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On the validity of various approximations for the Bethe-Salpeter equation
and their WKB quantization
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The validity of the instantaneous approximation for the Bethe-Salpeter equation is questioned
within the framework of the simple scalar-scalar model of Cutkosky. Detailed numerous results for
various approximations are compared to the exact ones. WKB quantization is applied to these rela-
tivistic approximations. An unexpected question arises: is the currently used Bethe-Salpeter equa-
tion (i.e., the ladder approximation) well suited to describe two interacting relativistic particles.

I. INTRODUCTION

The story of a relativistic treatment for interacting par-
ticles is quite long, dense, and is far from being closed. A
first step was the derivation of a full relativistic equation
for two interacting particles by Bethe and Salpeter. ' Since
then, a lot of theoretical work has been devoted to the
study of this equation; a complete list of references up to
1969 may be found in the paper of Nakanishi. The
theory was first applied to the electromagnetic interaction
of the electron and the positron in positronium. Interest-
ing discussions on this subject may be found in the review
papers by Stroscio and Bodwin and Yennie. Very soon
it became clear that an exact numerical solution of the
Bethe-Salpeter (BS) equation was not possible, and people
looked for some approximations. Among them one can
distinguish between two families: (i) the so-called instan-
taneous approximation (IA) first proposed by Salpeter
which was widely used in the positronium description
and (ii) the quasipotential-approximation (QP) equa-
tions ' which have forms similar to the Schrodinger or
Klein-Gordon equations.

Recent progress in quark spectroscopy leads to a
renewed interest in relativistic equations. It seems that
nonrelativistic approaches work rather well for heavy-
quark systems but for light-quark systems a relativistic
treatment should be more appropriate. But is it possible
to apply the same kind of relativistic equations to quark
systems for which the coupling constant to the gluon field
is around unity as for electron systems for which the cou-
pling constant to the photon field is around 10 ?

In fact a number of equations were proposed in the past
but no serious comparison among them was made in order
to delimit their domain of validity. This may probably be
partly due to a lack of accuracy in the numerical pro-
cedure. In this paper, owing to great care taken in numer-
ical methods, we compare the results for several approxi-
mations in a simple model where the full relativistic BS
equation can be solved. This will provide a quantitative
feeling for the relativistic effects. In Sec. II the model and
the different approximations are presented (BS, IA, and
QP). Section III deals with semiclassical WKB quantiza-
tion of the relativistic equations (IA). In Sec. IV the nu-
merical results are discussed.

II. THE MODEL AND VARIOUS APPROXIMATIONS

The scalar-scalar model of Cutkosky is relatively sim-

ple, and this is why it has been widely used for several ap-
plications. ' It describes two complex scalar fields

$1(xi ) and $2(x2) of masses mi and m2 interacting
through a real scalar field g(x) of mass p with an interac-
tion Lagrangian

w(x) = [gi.yi(x)$1(x):+g2 (b2(x)y.i(x):]t/J(x), (2.1)

where g; are the coupling constants between P; and g. We
set

g ]g2 = 167TPl )I2 k, , (2.2)

A, being the dimensionless coupling parameter. $1 and $2
obey a Klein-Gordon-type equation, thus the free propa-
gator is

y 4k exp[ ik (x——y )]
Go(x;,y;) =

(2m)" k m; +—iq
(2.3)

A. The Bethe-Salpeter equation

If
~

X) is the state vector of a bound state of the two
particles 1 and 2, the BS amplitude is defined by

X(xi,xz) = (0
~
T[$1(xi )gz(x2)]

~
X), (2.4)

where
i
0) is the vacuum state and T is the chronological

operator. Let X(pi,pz) be the Fourier transform of
X(x i,x2). The BS equation then can be written

(PI n1 )(P2 m2 )~(pl P2)

, f &'PI&'P2I'(pl&p2&pl &p2+(pl &p2)
(2m. )

(2.5)

X=axi+(1—a)xz, x =x, —x2

p =pi +p2, p = (1 —a)pi —ap2, 0(a ( 1

(2.6)

where V(pi, p2,'p'i, pz ) stands for the sum of all irreduci-
ble Feynman diagrams involved in the process
1'+2' —+1+2. Taking advantage of the invariance under
time and space translation and introducing total and rela-
tive variables, we have
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V(p, P;p', P') =5(P P—') V(p,p', P),
X(p,P)=5(P —&)Xx(p) .

