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The question is analyzed how to describe a closed relativistic system formed by n particlelike con-
stituents. It is proposed that to such a system there corresponds a unitary representation U of the
Poincare group being a function of n (n —1)/2 potentials, one for each pair, such that cluster sepa-
rability holds: If the constituents are grouped into k clusters and the potentials are set to zero be-

tween constituents belonging to different clusters, then U factorizes into a tensor product of k repre-
sentations, any one of them describing a closed system associated with a particular cluster of con-
stituents. An explicit and mathematically rigorous construction is given such that these properties
hold.

I. INTRODUCTION

Although any fundamental description of matter has to
introduce infinitely many degrees of freedom, under nor-
mal conditions only finitely many degrees of freedom are
excited, thus producing the illusion of a finite constant
number of particlelike constituents. Examples of this are
the electrons in an atom, the nucleons in a nucleus, and
the valence quarks in a hadron. The velocities of these
constituents may reach considerable values such as
U/c=0. 4 in the ground state of charmonium. Consider-
ing the difficulty of the bound-state problem in relativistic
quantum field theory it should be useful to have a rela-
tivistic quantum-mechanical description of an n-particle
system in order to deal with the above-mentioned situa-
tions in a semiphenomenological way. From a more
theoretical point of view, relativistic many-particle quan-
tum mechanics, by questioning the widespread opinion ac-
cording to which relativistic dynamics is necessarily field
theory, should elucidate the actual basis of field theory.

The early works on relativistic particle mechanics'
(also called theory of direct interaction) made clear that
relativistic invariance alone is not a very restrictive condi-
tion and is easily satisfied by working in the center-of-
mass frame. However, as Foldy pointed out, a further
physically indispensable property, namely, macrocausality
(which is called macrolocality, cluster separability, or
cluster-decomposition property as well), poses an obstinate
problem in such theories. The first positive result con-
cerning the cluster separability of an n-particle system,
n & 3, refers to an expansion of the Hamiltonian (and the
further operators of the theory) in powers of U/c. It
shows that cluster separability can be satisfied to any or-
der of the relativistic corrections but nothing is said about
the convergence of the series. The first nonperturbative
solution is due to Sokolov. Although Sokolov's treatment
is rather cryptic and seems unconvincing in some analyti-
cal and combinatorial points, its merit is at least that it in-
troduces the decisive element of a solution: For any parti-
tion of the particle system into clusters, Sokolov intro-
duces a unitary "packing operator" such that systems con-
sisting of mutually noninteracting subsystems can be com-

bined by an iterative procedure to form the final fully
linked system. Using combinatorial results on cluster ex-
pansions, ' Coester and Polyzou gave a clearcut con-
struction of an interacting n-particle system satisfying
cluster separability. Whereas Sokolov uses Dirac's point
form of dynamics, these authors work within the physical-
ly more reasonable instant form. In Ref. 9 the packing
operators are constructed with the help of Mgiller opera-
tors so that asymptotic completeness is essential for the
method to work. On the other hand, the Hamiltonian de-
pends on the input data (the interaction between pairs) in
such a complicated manner that it seems hopeless to prove
asymptotic completeness. Already in an earlier stage, the
construction is formal insofar as self-adjointness and posi-
tivity of the mass operators and the unitarity of the pack-
ing operators are not clear. Independently of Ref. 9, I
gave a similar construction' in which the packing opera-
tors are defined kinematically so that no assumptions on
the scattering behavior are necessary. As to the self-
adjointness and positivity of the mass operators it is ar-
gued heuristically in Ref. 10 that these physically essential
properties should hold for pair potentials that are neither
too singular nor too strongly binding. In this paper,
which is essentially a shortened version of Ref. 10, I use a
regularization by two cutoffs (an infrared and an ultravio-
let one) that preserves Poincare invariance and cluster
separability and that prevents any pathological operators
from occurring during the construction. Clearly, patholo-
gies of the unregularized system will manifest themselves
after regularization as an essential dependence of physical
properties on the cutoff.

Let us start with the nonrelativistic pendant of the final
relativistic construction. The latter will do nothing but
force relativistic kinematics on a system of finitely many
(distinguishable) nonrelativistic particles that interact
through pair potentials. We index the particles by the fi-
nite set J. It will be convenient to introduce some conven-
tions and notions concerning subsets and systems of sub-
sets of J. These sets will describe subsystems and systems
of mutually noninteracting subsystems.

Conuention (valid for the whole paper): Whenever the
letters i,j; a,P, y, o; p; W, A, 8', &; and W are used, the
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following declarations are implied:

(1) ij &J;
(2) e&a, P, r, crC:J;
(3) pL:J, 1 &

I p I

&2 (where
I
X

I
denotes the number

of elements of the finite set X);
(4) W, 9F,Ã, and & are partitions of subsets of J; and
(5) W is a partition of J.

and M~A ) . (1.2)

The finest refinement of M is denoted by "W; the clusters
of W consist of single elements: U *W= U W,

I

*W
I

=
I

U W
I
. I'utting

~~=—tr I
ra~ adn&~&~, P&(r=anP)I (1.3)

we have for U M = U A the following properties:

M&MA%, % &Wh&, (W)A iff Wh&=%) .

(1.4)

A partition A' of P induces the partition taI h A of any
subset a of P. We will abbreviate this partition by a h A.
Similarly, we will often suppress the brackets of set for-
mation where no misunderstanding seems possible.

The state space H of any subsystem factorizes into the
state spaces of the constituents

H —(3~H
This induces for any M a tensor product

HUM ac&Ha

(1.5)

by the prescription that, for any family (p ) ~~ with 11

of the form J~ gz, we put ~~~/~=JEUX/~. Then,
tensor multiplication is associative, i.e., for K =MA, A
and for any family (itjy)y~@, gy HHy, we have

cy@fy aEM(yEaA Ately)

Any Hj carries a unitary projective representation
U~ = U(J) of the Huygens group" (=— inhomogeneous
Galilei group) that describes all physical properties of the
one-particle system [jI. The interaction is determined by
a family V=(V )=(V~)z~J of potentials, where V(; j) de-
scribes the interaction between particle i and particle j.
Excluding self-interaction, we put VIJ I

——0. The energy
operator E of any subsystem cx is given by

E = g (m. +P. /2m. )+ g V = g T +gV.
jCa pCa jEa pCa

Hence, M is a set the elements of which are nonvoid mu-

tually disjoint subsets of J. These will be called clusters of
Clearly,

I

W
I

is the number of clusters of M. The
set of which M is a partition is denoted by

UW—:Ij I
j&a for some a&MI = U ~~a .

Further we write W & A is a refinement of W, i.e.,

M) A iff ( UM= UA, VP&%3aCM(aCP),

With any partition W we associate a fictitious system that
is built up out of the same particles as J, but differs from
J insofar as particles belonging to different clusters of W
do not interact. What is the energy operator of that sys-
tem (and its subsystems)? There are two conceptually dif-
ferent ways to answer this question:

Thus, the reasonings (1) and (2) yield the same result.
This expresses the algebraic cluster separability of a Ham-
iltonian with pair potentials. With the Hamiltonian we
associate a representation of time translations

t~exp(itE ) . (1.10)

Let us assume that any potential Vp commutes with
momentum, angular momentum, and center-of-mass posi-
tion of the free p system described by J~&Ul. Then
(1.10) is easily extended to a (projective) representation U~
of the Huygens group by taking over the remaining nine
generators from the free a system (3)jc Uj. The represen-
tations Uz determine the potentials Vz and vice versa (if
the UJ's are given). Therefore, we have the following situ-
ation: For any a we have a unitary representation U of
the Huygens group, where, for

I
a

I
& 3, U~ is determined

by the Up with p C:n, i.e.,

U =f ((Up)p~ ),
where f~ is a function. The action of partitions W on the
Hamiltonians EN given in (1.9) induces an action of parti-

(1) Since the clusters crEW are dynamically indepen-
dent (i.e., states that describe independent subsystems at a
particular time t, do so for all times) the energy is

E = g E&(identity on H~~ p) = g Ei3 .
PEaA& pE.a A A

Here and in the sequel the convention is adopted that ten-
sorial factors 3. (= identity operator) may be omitted if
the space on which the operator acts is clear from the con-
text.

