remark in passing that there is in this
another instance of a very general principle which hereto-
fore we have encountered in the nonrelativistic theory:
There is more that can be said with certainty about a sys-
tem than can possibly be verified by any set of measure-
ments on it; whatever we verify of the nonlocal properties
of a system disrupts an infinity of other such properties
which would otherwise with certainty have had a definite
value.

5cr(x) n(x)-o A(x)

wherein Q(x) is the four-dimensional volume separating cT

and o.' (see Fig. 4), and now it follows from (7) that

inc -=A (—x)
~
bio) . (9)

5cr(x)

These are the elements of a description of the evolution
of an isolated system in terms of functionals (1ij (y)) on
the set of spacelike hypersurfaces, rather than in terms of
the more familiar functions (1it(x, t)) of space-time. It hap-
pens (as before) that so long as the system is undisturbed,
the various P (y) will all conspire together to form a sin-
gle covariant function of space-time f(x, t) such that

III. SYSTEM SUBJECTED
TQ QNE STATE REDUCTIQN

Suppose that the particle confined to two boxes of
which we have spoken above is prepared at t = —(x) in the
state

~

5) of Eq. (4), that at r =0 the particle is found to
be in the box at X& ——0 by means of a detector which has
been positioned there, and which interacts locally with the
particle, and that at t =+ oo another measurement con-
firms that the particle remains in that box.

Now we would like to assign a covariant state history to
this particle. We first observe that since the measure-
ments at t = —m and t =0 do not commute, since, that is,
it is the case that any measurement of position within the
interva1 —ac ~ t &0 would with certainty yield X=X& ——0

where (x, t) =(y) =(z)z is a point at which the surfaces cT

and X intersect, so that in this case all the features of the
description in terms of functions can be subsumed (for-
mally, at least) within the function g(x, t), and insofar as

FIG. 4. Two spacelike hypersurfaces, o. and o', which differ
only in the vicinity of x.

I

l

I

I

I

Xp

FIG. 5. The conventional, nonrelativistic, reduction postu-
late.



29 IS THE USUAL NOTION OF TIME EVOLUTION. . . ? II. 231

and that any measurements of D [of Eq. (4)] would with
certainty yield D =5 (such as we have described in the
course of our nonrelativistic considerations), neo state his-
tories are associated with this system. One of these is
trivial: It tells that for all time ( —ao & t & + oo) the sys-
tem remains in the state

t
Xi ), it does not entail any col-

lapse (save at t = —ao), and according to this account the
measurement at t =0 verifies a preexisting state by means
of a single local interaction at X„so that in this case no
problems whatsoever of covariance will arise, and a
description in terms of a single function of space-time will
completely suffice.

The other is more problematic. According to this ac-
count, the state associated with the particle will change in-
stantaneously at t =0 from

t
5) to

t Xi }{Fig. 5). What
is paradoxical in this is that the t =0 hypersurface across
which the state changes will not be an equal-time hyper-
surface in any other frame. Thus if the collapse is, say,
stipulated to occur instantaneously in some particular
frame, then it will not occur instantaneously in any other.
On the other hand, the statement that the detector has lo-
cated the particle and thereby measured its position is ap-
parently an entirely covariant one, so that the position
measurement cannot be said to be attached to any particu-
lar frame.

Apparently we must design a new reduction postulate
for the relativistic case, and to this end it has been pro-
posed that the relativistic reduction processes be taken to
occur not instantaneously but along the backward light
cone of the measurement event (Fig. 6). This process is
first of all manifestly covariant (since the light cone will
transform into itself, under Lorentz transformations), and
indeed Hellwig and Kraus {Ref.9) have shown that it will
yield the correct probabilities for measurements of local
observables. The probabilities for nonlocal observables,
however, are another matter. If, say, D [of Eq. (4)) is
measured at t =0—e, it will certainly be confirmed that
the state at 0—e is not the one depicted in Fig. 6 (which in
fact is not an element of the Hilbert space at all), but rath-
er the state

t
5) in which the particle was prepared at

t = —oo (the one depicted in Fig. 5).'