The BS equation now reads

[(~&+p)'—m $'] [[(1—~)&—p]' —m2']&x(p)

(2.7)

(2.8)

16+m )m2k
V(p,p', K) = i-

(p p) 8+'9 (2.10)

, f d p'V(p, p', I )Xx(p') . (2.9)
(2n )

The binding energy B (counted positively) is obtained by
solving this equation in the center-of-momentum system
(K=O and Ko ——m ~ +m2 B). —Because the sum of all in-
finitely many irreducible Feynman diagrams is not known
one restricts oneself usually to the so-called ladder approx-
imation for which V is computed by considering only one
exchange between particles 1 and 2:

(q +2aq +1)X(q)= f d q' x(q')
(q —q')'

with

(2.11)

(m ~
—mq) ICo

—1 2

a=2 1—
2

1— —1 . (2.12)
(m)+m2) (m, +m2)

In (2.11) the metric is Euclidean: q =q~ +qq +q3 +qo
and O(4) symmetry is transparent. Owing to this symme-
try it is possible to transform (2.11) into a differential
equation with only one variable (see Cutkosky's paper or
the book by Itzykson and Zuber"). Introducing

ourselves throughout this paper to the long-range interac-
tion p=O. After performing the Wick rotation and a
stereographic projection on a unit sphere in five-
dimensional space, Cutkosky was able to transform (2.9)
into

If p =0 the problem acquires a new O(4) symmetry. Since
this is the only case in which the Bethe-Salpeter equation
is easily solvable with sufficient accuracy we will restrict we can write the differential equation as

(2.13)

d g„(z) dg (z) A, (1+@)(1—z ) +2(n —1)z —n (n —1)g„(z)+ g„(z)=0
dz2 rr(z +e)

(2.14)

m trna (1+r) r e
1 — 1 —4

m&+m2 r (1+r) I+a (2.15)

with g„(+1)=0. This equation admits only certain values of e which determine the binding energies B according to
' 1/2

B is a function of A, , m ~, m2, and a new quantum num-
ber n. In fact there is also another quantum number k,
but solutions for k&0 are related to relative time excita-
tions and have been discarded in our study. There is no
dependence on any quantum number of angular momen-
tum.

In order to keep the maximum accuracy in the numeri-
cal procedure we apply the Noumerov algorithm and thus
we make the following change of function:

g (z) ( 1 z2)( ~)/2y (z)

Then the new differential equation, suitable for the
Noumerov algorithm, is

d y„(z)
=A„(z,e)y„(z), y„(+1)=0 (2.17)

dz

where

n 1A(1+@)—
(1—z ) m.(1—z )(z +e)

More details about the numerical procedure can be found
in Ref. 13.

In the limit where one mass becomes infinite, it is well
known that the BS equation with the ladder approxima-
tion does not give the Klein-Gordon results —a conse-

quence of neglecting all higher-order irreducible graphs.
However, it can be shown ' that for weak coupling, A, ~O,
the BS binding energy agrees with the nonrelativistic
(Schrodinger) limit,

B —[m ~mzl(m ~+mz)]A, /Zn
A, —+0

B. The instantaneous approximation

In more complicated cases (e.g., positronium) than the
simple model considered here the BS equation =ven in
the ladder approximation —cannot be solved exactly. One
of the most important drawbacks is the presence of a rela-
tive time corresponding to a relative energy whose physi-
cal interpretation is not quite clear. To get out of this dif-
ficulty Salpeter proposed the instantaneous approxima-
tion (IA) which consists of putting po ——p 0 in
V(p,p', K)= V(po, p,po, p ',K). Since in general (i.e., for
local potentials) Vdepends only through a term po —po on
the energies, the new interaction is thus a function of the
three-vectors p and p

' only; it is instantaneous and conse-
quently no longer covariant. Defining

Px(P) = f dpo&~(p) (2.18)

and introducing this quantity in (2.9), we get
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Px(P)= f d P 'V(P, P ',K)gx(P ') f dPo[(aK+P) —miz+iri] 't[(1 a—)K —P] —mz +iriI(2ir)4
(2.19)

oui( p )oiz( p )
IKo [oui(P)+oyez(p}1'Jdir(P}=, f d P V(P P K)4'x(P

ir[oil( p)+~2(p }]

with co;(p) =(p +m; )' . In order to compare to the exact BS solutions we restrict ourselves to the ladder approxima-
tion for which [cf. (2.10)]

(2.20)

The po integration is performed either in the upper or in the lower complex half plane. In the center-of-momentum
frame the final IA equation is

i 16am ~m2
V(p, p ',K) =

In the nonrelativistic limit (
~ p ~

&&m;) (2.20) reduces to

(2.21)