(2) Instead of synthesizing the whole system out of the
clusters, we may obtain the system by switching off the
interaction between different clusters. The interaction in
the original system is described by the family ( Vz )

(remember
I p I

&2) of potentials. Switching off the in-
teraction between different W clusters defines the new
family ( Vz ) of potentials, where

v if Ipr P'I =1,
0 if Ipn&I =2. (1.8)

The energy corresponding to these novel potentials is then
given by

E(V )=gT+gVp
J&a pCa

= X ET+XV,
p&aA& jap pCp

Ep( V)
PeaA&

=E (V) .
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tions on the representations U:
Ua =pEaA~Up . (1.12)

The algebraic cluster-decomposition property of the Ham-
iltonians implies that the following diagram is commuta-
tive:

(Up)pc — (U. )pc&

(1.13)

expressing the algebraic cluster separability of the com-
plete theory. Written in terms of infinitesimal generators,
Eq. (1.13) coincides with condition (Cl) of Ref. 9.

From a formal point of view, the goal of this paper may
now be formulated very simply. It is to establish (by con-

struction) the saine situation with the Huygens group re-
placed by the Poincare group H. What was almost trivial
now becomes a problem. The reason for this is the fact
that in the Poincare group the time translations do not
commute with the rest of the group as they do in the
Huygens group. The obvious way out is to let the mass
operator play the same role the energy operator played in
the nonrelativistic case. This amounts to considering evo-
lution in proper time rather than in coordinate time. Now
a new difficulty arises from the fact that the mass opera-
tor, rather than being a generator of the group, is a non-
linear function of the generators. Thus, the property of
representations to factorize tensorially implies a more
complicated property of the mass operator than being a
sum over contributions from the clusters as it is the case
for the energy operators. These circumstances result in a
considerably more complicated form of the representa-
tions U . Let us write them down explicitly (

I

a
I

)3):

U =Z 'BT g' Z~M( S Up)z~ ', U) Z
a&A Pc@ j6a

(1.14)

a&A'

z —= /' z~ g z.,~-'z((z. ,~ e U,z., -').~ )-' r((Z. U.Z.-').E ) e z. ,
yEaAA a6W

(1.15)

(1.16)

Z~=—I if W='W. (1.17)

M(U) denotes the mass operator of the representation U,
BT is a function the values of which are unitary represen-
tations of the Poincare group, and F is a function the
values of which are unitary operators. The main goal of
Secs. II and III is to define the function BT and F, respec-
tively. The cluster sum g' and the cluster product fJ'
are defined in Appendix B. Equations (1.14)—(1.17) de-
fine U if we know Up for any proper subset 13 of a. In
this situation we define U~ by (1.14) after having elim-
inated the Z's with the help of (1.15)—(1.17) as follows:
Equation (1.16) allows us to express any Z~ by the
known Up's (only P's that are subsets of M clusters ap-
pear) and such Z~'s for which U A' C: U zf and

( I
U

I
&

I
U ~

I
«

I I
&

I
~

I
) App»ing (1.16)

also to these Z~'s, and so on, we finally obtain only Z's
that are equal to the identity by (1.17). This defines a
function g~ such that

=g~((Up)pc&, p=~~p) . (1.18)

U.=f.((U, ), .) . (1.19)

A more economical recursion scheme (based, however, on
the same formulas) will be given in Sec. IV. There, it will

Together with (1.15), Eqs. (1.18) and (1.14) define a func-
tion ha such that

U =Ii ((Up)p

Iterating h~, we finally express U in terms of (Uz)zc
thus defining the function f:

I

be shown that algebraic cluster separability holds; i.e., that
the diagram (1.13) is commutative with the action of par-
titions being defined by (1.12). Further, it will be shown
that

U (g)= ~~ UJ(g) for all g&8', (1.20)

where 8' is the Euclidean subgroup of the Poincare group.
Hence, interaction only affects the representation of time
translations and Lorentz transformations.

The notions introduced so far formalize the idea that
the dynamical behavior of the whole system should be
determined by its constituents and the relations between
them (it is only for simplicity that we only consider rela-
tions within pairs). The particles jH J, or even the subsys-
tems a CJ, are constituents of J in the sense that there is a
hypothetical process [viz. , going from ( Uz) to ( Uz )] that
gives them the status of independent subentities. The
question now arises whether these hypothetical subentities
may exist as closed subsystems in the unchanged theory.
This is to be expected if the interaction between any two
particles decreases sufficiently fast as a function of the
relative distance, i.e.,

[U;(a) UJ(b)][U(;,J) (g) —U;(g) UJ(g)]

~ [U;(a)e U,.(b)]—'~0, (1.21)

sufficiently fast for
I

a —b —+no, where a and b denote
spatial translations and

gal%

is arbitrary. It should be
noted that the interpretation of the operator U;( a ) UJ ( b )
as a relative translation of the subsystems i and j [that jus-
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tries (1.21)) would hardly be consistent if (1.20) would not
hold for translations. Let us now consider (Schrodinger)
states f) and f2 of the system a that can be prepared in a
laboratory of realistic dimensions. For a partition A of a
we choose a family ( ay)pz~ of translation vectors such
that all vectors ap —ar, P&y, are very large compared to
the dimensions of our laboratory. Then we form the
states

This shows on a nonrigorous level that algebraic cluster
separability implies cluster separability in the usual sense.
It should be noted that algebraic cluster separability
remains a reasonable concept also in cases where confining
interactions make spatial separation impossible. In the
sequel cluster separability will always mean algebraic clus-
ter separability.

(p;=epE~Up(ap)g;, i K{1,2I, (1.22)
II. THE BAKAMJIAN- THOMAS-FOI. DY

CONSTRUCTION

which should be expected to describe situations for which
all information can be obtained by using measuring de-
vices that are placed in the volume obtained by applying
all translation vectors a& to the volume of our laboratory.
These measuring devices are thus placed in widely
separated laboratories Lij, PH A. One should expect

Let U be a representation (= continuous unitary repre-
sentation) of the Poincare group (cf. Appendix A) acting
on a Hilbert space (—= complex separable Hilbert space) H.
Then the self-adjoint operators P (energy), P (momen-

tum), J (angular momentum), and N ("boost") are deter-
mined by the equations

&v) I
U (g)vz& =&m) I pe~Up(g)m2&

for all

gal%

(1.23)
U(a, 1)=exp( ia P —i a.P),
U(0, exp(i n. cr /2) )=exp( i n J ), (2.1)

since, otherwise, even if the measuring results obtained in
different 1.~'s are independent [which is not the normal
case for states constructed according to (1.22)] they would
lose their independence in the course of time (or even after
a kinematical transformation). Exact equality, however,
can only be expected in the limit of infinite separation be-
cause for finite distances there are always configurations
that will come close together at some time or other. Let
us see how (1.23) arises:

&e ) I U.(g)mz& = &4) I p~~ Up( —ap)[fa((Up), c:.)](g)

