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Is the usual notion of time evolution adequate for quantum-mechanical systems? I
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Circumstances are described wherein no state at a given time (nor any definite evolution from one
time to another) can be ascribed to a given physical system, but wherein the system can nonetheless
be associated with definite dispersion-free values of a new sort of observable, which we call a
“multiple-time” observable. The description of physical systems in terms of these new observables
is discussed. It emerges as a by-product of our work that no experiment whatever (albeit that its re-
sult is certain) can be carried out on a system without disturbing the values of other measurable

quantities.

I. INTRODUCTION

This work concerns prediction and retrodiction and
(more importantly) combinations and superpositions of
these, and arose in the context of an undertaking to make
sense of the measurement process in relativistic quantum
theory (wherein the distinction between prediction and re-
trodiction is not, in general, frame invariant; but the de-
tailed relation of this work to that subject will be taken up
in the paper which follows this one!). These considera-
tions, it turns out, afford novel and useful lessons about
the nature of time, and of the description of physical sys-
tems in terms of states, in quantum mechanics. We find
that the language of the dynamical evolution of systems
from one time to another through some definite succes-
sion of physical states is too narrow. Circumstances can
be envisaged (and can, indeed, be prepared by suitable ex-
periments) wherein no quantum state (and consequently
no notion of evolution from one state to another) can be
associated with a system and wherein the system can
nonetheless be associated with definite and dispersion-free
values of various combinations of different observables
measured at various different times (which hereafter we
shall refer to as multiple-time observables).? The values of
these multiple-time observables constitute a description of
the system which is internally complete, and which is
complementary to, and incompatible with, a description in
terms of states. We shall as well describe a new and very
general phenomenon of measurement: No experiment
whatever (albeit that its result is certain) can leave a physi-
cal system undisturbed in any measurable way; no experi-
ment can leave all else that is certain about the system un-
changed.

II. PREDICTION AND RETRODICTION AND
THEIR COMBINATION
AND SUPERPOSITION

Consider, to begin with, prediction and retrodiction in
classical physics. Herein things are comparatively simple:
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The complete specification of the conditions of a closed
physical system at any time (¢o, say) will serve to deter-
mine completely (via the equations of motion) the results
of any measurements on the system carried out at any
times, both before and after ¢,. Measurements other than
the one at ¢y are in a certain sense redundant. Their re-
sults are deducible; they can in principle yield no addition-
al information about the system (nor about its past nor its
future).

The quantum-mechanical situation is different in an
essential way. Suppose, for example, that a particle is
measured to be in the state

la)=[x1)+|x,) (1

(wherein |x;) is the state of a particle localized at the
point x, etc.) at ¢;, and that no information concerning
the results of any other measurements on the system is
given. At ¢, (t; >t;), assuming that the particle is undis-
turbed in the interval t; <t <t;, the measurement of an
observable 4 of which |a) is an eigenstate will yield a de-
finite value, whereas a measurement of the position may
yield either x; or x, (herein we assume that both 4 and X
are constants of the motion; that, for example, there are
small impenetrable boxes at x; and x, wherein the particle
can be confined). Suppose, on the other hand, that we are
now informed that a measurement of the position at time
ty (tp >ty >1;) yields the value x; then it will still be the
case that measurements of 4 will yield a single definite
value, but now it will also be true that any measurement at
t, of X will with certainty yield® X =x,. If (more general-
ly) a system is measured at f; to be in the state |4 =a)
and at Z; to be in the state | B =b ), then the probability
that at ¢; it will be found to be in the state |C=c,)
(where |cy),..., |cm) form a complete basis for the
Hilbert space, and assuming for simplicity that 4, B, and
C are all constants of the motion) is given by*
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Notwithstanding the fact that the state was completely
determined by the measurement at ¢;, then, the measure-
ment at ¢, produces additional information about the sys-
tem at ;.