(2.22)
'P( ') mimz

2m p p' 2 mi+mz
p (-) p p 8(-), m

which is the Schrodinger equation with a Coulomb potential Alr i—n th, e momentum representation. Using the angular
decomposition for the Coulomb potential

Y, (P}Y,'(p }
1 2n ~ p +p'

(2.23)
(p —p ') pp i,~ 2pp

(Qi being the Legendre function of second kind) it is possible to find solutions of (2.20} which have a good angular
momentum. The ansatz

4& (P)= Y& (P}
p

yields

Ko'4(p) =[~i(p}+~2(p}Ai(p}—
2mirnzk[coi(p), +coz(p)] f pz+p'2

~i(p}~2(p} ' 2pp'Qi

(2.24)

(2.25)

It is not difficult to show that

P&(p) —p in the nonrelativistic limit,
p~ ao

Pl(p) —p in the relativistic limit .
p~ ao

(2.26)

EVg ——g A;~ VJ. (2.27)

The function Qi in Eq. (2.25} has a logarithmic singularity
for p =p. Because this singularity is moving with p, nu-
merical integration, by a trapezoidal rule for instance,
may lead to large errors. To get rid of this problem we
develop fi(p) =Pi(p)/p in terms of spline functions. Ow-
ing to recursion formulas on the Qi the remaining in-
tegrals can be reduced to one integral which is calculated
analytically. Denoting fi(p; ) = V~ the original problem
reduces to a standard diagonalization

with a real but nonsymmetric matrix A;j, which is per-
formed numerically without any problem. Further details
concerning the numerical procedure may be found again
in Ref. I3.

C. The quasipotentia1 approximation

The quasipotential (QP) approximation provides anoth-
er way to eliminate the relative time (relative energy). In-
stead of modifying the interaction V of the BS equation,
the free propagator (2.3) is changed. One looks for a free
two-particle propagator satisfying the covariance and the
on-shell elastic unitary condition for all energies but elim-
inating the relative energy. There is a certain freedom in
the choice of the propagator obeying these requirements
and this explains why several quasipotential approxima-
tions have been proposed in the past. The propagator of
Blankenbecler and Sugar in the center-of-momentum sys-
tem is

Gx(p) = &(po ——,oui(p)+ —,biz(p)), , co;(p) =(p +m; )
O '77 6)i( P )+Oyez(P )

2 2 1/2

oui( p )o~z( p ) [~i(p )+~2(p }]'—Ko'
(2.28)

where p = —,(pi —pz) is the relative four-momentuin; the total momentum is taken to be P =(Ko, 0). In the case of
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equal masses this reduces to

Gx(p) = 5(po), co(p) =(p +4m )'~
co(p) 4'( p) K—o

where m l
——mz ——2m. Inserting this into Eq. (2.30) for the scattering amplitude T we have

(2.29)

T(p q K)=
4 f V(pp', K)Gx(p')T(p', q, K)d4p',

(2')
which is equivalent to the BS equation (2.9) but now the free two-particle propagator Gx(p ) is not

i [—(aK +p') m—,z] '
I [(1—~)K —p']z m zz j

—'

(2.30)

but is given by (2 28) or (2 29) The 5 function in GK(p') makes the po integration trivial, putting po on the mass shell
and thus eliminating the relative energy as an additional variable. We obtain for equal masses

T(P po q 'qo K)=
4 f V(p pp p 0,K) T(p ', 0, q, qo, K)dp '

(2~)' M(p ) 4~(p )z Kpz
(2.31)

Putting also po and qo on the mass shell, i.e., p0=0, qo
——0, this is an equation for T,„,h,»(p, q,K)=T(p, (), q, 0,K).

From this we can deduce

4

[Kp 4~(P) ]4K(P) 4 f Vo ll ll(P P K)NK(P )d P2m (2m )
(2.32)

and is negative for bound-state problems.
In the static limit where one mass goes to infinity the

Todorov QP equation yields the Klein-Gordon equation.
In the case of the scalar-scalar model studied here the QP
equation is very similar to the Schrodinger equation:

2K0(p '—b')P(p) =, f V(p, p ',K)P(p ')d'p ' .

(2.34)

Inserting (2.21) for V and taking the Fourier transform
one obtains

2m 1m2A, 1+2 b2 P(r)=0 .
&o

(2.35)

Equation (2.35) differs from the nonrelativistic
Schrodinger equation only in the constant factors

m]m2 $2
and B~——

Kpm 2m

This coincides with the IA equation (2.20) for m, =mz
because for equal masses the on-shell potential and the in-
stantaneous one are identical. For ml&mz one also gets
an equation like (2.20) but here V,»h, »( p, p ',K) is a com-
plicated nonlocal potential.