So it seems that the reduction process must be instan-
taneous, and this, alas, puts us back where we started. If
two different I.orentz observers 3 and 8 each impose this
condition in their own frame, they will give conflicting ac-
counts of the reduction process which cannot possibly be

t

subsumed within any single covariant state history f(x, t).
Suppose that we hope to resolve this difficulty by moni-

toring the entire state history of the system experimentally
so as to determine where the reduction "really" occurs.
The trouble with this is that the state history cannot be
monitored couariantly, since any procedure which moni-
tors this history as observed by A will disturb the history
as observed by B; and if, on the other hand, each observer
were to monitor the history in his own frame, these two
procedures would disrupt one another as in Fig. 2. If A
monitors the succession of states at a given time in his
own frame (K), this will with certainty confirm that the
reduction process occurs along t =0 and it will alter the
state history as observed by B; and, conversely, if B moni-
tors the state history in E', then this will with certainty
confirm that the reduction occurs along t'=0, and will
alter the history as observed by A.

So, that the state along a (see Fig. 7) is
t
5) and that

the state along p is
t
Xi ) are both experimental certitudes

(in that if either were tested by a measurement, it would
certainly prove true); albeit a and p intersect at I', and
that

f (I')= &Pp(&)=0.1

2
(1 1)

And this is the heart of this matter: The state of this sys-
tem is not a function of space-time and it cannot be sub-
sumed [in the manner of Eq. (10)] within such a function,
since the business of assigning a value to that function of
I', say, is impossible and self-contradictory; but, rather,
that it is ineluctably a functional on the set of spacelike
hypersurfaces.

We shall require [so as to complete, together with Eq.
(9), the description of the evolution of @ from one surface
to another] some covariant prescription for the collapse
within this language, and such a prescription can now
straightforwardly be written. The state reduction occurs
separately along every spacelike hypersurface which
passes through the measurement event; if one hypersur-
face is continuously deformed into another, the reduction
occurs as the hypersurface crosses that event.

That this is the case, once again, is an experimental cer-
titude (in the sense we have just described), and that it is
covariant follows from the fact that it makes mention
only of Lorentz-invariant objects (spacelike hypersurfaces)
which have no connection with any particular frame of
reference.

The fact that no value for g can unambiguously be as-
sociated with a given space-time point I' (in Fig. 7), say,

t=o--
t=O-e '

t

I

I

I

X)

light cone of (O, x)

l

Xp

~ ~ ~ ~ i Pi ~ ~ 4 ~ ~ ~

FICr. 6. The "covariant" reduction postulate of Hellwig and
Kraus (Ref. 9).

X) Xp

FIG. 7. Two spacelike surfaces that intersect at P.
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arises because no covariant distinction can be drawn be-
tween prediction and retrodiction from one event to
another, if the events are spacelike separated. For the pur-
pose of calculating the probability that the particle will be
found at P, P can be considered either to belong to a, in
which case it follows by prediction from o. and retrodic-
tion from P [in the manner of Eq. (2) of part I] that this
probability is zero; or to P, in which case it follows by pre-
diction from P that this probability is zero. And this is in
the nature of a general theorem; the requirement that local
observables at spacelike separations commute implies that
the local probabilities at P are independent of the global
hypersurface to which I' is considered to belong. "

Finally, we would like to remark, by means of an exam-
ple, upon the richness of this language. Suppose that a
particle is prepared at t = —oo in

~

6), and suppose that
at t =0 (in some frame E) the particle is found to be in the
state ~Xt ). Now, this latter measurement can be accom-
plished in two different ways: either by measuring locally
at X~ that the particle is at X~, or by measuring locally at
X2 that the particle is not at X2, and these two, so far as
the state function in K is concerned, are entirely indistin-
guishable from one another or from a combination of both
(any of these will, within that language, simply effect a
collapse at t =0 from

~

5) to ~Xt )). Within the language
of functionals, on the other hand, this distinction can be
very precisely drawn, to wit: if the measurement occurs at
I. (in Fig. 8), the state along y will be

~

5) and that along
rj will be

~
X& ); if it occurs at Q, the state along y will be

X~ ) and that along g will be
~
6); and if it occurs at

both I. and Q, the states along both y and g will be
~
X& ).

IV. SY'STEM SUBJECTED TO A SEQUENCE
OF STATE REDUCTIONS

Now all that remains to discuss are circumstances in
which more than one measurement (involving a collapse)
is carried out within a given interval, and this will no
longer present any difficulty.