X p~ ~ Up( ag) gp &

= & y l [f (( U,'), )](g)y &

There, we have put

Up(g) =S~~pUq( —ap—(J))Up(g)i~ UJ(ap(J)), (1.24)

where p(j) is the A cluster that contains j. Obviously, Uz
is a representation of H. In the last step of the above cal-
culation we have used the fact that f commutes with un-
itary transformations. Precisely, for any family (VJ. )J.~
of unitary transformations VJ .. HJ ~HJ we have

(J~ VJ)f {(Up)pc )(, ~ VJ ')

=f (((S;~pVJ)Up(ej~qVI '))p~ ) . (1.25)

Equation (1.21) implies Uz —( Uz )'= ( Uz ) . Since
f~{(U&)zc~) is constructed out of its arguments of expli-
cit formulas it is reasonable to expect that it depends, in
some sense, continuously on its arguments such that we
may continue

[a.X, b P]=ia.b, (2.3)

and satisfying Bakamjian-Thomas-Foldy ' equations on a
common core of X:

N= —,(P'X+XP')+PXS(M+P )

U(0, exp( n. o /2) ) =exp(i n.N) .
We assume U to be positive in the sense that the self-
adjoint operators P and M =P"P„are strictly positive
(the addition "strictly" excludes zero from being an eigen-
value; no spectral gap at zero is required). Any (finite)
tensor product of positive representations is easily shown
to be positive. If U is irreducible it is unitary equivalent
to U, with m &0 ands& {0,—,', 1,. . . I given by

v, (a,a): I, '(R', c"+')~L, '(R' c"+')
(2.2)

{U,(a,A)g)(p)= e"~[(A 'p) /p ]'~'

XD"{R(p,A ))@(A 'p)

where p is the four-vector (p, p)=((m +p )',p) and
D" is the usual unitary irreducible representation of
SU(2) on C '+', the Wigner rotation R(p,A) and the ac-
tion of SL(2,C) on four-vectors are explained in Appendix
A.

For this representation the Newton-signer position
operator X is simply given by X=i (}/8p It is easil.y seen
to be related to the Poincare generators by Eq. (2.4). Since
U can be decomposed into a direct integral of irreducible
representations, one easily extends the definition of X in
such a way that U determines a triplet X of commuting
self-adjoint operators satisfying Heisenberg commutation
relations with P,

=&0)
I ff {«, );~ )](gW'z&

= &@ I [f.(«, ), .})(g)q»&

=&q lU. (g)q, &

U, (g)~, & . (1.26)

where 8—:J —X&P;

x=q —px( J —qxp}~—'(M+&')-', (2.4)

where Q= —,'(Po 'N+NPO '). More information on this
point is given in Refs. 12 and 13.
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U'"(exp(in. o /2)}=exp(in. S'") . (2.5)

This representation allows us to write a factorized form of
U(g) for all g belonging to the Euclidean subgroup
8'—:I(a,A) e H

~

a =0, A eSU(2) j of H:

U(a, A ) = U'"(A )SU™(a,A ), (2.6)

where U' (a,A ) is the usual action of a Euclidean
transformation on one-particle momentum-space wave
functions

Since (2.3) implies, up to equivalence, the form
X=IiB/Bp, P =I p, we can factorize H into a tensor
product of an "internal space*' being unaffected by the
operators X and P and a "center-of-mass space, " where
these operators act effectively. More precisely, we find a
tensor product H=H'"L (R ) such that X and P act
only on the second factor: X= I(3) i8/8 p, P = I(3 p,
whereas all internal observables (i.e., those that commute
with both X and P) act only on the first factor. Let us
call such a tensor product a barycentric factoring of H
(with respect to U). Since the mass M and the spin S are
internal observables, they are of the form M=M'"I3II,
S=S'"3. and S'" generates a representation U'" of SU(2)
on the internal space H'" by

U=BT(M, U), (2.10)

where BT stands for Bakamjian and Thomas, who in-
vented this construction in the framework of classical
mechanics, where the Poincare group is represented by
canonical transformations. If M varies over all operators
allowed by the conditions stated above, the representation
BT(M, U) varies over all representations satisfying (2.8).
Let us call two positive representations U and U of %
concentric, in symbols U- U, if (2.8) holds. Concentricity
is obviously an equivalence relation. The main fact on
concentric representations is that a barycentric factoring
with respect to one representation is also a barycentric
factoring with respect to any other concentric representa-
tion. Concentric representations transformed by the same
unitary transformation remain concentric.

Since these equations involve unbounded operators, they
are not easily seen to define self-adjoint operators. If
mathematical rigor is required, it is easier to construct the
finite transformation U(a, A) directly instead of the infini-
tesimal ones. One then verifies (2.9) afterwards. This is
indicated in Ref. 12 and carried out in detail in Ref. 10.
Anyway, U is a well-defined positive representation deter-
mined by M and U. Let us denote it by

(U' (a,A)g)(p)—:e '' "g(A 'p) .

X=X and U(g) = U(g) for all g H 8' . (2.8)

This is very plausible. The position operator, momentum,
and angular momentum are known from (2.8); energy and
"boosts" may then be defined in accordance with (2.4) as

P '=(M '+I")'"
(2.9)

N—=—,(P 'X+XP ')+P)&( J —X&(P)(M+P ')

There exist infinitely many barycentric factorings for U
but these are all related in a canonical manner. Let
H'"L (R )=H=H'"QL (R ) be two barycentric fac-
torings; then there is a unitary mapping V: H'"~H'" that
is uniquely determined by the requirement that

(Vp)p=ptP for all /EH'", yEL~(R3) . (2.7)

Clearly, V inter relates the "internal data" of U:
U'"= VU'"V ', M'"= VM'"V '. The property of a state
to factorize is independent of the barycentric factoring
chosen. The physical meaning of factorizing is that
measuring internal observables yields results that are sta-
tistically independent of values obtained by measuring
center-of-mass observables (i.e., observables that commute
with all internal observables and, hence, belong to the von
Neumann algebra generated by P and X).

Let us now consider a strictly positive operator M that
commutes with X and with I U(g)

~ g E 8') or, equivalent-

ly, with X, P, and J. There exists a unique positive repre-
sentation U the mass operator of which is M and that sat-
isfies

III. A KINEMATICAL TRANSFORMATION

Let us consider a tensor product H = j~zHj of Hilbert
spaces and let any Hj carry two concentric representations
Uj and Uj of H: Uj —Uj. Since the relation —involves
the position operator, which is a nonlinear function of the
Poincare generators [see (2.4)], we cannot expect the ten-
sor Products j&JUj and (sj&JUj to be concentric rePre-
sentations. The aim of this section is to construct a uni-
tary transformation F that achieves

FgJ~JU~F -gJ~JUj—1 (3.1)

This transformation is a cornerstone in the construction to
be described in the next section.

It may be useful first to give an outline of the pro-
cedure. For every jEJ, we choose a barycentric factoring

Hj H&"L (R )—— (3.2)

with respect to Uj and, because of Uj —Uj, also with
respect to Uj. Then, the internal mass operators MJ'" and
M j", and the internal SU(2) representations Uj"= U j" act-
ing on HJ" are determined as discussed in the last section.
Further, we choose a tensor product of the internal spaces

H, =g j~JH,'". (3.3)

Then, we construct unitary mappings W and W from H
into a common Hilbert space of H~-valued wave functions
such that

8 j+J Uj 8' ' —8'(3j+J Uj (3.4)

E= W 'W is then the desired solution of (3.1). Whereas
W and W depend also on the choices (3.2) and (3.3), F de-
Pends only on the objects Sj~JHj ( Uj )j +J and ( Uj )j +J.
For all Uj being irreducible and of the form (2.2), the
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transformation W is given in Ref. 13. The generalization
to reducible representations is straightforward when these
are decomposed into irreducibles. However, it is not trivi-
al to show that W is independent of the particular decom-
position chosen. This independence is proved rigorously
in Ref. 10 using the formalism of direct integrals. In this
paper the matter will be treated on a purely calculational
level using Dirac notation.