The QP approximation discussed by Todorov" seems to
us quite simple and attractive. Starting from a three-
dimensional Lippmann-Schwinger-type equation for the
scattering amplitude and demanding covariance and the
on-shell unitary condition he obtains a free propagator
proportional to Ko '(p b i z)) ' w—here—b is defined
by

4K0 b (Kll )=Kp 2(ml +—mz )Ko +(ml —mz )

(2.33)

The Schrodinger energy levels being B =mA/(2n , ) one
obtains

m1m2=m
2m Kpm

'A, 2

2n
(2.37)

Substituting b from (2.33) and solving for Ko gives

1/2

Ep ——m1 +m2 +2m1m2 1—2= 2 2 (2.38)

(2.39)

III. WKB QUANTIZATION

The QP equation (2.35) having Schrodinger form is best
suited for %'KB quantization. Because WKB quantiza-
tion of the Schrodinger equation with a Coulomb poten-
tial gives the exact energy levels and (2.35) differs only by
the substitution (2.36) WKB quantization of (2.35) leads
to the exact energy values according to (2.39).

Applying semiclassical quantization to the instantane-
ous equation (2.20) is less trivial. Transforming (2.20) into
the coordinate representation and making the ansatz

pl (r)= &l (r)
r (3.1)

we get

Introducing r =m l/'mz we get for the binding energy the
analytical expression

1/2 1/21+r 2 A,1+r — 1+r2+2r 1—
r
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coi(c), )coz(c), )
IKO' —[co)(d„)+co2(d,)]'Igi(r)

co i c)„+coz c)„

= —2mim2A, —Pi(r) (3.2)
1

with
1/2

co;(cl„)= m; —iii
2 c)', I ll+1)

Br r2

where we put back all A' s. To apply the WKB approxima-
tion to (3.2) we have to make the Langer modification
which consists of replacing iri l(l +1) by iii (l + —,

' ), that
is, in semiclassical theory the angular momentum becomes
L =Pi(l + —,

' ).
Equation (3.2) does not have the Schrodinger forin. To

show that, nevertheless, the WKB approximation is appl-
icable we make the ansatz

co i(cr')co2(cr')
, IKo' —[~i{~')+~2{~')]'I

co( cr +co2 o'
1= —2m im 2k — (3.6)
r

with

, (&+-, )'
coc(cr') = m; +A' +o'(r)

r 2

Solving for o'(r) the wave function becomes, in lowest or-
der of the %'KB approximation,

Pi(r) =exp f 'o'(r)dr-
'o A

(3.7)

j.e., c) /c)r and f{r) commute in this approximation.
Developing the left-hand side of (3.2) with the ansatz (3.3)
in a power series and using (3.5) it is easy to see that

Pi(r) =exp o(r)—

and remark that

(3.3)

Because of the centrifugal potential L lr =Pi (1+—,
'

) /r,
which is present even for s waves, the problem has two
classical turning points ri, r2 and continuity of the wave
function demands

gn
Pi(r) =exp o(r) —

I [io'(r)]"+0 (A') I . (3.4)
c)r" h

Restricting ourselves to the lowest-order approximation in
i' we have for any function f{r) that contains no inuerse
powers of fi

T2

J o'(r)dr =(n + —,
'

)rriri,
1

(3.8)

which is the usual WKB quantization condition. Equa-
tion (3.6) may be solved for cr' analytically for
m1 ——m2 ——2m or for m2 —+ ~.

(a) m i
——m2 ——2m. Equation (3.6) now reads

co(o')[Ko —4co(o') ]=—16m A, /r .

(3.5) Solving for co gives

(3.9)

co(cr') =co(r) = '

Ko r r+2+3 r r'

&o r~ cos —, arcos
3 r

1/2 1/3

for r)r

' 1/2 1/3 '

r
for r ~r,

r
(3.10)

with r =2m A. 12 ~ /Ko For r)r th. ere exist two other
real solutions of (3.9) but only the one given above
matches continuously with the solution for r & r. Between
the turning points r1 and r2

0.4966& 10; the WK.B value with the Langer modifica-
tion is 0.4967)& 10, without the modification
0.4710X10 2).

(b) m2 —& ao. In this case (3.6) reduces to

o'(r)=[co(r) (l+ —, ) lr 4m ]—'~—(3.11) co((cr')[(m —8)—co)(o')]= m i,/r, —(3.12)

is real (we again put fi= 1) and the integral in (3.8) is cal-
culated numerically.