It happens, if several noncommuting measurements are
carried out on a system at mutually spacelike separated
points, not only that no covariant time ordering exists be-
tween these measurements and some other spacelike
separated point P, but, in addition, that none exists be-
tween the various measurement events themselves. In
such circumstances, then, ambiguities will arise within the
language of state functions not only as to the position in
space-time of some individual collapse (such as we have
encountered in the previous section), but also as to what

new state each coHapse produces, and as to which states
are present in the history of some given system at all (such
as we have encountered in the Introduction).

Suppose that the state
~

5) of Eq. (1) is prepared at
t = —oo, and that the measurements described thereafter
are subsequently carried out. Along the surface t in Fig. 9
(which represents an equal-time hypersurface in X, say)
the apparatus of prediction and retrodiction described in
Ref. 3 will incorporate, respectively, the states

~
P) and

~
X3 ), whereas along the surface r' (an equal-time surface

in K') this apparatus will incorporate, respectively,
~

5)
and ~X3), albeit

~
P) and

~
y) do not transform into one

another under Lorentz transformations. So this history
can likewise not be subsumed within a covariant function,
and it requires to be represented in such a way that the
states along t and t' need not be related by such transfor-
mations; that is, it requires it to be represented as a func-
tional.

Once this is said, there ceases to be anything perplexing
or apparently lacking covariance in this example. The
laws governing the evolution of P with respect to arbi-
trary (continuous) deformations of cr are precisely those
which we have described heretofore: g collapses as cr
crosses a local measurement event, and g otherwise
evolves according to (9); and the reader can very straight-
forwardly persuade himself that these alone are sufficient
for the description of every physical situation, and that
they are sufficient, in particular, to account for the coex-
istence of

~

/3) along t and
~ y ) along t' in Fig. 9.

One further example will elucidate how this indepen-
dence of states along crossing hypersurfaces may extend
even to these states being orthogonal: Suppose that a par-
ticle is prepared initially in

~
5), that a verification experi-

ment for
~

5) is carried out involving local interactions at
A and B (in Fig. 10), and that a verification experiment
for the orthogonal state

is carried out involving local interactions at the points C
and D. Now this latter experiment will disrupt the first
(as in Fig. 2), so that, notwithstanding the initial prepara-
tion of the system, the results of neither will be certain.
Nonetheless it may be the case that both experiments will
turn out positively, and in this event the state along the
entire family of hypersurfaces If I will be

~
5), and that

along the entire intersecting family jg I will be
~
5), and

both of these will be verifiable on the same system,
without mutual disruption.

t=o—

X)

FICx. 8. Two surfaces that intersect between I. and Q. FIG. 9. Equal-time surfaces in K and K'.
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There are well-known difficulties connected with the
construction of a covariant first-quantized Schrodinger-
picture description of many-particle systems (these diffi-
culties, indeed, mere historically among the important
motivations for the development of field-theoretic descrip-
tions), to wit: The Lorentz-transformation properties of a
many-particle state of the form

f(t;X),Xp,X3,. . .), (A1)

Xp

FIG. 10. Intersecting verification experiments.

V. CONCLUSION

%Shat emerges from all this is that any covariant
description of the measurement process in terms of time
evolution is self-contradictory. If we are to describe such
processes consistently and covariantly our description
must concern itself with evolution not in a single parame-
ter (time), but sometimes, (if, say, our system is confined
to two boxes) in two parameters and sometimes in several,
and in general it must concern itself with evolution in the
full infinity of local times which together describe all of
the possible undulations of a spacelike hypersurface; and,
consequently, our description must take the form not of a
function of space-time, but rather of a functional on the
set of spacelike hypersurfaces such as was envisioned (al-
beit for different, and less categorical, reasons) by Dirac
and Tomonaga and Schwinger many years ago.

APPENDIX

Heretofore we have been concerned exclusively with
states of a single particle, both for reasons of simplicity
and because the case of many particles is not different in
any of its essentials. Nonetheless there are technical
differences between these two cases, and we should like
here to comment briefly upon these.

cannot (on the face of it) be defined, since g depends upon
unequal numbers of space and time parameters. %'e have
emphasized in the present work that systems subjected to
collapses cannot be described in terms of covariant func-
tions of space-time; and this shall require some clarifica-
tion in the case of many-particle systems, since such sys-
tems, whether or not they are subjected to collapses, are
not normally described in such terms.