Let us now describe the construction of the 8"s. It suf-
fices to consider W, since dropping the tilde everywhere
will yield the construction of 8', objects introduced
without a tilde are a priori common to both cases. We
choose a system QJ of internal observables that, together
with Pj, forms a complete system of commuting observ-
ables in Hj. Further we require that Mj is a function, say

Pj, of Qj (a simple but unnecessarily restrictive way to as-
sure this is to choose Mj as a member of Qj). Any opera-
tor A HQz is of the form A'"(3) I with respect to the tensor
product Hj Hj"L ——(R ) and the operators A'" form a
complete set of commuting observables Q j" in Hj". Let
Xj be the common spectrum of Q j" and let

~
coj ), cd H Xj,

be a basis of generalized eigenvectors:

f(&j")
~ ~j ) =f(co, )

~
coj )

for all roj EXj and all Borel functions f: Xj~C. In par-
ticular,

M j"
~ ~j & =j j(~j) I ~j & . (3.5)

0=(coj
~

[Mj",Uj"(R)]
~

co j )

=[P,(~, ) P, (6,—')](.~j [
Uj"(R)

f co,') . (3.8)

A common basis of generalized eigenvectors of QJ and PJ
is now given by

~~j pj&= ~~j&
~ pj & .

The representation UJ can be written in the form

(3.9)

Orthogonality and completeness of the
~
roj ) are expressed

by

f I ~j &d~j &~j l

= jL

where dcoj denotes the volume element of a measure on
the spectrum XJ and the 5 function refers to integration
with respect to dcoj'

f(coj)= f dc@ j5(coj,co j)f(coj) . (3.7)

Since U~" commutes with M J", we have

(coj, pj ~
Uj(a,A)g) =e '[(A 'pj) /p j]' f d~oj(roj Uj"(R(pj,A)) coj )( roj, A 'p,

~ g),
where pj

——([pj(coj) +pj ]', pj). We are now in the position to write the defining formula for W:

(3.10)

r

H, L' &' 'XR', 5 gj k, + jdk jdp, H„JCJ

( Wg)( ( kj )j +j p ) = f ( m /p ') '~' +,de, (p j'/k, )
' ~'3, Uj"(R(p, ,A (p ) )

' )
~
ro, ) ( ( co,. ),&I, ( p, ),~J ~ g ) (3.1 1)

where

rC'"= I(kj),~,CR"
~ gj k, =0I (3.12)

and where the quantities I, p, pj, kz on the right-hand
side (RHS) are given by (kj ) and p on the left-hand side
(LHS) and the integration variables coj through the follow-
ing chain of formulas:

k j = [PJ(coJ ) + k ]'

m=+.k j',J

so that p is the total momentum of the system and nz is its
mass. Hence, A (p )

' is the boost that transforms to the
rest frame. In the course of showing that W has the
desired properties, the reasons for the particular form of
W will become clear. For a connection to the theory of
induced representations see Ref. 13. The numerical factor
(m/p )ff .(p jlk j) is chosen such that W is isometric.
That W is bijective is easily seen from the fact that the
transformation

K' 'XR ~R, ((kj),p)~(pj)

p((m2+p2)1/2p)
(3.13) [for fixed pj(cd)] is bijective. The inverse transformation

is given by the following chain of formulas:

pj =A(p)kj =A (p)(k jo, kj ) .

These relations express a simple kinematical situation. In-
terpret the pj as four-momenta of free classical particles,
the mass of particle j being Pj(coj); then the kj are the
momenta of the particles relative to the rest frame of the
particle system. In fact, we have, due to g.kj =0,j J 7

gjpj =A(p)(gjk j,gjkj ) =A(p)(m, 0)=p,

pj Ipj (~=J ) + pj ] ~ p=g~pj ~

kj =A(p) 'pj, p = p, kj =kj .

Thus, 8' is unitary. Let us now show that the definition
(3.11) does not depend on the basis chosen. For notational
convenience, we consider the definition of W instead of
W. We choose a new basis

~ gj) (associated with a new
complete set of commuting observables). Then we have
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and

Mji
I coJ ) =JJj(coi )

I coJ )

M, I g, ) v(rJJ)
I gJ),

From

I~i&= f dvJ I nJ &&nJ I
~ & .

(3.14)

(3.15)

(7)j I MJ I coj ) =JJj(coJ )(7IJ I coJ )

=vi( JJ')&'Ii I~i &

we conclude

[,(g, ) —pj( j)](gjI,. ) =o .

Introducing (3.15) in (3.11) we obtain

(3.16)

(Wp)((k ), p)= f ( /p )' g d d.rj d.q,'(p lk )' (g. I,)(, Irj,')((rj'), (p )
I g)

XJUJ'"(R(pJ, A(p)) ')
I gj) .

The factors (rjj I coJ ), together with (3.16), imply that the integrand vanishes at all points at which pj(coj ) differs from
vJ(gj). Thus, we may replace pj(cdj) by vj(gj). Therefore, the quantities m, p, pJ, and kJ, that depend via (3.13) on

(kJ ), p, and (pj(cdj )) may be considered to depend on (gj ) rather than on (coJ ). Looking at the expressions this way, coJ
occurs only in f dcoJ

I
coJ )(coJ

I
and we can perform these integrations using the first equation of (3.6) so that we have

(Wy)((kj), p)= f (m/p )'J /jdrJJdgj(pJ lkJ )' '(gJ
I gj )((qj )(pj) I y)

XJUJ'"(R(pj, A(p)) ')
I gJ. ) .

Performing the vj integration we obtain

f (mlp')' '+id'(p, '/k, ')' 'e, U,'"(R(p, ,A(p)) ')
I qj)((gj), (pj) I f),

as it should be.
Let us now consider the transformed representation

U':—8'(3)J UJ8

We will see that

(3.17)

(U'(a, A)f)((kj), p)= f (+jdcdj)e"'&[(A 'p) /p ]' JU (JR(p,A))
I coJ)((coJ) I g((R(p, A) 'kJ), A 'p)) . (3.18)

We have

(We U(a, A)f)((k. j),p)= f (mlp )' '+,dcdj(pJ/kio)' . 'JUJ'"(R(pJ, A(p)) ') Ico, )e ' J+j[(A 'pJ) /p, .]'J

X f dco,'(coJ
I

UJ"(R(pJ,A))
I
cdj)((cdj), A 'p;)

I
Q)= ' '

Owing to the factors (coJ I
UJ"(R(pJ,A ) )

I

co J ), Eq. (3.8) allows us to replace JTJ(cdj) by JTJ(co J ). Hence, coJ effectively ap-
pears only in f dcoj

I
coJ ) (coJ I

and these integrations can be carried out to yield (after changing the name of the rernain-

ing integration variables from co J to
coJ )

= f (mlp )' e"~g.dco. [(A 'p ) /k ]'Jj J J J

On the other hand we have

xJU, '"[R(pJ,A(p)) 'R(p, ,A)]
I cdj)((coj),(A 'pj ) I 1(). (3.19)

(U'(a, A)WQ)((kj), p)= f + dcdje'~'[(A 'p) /p ]'J JUJ'"(R(p, A)) IcoJ)((coJ) I(WQ)((R(p, A) 'kJ), A 'p))

= f (Q d, d ') ' '[(A '
) l ]' ', U,'"(R(,A)) I, )

where the quantities with carets are formed from (R(p,A) 'kJ), A 'p, and (co J ) by the same formulas as the quantities
with tildes from (kJ ), p, and (coJ ) [see (3.13)]. The comment interrupting the last calculation applies verbatim and yields