It is not difficult to see that for Ko/m &4 correspond-
ing to 8&0, r2 remains finite and r1 & 0 so that the in-
tegral in (3.8) is finite. For 8~0, i.e., Kolm —+4, one has
rz —+co and the integrand behaves asymptotically as 1/r,
thus the integral becomes infinite. This shows that the
system has infinitely many bound states. The importance
of the Langer modification l(1+1)~(l+—,

'
) even for s

waves may be estimated from the numerical results (for
n = 1, I=0, A, =0.1 the exact value for B/m is

which yields
T

T

m —8o'(r) = +
2

(I + —,
' )'

r

1 /2

(3.13)

The integration in (3.8) is again performed numerically.
WKB quantization of the BS equation (2.9) seems to be
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quite difficult if not impossible because of the four-
dimensional integral and the appearance of the relative en-

ergy.

IV. RESULTS AND DISCUSSION

All the equations studied here give binding energies B
proportional to the reduced mass m. Thus, the interesting
quantity to study is the ratio 8/m.

The nonrelativistic (NR) Schrodinger equation gives the
well-known binding energies B/m =1, /2n . This is the
only case for which all recoil effects are fully included in
the reduced mass only. It is interesting to see that only
the IA energies depend on the angular momentum I while
this is not true for the extreme cases BS and NR, as well
as for QP. However, in the limit of a very weak coupling
constant, the nonrelativistic limit A, /2n is obtained re-
gardless of the approximation used.

In Table I we present the values of B/m for the approx-
imations studied [BS, IA, IA with WKB quantization, QP
(Todorov), and NR]. We select three values for the cou-
pling constant A, , one typical for a photon exchange
A, = 1/137.036, one typical for gluon exchange A, = 1, and
an intermediate one A, =0.1. We study the first three
states (n = 1,2,3), two different angular momenta I=0 and
l=1, and report the results for a system with an infinite
mass r=O (upper row) and one with equal masses r=1
(lower row).

The numerical accuracy is 10 for weak A, , 10 for
A, =1 for IA, and 10 " for BS and IA with WKB quanti-
zation, while the QP and NR values are obtained analyti-
cally. Interesting features emerge from this table.

The recoil effects outside the reduced mass are of minor
importance; they increase with A, and are maximum for
the instantaneous approximation. The full relativistic BS
case deviates more and more from the Schrodinger results
with increasing coupling: the difference is already 6% for
A, =—1/137.036, 30% for A, =0.1, and for A, = 1 BS and NR
differ by a factor 3. BS always gives less binding energy
than NR. The instantaneous approximation (IA) also
gives less binding energy than NR but the effect is much
less important; as for BS it increases with A, and is more
pronounced for low values of angular momentum, but the
discrepancy between IA and NR is never greater than

30%. Gn the other hand, the quasipotential binding ener-

gy is greater than the corresponding nonrelativistic one
but it is always very close to the latter (besides for A, = 1)
since the difference is of order A, . The QP equation giv-
ing the Klein-Gordon equation for m2~0e, the case of
r =0 (upper row) gives at the same time the Klein-Gordon
binding energies.

The WKB approximation for IA gives binding energies
very close to the exact IA values. The difference is about
1% or less except for the ground state for strong coupling,
A, =1, where the discrepancy is 3%. The %'KB values
show the same variation of the binding energies with the
angular momentum as the exact IA calculations. Also the
recoil effects outside the reduced mass are very well repro-
duced. It has been seen that it is absolutely necessary to
make the Langer modification 1(1+1)~(1+—,

'
) even for

s waves. It seems that the &KB quantization provides a
good approximation also to relativistic equations that do
not have the Schrodinger form but may be written with a
three-dimensional local interaction potential. Because
evaluating an integral is considerably simpler than solving
a differential or integral equation it should be encouraging
to apply &KB quantization to other relativistic problems.

From this model study, we may conclude that the effect
of taking an instantaneous approximation in the Bethe-
Salpeter equation is very important; it can affect the result
by a factor 2 or more if the coupling constant is large and
it always gives more binding. However, the Klein-Gordon
equation (QP values for r=O) or Dirac equation in more
realistic situations is known to provide binding energies
for small r very close to the experimental ones; BS and
Klein-Gordon energies differ by a factor 3 for large cou-
plings; this seems to indicate that the usual form of the
BS equation (with the ladder approximation and free
propagators) is inadequate for a correct description of two
interacting particles, even for weak coupling.

It is remarkable to see that the instantaneous approxi-
mation seems to compensate to a great extent the effect of
higher-order diagrams neglected in the ladder approxima-
tion.
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