Let us, therefore, be somewhat more precise. Given any
multiparticle state

~
g) defined along a spacelike hyper-

surface o, we may define for every local observable O(y)
(where y is a parameter of cr) an associated function

(A2)

The complete set of such functions will suffice to define P
unambiguously along o., and it veil be the case that if no
measurement whatsoever is carried out on the system, the
various

~
g) along different cr will thus conspire togeth-

er:

(A3)

wherein (y)~=(z)» (x, t) ——is a point at which o and X in-
tersect, for euery local observable O.

Equation (A3), then, is the multiparticle version of (10),
and all of the subsequent discussions of single-particle
wave functions can now be understood to apply as well to
each $0 (for every local observable 0) separately. In the
event that (A3) is satisfied for all points (x, t), we shall say
(by analogy with the one-particle case) that

~ g) Vo can
be subsumed within a collection of covariant functions of
space-time [the Po(x, t)VO]; and otherwise that it cannot,
that it can only be covariantly described in terms of a col-
lection of functionals on the set Io.I of spacelike hypersur-
faces.

Throughout this work, particles are taken to be localized only
to within regions larger than their Compton wavelengths; the
phenomenon of pair creation then can, to any desired accura-
cy, be ignored, and we will not need to have recourse to the
various mathematical devices (Newton-%'igner operators and
the like) which become indispensable to any discussion of the
localization of particles to within regions smaller than that.
The length scales which are of interest for our present con-
siderations (the separations between the boxes in Sec. I, say)
can always be made as large as we like, and we shall take
them here to be sufficiently large that, on such scales, the
Compton wavelengths of the particles involved can be neglect-
ed altogether. On such scales, the full field theory can always
accommodate the notion of a single, relativistic, quantum-

mechanical particle, such as occupies us in this investigation,
and wherein considerations of relativistic covariance, as the
reader shall discover, continue to play an essential and prob-
lematical rale.

Y. Aharonov and D. Albert, Phys. Rev. D 21, 2235 (1980).
Y. Aharonov and D. Albert, Phys. Rev. D 24, 3359 {1981).

~%"e shall always understand "spacelike" here in a dynamical,
rather than a kinematical, sense. That is, 2 and B are space-
like separated if and only if all local observables at A corn-
mute with those at B. Such circumstances may well arise, in
two impenetrable boxes, say, at perhaps unequal times, in the
nonrelativistic theory as well.

5The language of functionals, in such circumstances, is then ex-
tremely redundant, and needlessly more complex than that of
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functions.
Suppose that the state in question dictates that certain local

properties of th8'system at a set of points (Y;) along o are
correlated in a nonlocal way (i.e., in such a way that none of
these properties, nor any combination of them, is defined on
any proper subset of these points). The state of such a system
can be verified both along cr and along g, without these two
verification procedures disrupting one another, if and only if
g intersects either the future light cones of all of the ( Y;) or
the past light cones of all the ( Y;); in the event that g inter-
sects the future light cones of some of the ( Y;) and the past
light cones of others, then the verification of states along both
will be impossible.

~The covariance of this description will follow simply from that
of the equation of motion.

Perhaps it will not be amiss here to remind the reader that, in
speaking of the localization of the particle to Xi, we are work-
ing within an approximation wherein the Compton wave-
length of the particle can be neglected. The question of the
description of such systems on smaller scales (scales, that is,

of the order of the Compton wavelengths), which shall not oc-
cupy us here, is no doubt an interesting one. Such an investi-
gation would require a fully field-theoretic treatment: What
passes here for a localized measurement event would there
have to be described as an averaging {in the manner of Bohr
and Rosenfeld) over a finite, and vaguely bounded, volume of
space-time j. Conceivably the spacelike hypersurface of Secs.
II, III, and IV might have to be taken to be finitely thick and
of course the phenomenon of pair creation will come dramati-
cally into play. We hope to undertake such an investigation in
the future; for the present all that can be said is that whatever
happens on these smaller scales must necessarily reduce, as
the scales are enlarged, to what we are describing here, and
must necessarily partake of the same difficulties of covari-
ance.

K.-E. Hellwig and K. Kraus, Phys. Rev. D 1, 566 (1970).
This, as we have shown, could in principle have been verified
by experiment at t =0—e.

i~A proof follows easily from the canonical commutation rela-
tions for observables; see, for example, Ref. 9,