= f(Q dcd, )e' '[(A 'p)'/p ]'J (mlpo)'J2ffj(p, ./k, )'J'JUJ'"(R(p, A)R(pJ A(p)) ') Icdj)((coj),(pj) I
p)=

Since [R(p,A) 'kJ] =kJ, we have k J ——k J, hence m =m and p=A 'p. Further we have
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pj =A(p)kJ ——A(A 'p)R(p, A) 'kJ ——A(A 'p)[A(p) 'AA(A 'p)] '=A 'A(p)k~ =A 'pJ

. = f (+JdcoJ)e'"'(m/p )'~ IIJ[(A 'pJ) /k Jo]'

&&g, U,'"(R(p,A)R(A 'p, A(A p)) ) ~aiJ)&(~J), A p, ~p) . (3.20)

Thus, (3.19) and (3.20) are equal if for all jH J
R(pJ,A(p)) 'R(pJ, A ) =R(p,A )R(A 'pJ, A(A 'p))

which is in fact correct [see (Al)]. Thus, (3.18) is estab-
lished. We now compare U' with U'. Let (a,A) belong
to the Euclidean subgroup 8'. Then we have

R (p,A ) =A =R (pJ,A ), e'~'= e

Therefore, no tilde appears on the RHS of (3.18), implying
U'(g)=U'(g) for all g&8'. Further, we easily deduce
from (3.18) that the Newton-Wigner position operator of
U' is iB/Bp. Again, no tilde is involved, so that the

I

Newton-Wigner operators coincide for U ' and O'. Thus,
(3.4) is shown. Moreover, we see that the canonical tensor
factoring

L (K' 'XR H )=L (K' 'H )eL (R )

is a barycentric factoring for both U' and U'. What
remains to be shown is that 8' '8' does not depend on
the barycentric factorings chosen in the construction.
Choosing other barycentric factorings and another tensor
product H, of internal spaces determines a unitary
transformation V: H, ~H, such that for the correspond-
ing transformation

Ve I L (K' 'XR,H, )~L (K' 'XR,H, )

we have W=(VCII)W, W=(VX)W. Thus, in forming
F, the factor Vcancels out.

Finally, we should write the complete formula for F:

F= f g dcozdcoJd. kz

dpi'

QJkJ (mp /mp )' + (p Jkj /pj k., )'

X &~J (
UJ'"(R(pJ, A(p))R(pJ, A(p)) ')

~
~J) ~(~J),(pJ)&&(~J),(pJ) ~

. (3.21)

This is easily verified by showing that this formula im-
plies

Then the unitary transformation V,

V: JEJHJ~ JcJHJ ~ V JEJ Pj = JEJVJWJ

Having given the construction of F, we will study the
dependence of F on the input data of the construction, i.e.,
we consider F as a function. The input data are (a) a fam-
ily (HJ )J~J of Hilbert spaces and a tensor product
JE~HJ of these spaces (note that specifying a tensor
product does not mean only to specify the Hilbert space
~~JHJ but also how to form products &~JPJ for
fJHHJ), and (b) two concentric families (UJ)JEJ and
(UJ )J~J of positive representations of H defined on the
Hz's. Therefore, we write

J )JE~'( J )I E~' J'E~ J

By (W 'W) '= W 'Wwe have

F(( UJ )J ~J, ( UJ )1~J,S1~JHJ )

(3.22)

=F((UJ)J~J, (UJ)J~J, J~~HJ) ' . (3.23)

Hence, F=1 if the families ( UJ )J~J and ( UJ )J ~q coincide.
Let ( UJ )JEJ, ( UJ )I~1,@J~JHJ and ( U J )J~g, ( UJ' )~ ~J,
(3)J.&&HJ' be two isomorphic data, which means that there
are unitary transformations Vz. HJ ~Hz such that

VjUJ VJ
' ——UJ- and VjUJ VJ

' ——UJ

satisfies

VF( ( UJ )J~J, ( UJ )J~g, J~gHJ ) V

=F(( UJ )J~J, (UJ' )J~g, SJ~JHj ) . (3.24)

IV. CONSTRUCTION OF THE INTERACTING
REPRESENTATIONS

%'e assume that the one-particle Hilbert spaces HJ,
jH J, are given together with the tensor products
H~ =z~~HJ and Hu~ @~~H (rememb——er the nota-
tion introduced at the beginning of Sec. I) such that the
associative law (1.7) is satisfied. In the sequel we will be
concerned with constructing positive representations U,
where the positive representations Up (remember

~ p ~

(2)

The possibility of changing the tensor product will not be
used in the following. It is considered here in order to in-
dicate the functorial nature of F. Equation (3.24) follows
from the basis independence of the construction because
expressing the LHS with respect to bases ~cd, pJ) and

~cd, pJ) [see (3.21)] and the RHS with respect to the
bases 1 VJ

~
coJ, pj ), J VJ coj, pJ) results in identical ex-

pressions.
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U~ =ae~Ua (4.1)

The representations UI; J~, which describe the inter™
action between pairs, may, for instance, be of the
form U(; J» =BT(MJ U;s UJ ), where MJ ——M(U~S Uz)
+u,z( ~

R; —RJ
~

) and where the operator R; (Ref. 13) de-
scribes the position of particle i relative to the center of
mass of the system Ii,j J». That MJ be self-adjoint and
positive poses rather weak conditions on the potential
functions U,J. This construction guarantees

UI; J I
—U; UJ ——U~ I; J I

(4.2)

and it is only this property of U(; J» that will be needed in
the sequel. This property implies no restriction; any mass
spectrum and any scattering matrix that result from any
relativistic two-particle theory can also be produced by
one that satisfies (4.2).

Let us introduce the construction of the many-particle
representations for a four-particle system, because this is
the simplest case that shows all features of the general
one. The general n-particle system will then be treated
more concisely. Let us put J=I1,2, 3,4I. We have to

play the role of an input. Let us fix the convention that
for every operator to be constructed, a lower index indi-
cates both the space on which it acts and the U& out of
which it is constructed. For instance, U~ and Z~ will be
defined on H and HU~, respectively, and will be con-
structed out of (U~)zL and (Uz)zL-U~. Therefore, U
should, properly, not be considered a fixed representation
but a representation-valued function of the variables Uz,
pCa. This point of view is essential for the algebraic
cluster separability to make sense, as is clear from Sec. I.
Representations belonging to disjoint subsystems will
often have to be multiplied tensorially. We abbreviate

construct the representations U(;J k» and U(12 34» ollt of
U(;» and U(; J». The first step is, of course, the construc-
tion of the three-particle representations. Nevertheless, we
turn to the construction of U1234= UI12 3 4I assuming the
U~~k

= U(;i k» to be given. The construction of the latter
representation out of the Uz will then be obvious. It is a
natural idea' to use representations with spectator parti-
cles as the building stones of the construction. Since the
three-particle representations are given, one might think
of using all representations of the form
U)Jk {3UI U

f I I J k I I I ) I UIJk /I which contain one specta-
tor particle. However, trying to satisfy cluster separability
rather inevitably leads to using all representations U~ on
equal footing. In our case, we have the 14 representations

U1/234~ U2/134~ U3/124~ U4/123

U12/34 ~ U13/24 ~ U14/23

U12/3/4~ U13/2/4~ U14/2/3 ~ U23/1/4 ~ U24/1/3 ~ U34/1/2

U1/2/3/4

(4.3)

E ' = T1 +T2+ T3 +T4+ V]3+ V24

E1/2/3/4+ V + V

Can the total Hamiltonian

(4.4)

E X, .TJ+—X, .~p

be written as a linear combination of the E, where W
ranges over the 14 proper partitions of I 1,2,3,41'? Indeed,

In the nonrelativistic system of Sec. I, to any representa-
tion U~ there corresponds the representation Uz in
(1.12). The Hamiltonian E of this representation con-
tains only potentials for those pairs p that are not separat-
ed by W. For instance,

E1/234+ E2/134+ E3/124+ E4/123 +E12/34+ E13/24+ E 14/23

2(E12/3/4+ / 13/2/4+ / 14/2/3+ / 23/1/4+ E24/1/3 +E34/1/2) +6/ 1/2l3 l4 (4.6)

E1/234 ~ 1/2/34+ ~ 1/3/24+ E1/4/23 2~ 1/2/3/4 (4.7)

The intention is now to combine the mass operators of the
representations (4.3) in a similar way as the Hamiltonians
are combined in (4.6). The linear combinations occurring
in (4.6) and (4.7) are studied for arbitrary finite J in Ap-
pendix B. With the notion of a cluster sum g', intro-
duced there, we write (4.6) and (4.7) as

XJ P' X1/234 5 (4.g)

It should be noted that the cluster sum, unlike the usual
sum, depends not only on the terms in the sum but also on
how they are indexed by partitions. The ansatz

One easily checks that in this linear combination each TJ
is multiplied by 4+ 3 —2)& 6+6= 1 and each V by
3—2=1, which shows that (4.6) is true. In a similar way
we can express any E as a linear combination of Hamil-
tonians that belong to partitions finer than W. For in-
stance,

M( U1234) +1234 (4.9)

now looks natural, not only from the analogy used above,
but also with respect to the nonrelativistic limit. It is,
however, insufficient for the following reason: The only
way at our disposal to form a representation of H out of
its mass operator M is the Bakamjian-Thomas-Foldy con-
struction (2.10). In this method we need an auxiliary rep-
resentation (the second argument of the function BT)
from which the operators P, J, and X have to be taken
and to which the new representation is concentric. Since
any asymmetry in handling the particles would cause seri-
ous difficulties, this auxiliary representation has to be the
free one U1(3 U2{3U3@U4 ——U,J. Hence, only the mass
operators of representations that are concentric to U, z can
easily be combined to yield a new representation, and the
latter will also be concentric to U~ J. At this point,
Sokolov's idea of packing operators' comes into play. In
the present setting these are unitary operators Z~ that
achieve
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M a EW Ua ZM a EM( jEa Ul )
—1 (4.10) Y~=F((Z U Z ') ~~, (U~ ) ~~, ~~H ) (4.19)

One easily deduces from Theorem 1 in Ref. 13 that the
only theory satisfying both (4.10) with Z~ ——I and cluster
separability is the free one. Hence, we cannot avoid intro-
during the packing operators. If these operators are
known, we define U~z34 by

is a solution of (4.18). Since F will always occur in the
form that the second and third argument is determined by
the first one, we will write only the first argument. More
precisely, let (U~) ~~ be any family satisfying U —U~;
then we put

ZgM(UJ)Zg ' =—g' Z~M(U~)Z~
J~W

Uq =Zg 'BT(ZJM( UJ )ZJ ', 8)~g UJ )Zg,

(4.11)

(4.12)

F{(U ) ~~):F((—U~)~~~, (U,~)~~~, I8 ~~H ) . (4.20)

In order to find the most general solution of (4.18), we in-
troduce a further auxiliary operator E~ through

thus modifying the ansatz (4.9) by the packing operators.
Let us now study how the packing operators Z~ can be

determined. As for the U, the procedure will be in steps
that increase the number of particles by one. By (4.2), the
starting definition

Z~—:I if
~

UM~ &2 (4.13)

=ye~a ~Uy = U~r ~ (4.15)

The defining property (4.10) for Z~ implies
Z~U~Z~ —U, ~. Hence, Z~Z~&~ has to corn-—1

mute with P, J, and X of the free representation U, ~. It
will turn out that the simplest way of assuring this is in
fact possible:

satisfies (4.10). How to proceed to larger W is suggested

by considering cluster separation. Let us write U~ and.
Z~ for the objects constructed with the input ( Uz )z~ U~
instead of ( Uz)zL-~, where

Up =Upp~ . (4.14)

Cluster separability is satisfied if and only if U = U~z~
for every a and W. Owing to (1.7), this is equivalent to

U~ = e~Ua =ac~ pe ~~Up

E~ = Y~F((Z~ U~Z ') ~~)
=Z~g ~~Z~ 'F((Z U~Z ')~~~) ' . (4.21)

One easily sees that (4.10) is satisfied if and only if

E~ commutes with P, J, and X of U, ~ . (4.22)

Let us now look for the consequences of (4.16) on Y~ and

Y~ =—Zw ~w(Z )

—1Wh&a&& ah&
—1 —1ZMAMaeMpeah&Zp ~aRp'

—1 —I=ZM A P' y G M h WZy a EM ~a A W

—1= +MAP'aEM+ah& (4.23)

For a long time, I tried to show that this equation is satis-
fied for the particular solution (4.19). Finally it turned
out that for

~

U M
~

=4 this is generally only the case in a
free theory. Hence, one has to expect E~&jl whenever

~

UM
~

)4. (For
~

UM &3 one finds E~ ——I; this is
the most important simplification occurring for three-
particle systems. ) As a consequence of (4.23), we find for

ZM =Z&h& (4.16) —1ZMAW'saEMZah&

Y~ —=Z~a~~Za
satlsf1es

Yws ~w(Z~U Z~ ')Y~ '-~~~U, ~ .

(4.17)

(4.18)

It is for analyzing this equation that the kinematical
transformation I' in Sec. III was introduced. Remember-
ing Z U Z ' —U~ (by assumption, because

~

a
~

&3)
we see that

We now assume that Z~ and U~ are already constructed
for

~

UW
~

&3 such that (4.10), (4.13), (4.15), and (4.16)
are satisfied. We then have to construct Z~ for

~

U M
~

=4. Let us first consider the case
~

W
~

)2. Ob-
viously, Z~ satisfies (4.10) if and only if the auxiliary
operator

XF((Z r, ~U z~Z ~~ ') ~~) (4.24)

This relation is easily fulfilled with the help of the cluster
product introduced in Appendix B. We put

~e

where E~ is defined for any A with U A C: U M by Eq.
{4.24) with W replaced by A. Looking at InE~ as a
function of W, we see that (4.25) means that the W-
connected part of this function vanishes. Since it is only
the W-connected part that cannot be determined by recur-
sion relations, (4.25) is a natural definition. If every E~
on the RHS of (4.25) satisfies (4.22) the same is true for
E~ as a consequence of (4.25). An analogous statement
would not hold for the definition Y~= +~ Y~ and
Eq. (4.18). Combining (4.25), (4.24), and (4.21) we have

g' Z+~g~Za~~ 'F((Z~~~ Un~~Zn»
M)A

(4.26)

Besides the quantities Z ~~, U z , Z, and U, which are known from the three-particle system, there appear the
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with A & M. Applying (4.26) to them, we express them by Z@ with K & A, and so on. Finally Z~ is expressed by
known quantities and by Z~~. We put

Z~~ =I,
which satisfies (4.10). Finally, we define Z/ in close analogy to (4.9) as

Z, =II z
J)A

Then, (4.11) and (4.12) yield the definition of U/ ——U1234.
It might be instructive to spell out these definitions: Let the representations U; and Utj be given. Then we put

Uk U /j/k = UI Uj
—1

Zij /k =F( Uij, Uk ) & Uij /k =Zij /k Uij/k Zij /k

zijk =exp( lnztj/k + lnzik/J + l~jk/t )

Ujk =Ztjk 'BT(M(Utj/k)+M(Utk/j)+M(Ujk/;) —2M(Ui/i/k), Ut/j/k)ZP, &

Z /j/k/t .=I Z~j/k/t =F(—Uj, Uk*Ut)

Ztj/kt
= (exp I ln[F( Utj & Uk, Ut )F( Utj & Uk/t ) ]+ ln[F( Ukt, Ui, Uj )F( Ukt &

U /j ) '] I )F( Utj, Ukt ),
Z jk/t —= (expI ln[Z j/k/tztj/k 'F( Uj/k, Ut ) ']+ln[Z&k/t/tzjk/; 'F( Ujk/;, 1 ) ']

+ln[Zk;/ /tZk;/ '.F( Uk;/, Ut) ']I )F(U; k, Ut)Z k,
Z 1234 =—exp( Inzi n34+ inz2/134+ lnz3/124+ lnz4/12'+ lnz12/34+ inz13/24+ inz14/2i

—2 lnZ, 2/3/4 —2 lnZ13/q/q —2 lnZ 1q/i/3 —2 lnZ23/1/4 —2 lnZ p4/1/3 —2 lnZ34/1/2 ),
—1

Uij /kl =Zij/kl Upj UklZ&j

—1
Ui/jkl =Zi/jkl Ui 3 UjklZi/jkl

—1
Ui /j /kl ZI'/j/kl Ui 3 Uj UklZi/j'/kl

U1234=Z1243 BT( M( Ul/234)+M( U2/134)+M( U3/124)+M( U4/123)+M( U12/34)+M( U13/24)

+M( U14/P3 ) —2M( Uig/3/4 ) —2M( U13/2/4) —2M( U14/2/i ) —2M( UP3/1/4 )

—2M( U24/1/i ) —2M( U34/1/z ) +6M( U1/i/3/4. ) & Ul/2/3/g )Z1y34 .
I

(4.27)

(4.28)

(4.29)

Cluster separability will be shown in the general case.
Nevertheless, the reader is invited to verify cluster separa-
bility for a particular P' by direct calculation. Taking,
for instance, W = 12/34, one has to show that

Uj ——U; Uj

unless Iij J
= I1,2I or I3,4IimpliesU1234 U12/34

Let us now describe and study the construction for an
arbitrary finite number of particles. Our starting position
is that described at the beginning of this section. Let us
call a pair of families,

((yW)W' C,5 AW' (4.32)

Thus, the commutative monoid of partitions (with &A, as
the composition and I JI as the unit element) acts on the
set of (J,p ) systems. Note that the action of W intro-
duced after Eq. (4.13) conceptually coincides with the
present one only for ~p ~

&2. These concepts coincide
generally if and only if cluster separability holds. It is
convenient to associate with any (J,p) system the auxili-
ary famil'es (Uw)

~
uw~ &p, (U~) lull &p, (Y~

I

ural

&p'
and (E~

I
u~l &p by

U~ =a~~Ua~ U~ =—Z~ U~Z
(4.33)

~&p (ZJ3f)~uw[&p) p& IJI (4.30) Y~ =—Z~a~~za ', E~ —= Y~F(( Ua)a~~)

a (J,p) system if every U is a positive representation of
H (on M ) and every Z~ is a unitary operator (on IIu~)
such that (4.10) is satisfied. For any partition W of J we
easily verify that

[See (4.20).] The corresponding objects of the system +
are easily seen to be given by

Uw = UwRW

MAP'ad& aRP'
=—((U )( ((p, (Z~)(u~~ (p), (4.31)

where Ua =UaA~=p~aA~Up and Z~=—Z~A~ is a
(J,p) system too. Obviously, we have

—1=&~A~aC ~&a A~

ZWAP''3aEWZaAP' F(( UaAM )ad&')
—1

(4.34)
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If we replace W by any A satisfying U A D UM, these
equations may be used to define the objects U~, U~,
I'~, and E~. Equations (4.11), (4.28), and (4.25) can then
be written in a unified form:

M(U. )= g'M(U. ),
a&A

~e ZA
a&A

Let us call an equation relating the objects of a (J,p) sys-
tem N partition covariant if its validity for 4& implies its
validity for N . Then, the equations (4.35) are partition
covariant. Actually, partition covariance was the guiding

principle for their invention. A (J,p) system satisfying
(4.35) will be called recursiue because we have seen previ-
ously that these equations enable us to construct the quan-
tities of subsystems out of those of subsystems with a
smaller number of particles. Hence, there is exactly one
recursive (J,p+1) system N that extends N in the sense
that U~ ——U~ and Z~ ——Z~ whenever

i
UW

i
(p. The

defining equations for @ are the following: For any M
satisfying

i
U W

i
=p+1 and

i
W

~

&2 we put

U~=— e~U.
For each M such that

i
M

i
=@+.1 we put

Now assume Z~ to be known whenever
~

A
i

&n &2.
Then for M such that

~

M
i
=n we put

Z~n~~Z~~~ F«Zar, ~U~r, ~Z~n~ )~E~) F((ZaUaZa )aE~)ae~Za

where thy objects on the RHS either belong to N or are
Z~'s with

i
A

i
&n Fin.ally, we know all Z~'s such

that
i
~

~

&2. F«each ~ such that
i
~

i
=@+I we p«

a&9

U:—Z~ 'BT g' Z~M( U~ )Z~ ', U„Z
a&A

In order to show that this procedure defines in fact a
(J,@+1) system, we have to prove

With the help of the statement including (4.22), this is
easily done by induction with respect to

i

M
i

in the same
direction used in the construction of Z~. Let the con-
struction start with a (J,2) system @2. Then the objects of
the (J,

i
J

i
) system arising by successive extension of C&z

depend as functions on +2.

Cluster separability means for all partitions W

Z~=Z~r, ~=Z~(C'z )

This is in fact satisfied because in constructing the
(J,

~

J
i

) system we used only partition-covariant equa-
tions, so that the process of extending a (J,p ) system com-
mutes with the action of partitions:

Finally, one easily shows that the (J
i
J

i
) system satisfies

U~(g)=U, ~(g) for all g E8'.
Concluding this section, let us reflect once more on

what we have done. The representation Uz that results
from the construction described above determines the
Hamiltonian Pz of the system J via (2.1). Since the indi-

vidual particle observables XJ, PJ, and SJ [see (2.4)] that
are determined by the free representation (3)&~J UJ form an
irreducible set of operators, PJ is a function of these
operators (more precisely, any bounded function of Pz be-
longs to the von Neumann algebra generated by these
operators). Therefore, we are within the conventional
scheme of Hamiltonian quantum mechanics where the
Hamiltonian is a Hermitian operator (on a Hilbert space
with positive-definite metric) that is a function of a speci-
fied finite set of dynamical variables. The function
representing the Hamiltonian. is rather complicated, so
that only approximations of it may actually be written.
The principles of relativity by themselves would not en-
force such a complicated structure, but cluster separability
does.
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APPENDIX A: THE POINCARE GROUP

In order to avoid the use of projective representations in
describing rdativistic invariance, we always work with the
quantum-mechanical Poincare group in the sense of
signer. This group, denoted by H, is the topological
space R )&SL(2,C) together with the law of multiplica-
tion

(a,A )(a',A') =(a+Aa', AA '),
where the matrix group SL(2,C) acts (by definition) on
four-vectors as follows:

(Ax)"= —, tro„Ax "cr„A+, p, C I0, 1,2, 3I
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A(p) 'p=(m, 0), A(p) '=A(p, —p),
A(p}=A(w), where w=—p/m,
A(p) 'x={w x, x —x w+(1+w ) 'w. xw) .

For all pH V+ and A HSL(2, C) the Wigner rotation
R (p,A ) H SU(2) is defined by

R(p, A )—:A(p) 'AA(A 'p) .

For all A, A '& SL(2,C), B&SU(2), and p, q E V+ we have

R(p, A )R(A 'p, A') =R(p,AA'),

R(p, A ) '=R(A 'p, A '),
R(p,AB) =R(p,A )B,
R (p, 1)=R (p,A (p) }= 1,
R(p,B)=B,

(Al)

R(A p,A(A q)}=R(p,A) 'R(p, A(q))R(q, A) .

where oo is the unit element in SL(2,C) and a'=(oi, o2, o3}
is the triplet of Pauli matrices. For any

p«+ —=tp«'lp'&o p p=po' —5'&(}j
we define the positive Hermitian matrix A (p) by

(m+p )oo+p. o.
A(p) —= 0,&z

e——xp(Xn cr/2),
[2m(m+p )]'~

where m:—(p.p)', n = p/
~ p ~, and X= arctanh

~ p ~
/p

=arcsinh
~ p ~

/m. The essential properties of A(p) are

tion. That (82) implies (B3) and vice versa is shown by
the following.

Theorem IMobius transform on H (J)J. Let
g: ~ (J)X H (J)~Z ( = set of integers) be a function such
that

g(M, M) =1 and g(M, A ) =0 unless W )3F .

Then the following statements are equivalent.

(1) For any function f defined on H(J) with values in
an Abelian group one has

g(W, A )f(A h Ã) =0 unless X & M . (B4)

(2) The relation (B4) is valid for some function f as in
(1) having the property that g~c~f(M)=0, c~&Z,
implies c~ ——0.

(3) Q Ig(W, AF)
~

3P HH(J), 3F h K=Wj =0,

(4} g~, ~ gg(~, )=&~~
(5) The H (J)X ~ (J) matrix A,

1 for M) A',
0 otherwise,

is invertible and we have (A ')~~ =g(W, A ).
(6) For M) A, g(M, A ) is given by (B2).

This theorem shows that any transformation of the form

f~f, f(W)= g f(A)= QA~ssf(3F)

g(~, ) —=11.~~p( ~

a h A
~
),

p(n)—:( —1)" '(n —I )! .
(82)

For instance, g(1234/5, 12/3/4/5) =p(3)p(1)=2. The
coefficients g are fixed by (B2) just in such a way that

g"f(A h K ) =f(W h Ã ) unless Ã & M . (B3)

This property implies the partition covariance of Eqs.
(4.35) and, therefore, plays a decisive role in our construc-

APPENDIX B: CLUSTER SUMS
AND CLUSTER PRODUCTS

In this section, H(J) denotes the set of all partitions of
the finite set J, and M, A, K, &, and ~ denote elements
of H(J). In statements that contain W, A, . . . freely, a
quantor VM, A, . . . H H(J) is understood.

Let f be a function on H(J) with values in an arbitrary
Abelian group. Then we define the "algebraic-cluster
sum" g" by

g- f(~)—= g —g(~, ~)f(~)
—:g I

—g( M, A )f( A )
~

A E 9' (J),M ) 9F j,
(B1)

where

may be inverted by

f(W)= g g(M, A)f(A) .

This justifies the name Mobius transform. It should be
noted that (B4) is a transcription of (B3), using
g(M, W)=1. Before we come to the proof of this
theorem, let us consider a motivation for (Bl). To a quan-
tity being described by a function as in (1) one wishes to
associate a function f' such that f'(M) is intuitively the
M-connected part of this quantity. As an example we
consider f(M) = sum over all graphs (for instance, in the
free Abelian group generated by all graphs) with vertices
in J and lines that do not join points belonging to different
M clusters. Then f'(W) should be the sum over all those
graphs for which any two points ij of every W cluster a
can be connected by lines of the graph. Let us now con-
sider the action of the monoid H(J) on functions:

(f )(~)=f(~h~) (f ) =f
Then an obvious condition on the c operation is

(f5)Q(~)(f')(M) if
0 otherwise,

which means that the connectivity of f is never higher
than W. If we further assume that the c operation is of
the form
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f'(W)= g h(W, A)f(9F),

where the coefficients are integers satisfying h (M, ~)= 1,
then the theorem tells us

f(~)=f'(~)+ g" f( )

and

f(W) = g f'(A ) (cluster expansion) .

Proof of the theorem.
(1)-- -- (2) =- - (3):This results easily from the equation

g(M, A)f(A hÃ)

unless K )W. This argument is taken from Eq. (6.20) in
Ref. 9. The proof in Ref. 10 makes use of the free Abeli-
an group generated by the graphs in J.

Now let (8'~)~~~&J~ be a family of unitary operators
on a Hilbert space H. We define 1nR'~ ——i argkV~ in the
sense of the functional calculus of normal operators,
where

arg: IcoeC
~ ~

m
~

=1]~(—~, +~],
( —m. &y&m. ) .

Since the operators arg W~ are bounded (( ~arg &&
~ ~

&~)
and self-adjoint, the definition

f(~) Q g(M, A) if W) 4 . g' Wet =exp i g" argW&

(3}==(4}:Put C=& in (3).

(4) -- -- (5): Defining a H(J) X H(J) matrix B by
B~ee=g(M, 8P), we see that (4) is equivalent to BA =1.
For the invertability of A see, for instance, Theorem 3 in
Ref. 7.

(5) -- -- (6): See Theorem 3.1 in Ref. 8.
(5) (1):This results from the equation

g(M, AP)f(3F A K)

makes sense and yields a unitary operator. A bounded
operator that commutes with all 8'~, A & M, obviously
commutes also with fJ~ 8'~. Further the construc-
tion commutes with unitary transformations:

U Q' Wet U '= Q' US'st U

g(~ ~)&etr e,~f(~)

g(M, A )A st q @ ~g(&,W)f(W)

g(M, A)Aet ~Agog(W, W}f(P )

= g 5~~A@ ~g(W, W}f(~ )

= gAg ~g(M, P )f(W)=0

We have for M h Ã &W (i.e., unless Ã )W)

~~ p, g =exp & g arg~u p, @

=exp(i arg W~~@)

(&5)

Instead of the function arg and its inverse exp(i ), Coester
and Polyzou use the bijective function

Caley: {coEC
~ ~

co
~

=1I—+( —oo, + oo], co~tan( —, argco) [=i(1—co)(1+co) ' if co& —1]

and its inverse. Then, however, g~ ~ Caley(W~) is a
sum of unbounded operators, which is not necessarily
self-adjoint, so that the unitarity of Q~ ~ W~ is not
obvious. If we would define the sum (4.11) of mass opera-
tors via (Bl) [as it was done, for the sake of simplicity, in
(4.29)] we would have a similar problem. This difficulty
can be avoided by regularizing. Comments on this
method are given in Sec. I. %'e choose a large cutoff mass
m, (e.g., m, =10 max{mz

~
jH J], a small positive auxili-

ary mass mo (e.g. , mo ——10 min{mj
~
jH J] ), and a bijec-

tive function

&: (0, oo)-+(O, m, )

such that A,(x)=x for x «m, . For instance,

=2 7TX
A, (x)=—m, arctan

7T 2mc

Further, we choose a function

p: ( —oo, + oo)~(0, oo) such that p, (A,(x))=x
for all x H (0, oo ). For instance,

p(y)= X
—'( [y [ ) for 0& )y I &m„

mo for y =0.

Now let (A~)~~~~+~ be a family of strictly positive
operators on H. Then we put
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g' A ~ =p g" A (A ~ )

We easily see that this is again a strictly positive operator.
For any unitary operator U in H we have

Further, g~ A~ commutes with all those bounded

operators that commute with all A~'s. Finally, we have
for MhÃ (M
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