The results of the measurements at ¢; and ¢, do not here
(as they do in the classical case) determine one another;
therefore each one independently augments our knowledge
of the system at ¢;. This (in the present context, at least)
is the meaning of the uncertainty relations: with each new
measurement we learn quantitatively more of the system.
It is in a certain sense (a limited sense, more of which will
be said later) as if with each new measurement (all of
which are complete, but each of which necessarily occurs
at a different time) we sample another degree of freedom
of the system, of which there are in principle an infinite
supply.

Suppose that at ¢; we measure A (where
A|a)=a|a)), and that at ¢, we measure X
(t; <ty <ty <tg); we will with certainty find both that
A=a and that X =x,;. Suppose (Fig. 1) that we measure
either X at t; or A at t,; we will with certainty find if we
measure X that X =x,;, and if we measure 4 that 4 =a.
If, on the other hand, we measure both X at t| and 4 at t,,
the results of both experiments will be indefinite. This is
an instance of a very general phenomenon (of which men-
tion was made in the Introduction, and which shall as-
sume a role of considerable importance with reference to
relativistic questions): Two measurements on the same
system may each individually be associated with definite
dispersion-free values and may nonetheless be incompati-
ble; for such a system no experiment whatever can verify
all that we know with certainty to be true, nor can any ex-
periment leave all that we know with certainty to be true
undisturbed.

A succession of complete measurements on a system,
then, defines a trajectory for that system, wherein there is
in general more information about the system than is dis-
cernible within a quantum state (more, that is, that can be
discovered by means of any single complete measure-
ment); and it is natural to inquire whether (as with states)
one can meaningfully speak of linear superpositions of
such trajectories. It turns out that this can be done; in
particular, circumstances can arise wherein it becomes

FIG. 1. A is measured at ¢; and ¢,, and x at ¢; and ¢;.

nonsensical to attribute any state to a given system at a
given time, and wherein nonetheless the system is associat-
ed with well-defined dispersion-free values of (for exam-
ple) sums of various different observables at different
times (in much the same way, say, as it is nonsensical to
associate a pair of particles in an eigenstate of the observ-
ables x, —x, and p; +p,, with any product of one-particle
states; nontheless the particles are associated with well-
defined dispersion-free values of x; —x, and p; +p,).

The measurement of such (multiple-time) observables
requires specialized experimental procedures.’> Consider,
to begin with, an experimental device designed to measure
a single-time observable A, as follows: The device in-
teracts with the system to be measured through a term in
the Hamiltonian of the form

Hiy=g(0)gA , 3)

wherein g is some internal variable of the apparatus, and
g(t) is a coupling which is nonzero only during a short in-
terval ) <t <5, when the device is switched on. Then, in
the Heisenberg picture,

-, =84, 4)

where 7 is the momentum canonically conjugate to g, and
so if we consider a short interval (¢, =1;) wherein 4 is ap-
proximately a constant, then we have

m(t <t;)—m(t>1y)
= 7
[ dtg(o

and this is how the device is used to measure A.
Now consider two such devices, which interact with the
system through the Hamiltonian

Hiy=g1(t)q1A+q,(t)g,B . (6)

(5)

Our intent here is to design some combinations of these
devices which will collectively measure 4 +B without
measuring either 4 or B individually. This can be accom-
plished as follows: Imagine that at some time prior to 4,

and f;, we prepare the two devices in an initial state with
the properties
m+m=0, g1—¢,=0. (7)

Then we allow the devices to interact with the sytem.
When the interaction is over, the devices will have mea-
sured 4 (at t; =t ) plus B (at t;, =1y ), that is,

-——[ﬂ'l(tf)-f-ﬂz(tf)]
fdtg(t)

(wherein we have assumed that

Aty )+B(1y))= (8)

tfi tfz
[, drgi(n= [ Targ,(n= [arg) |.
1 )

On the other hand, they will not have measured 4 or B or
A —B. In order to measure, say, A, we need to know
wl(til)—wl(tfl); however, 7; does not commute with
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q1—¢>, and hence is not well defined in the state (7) in
which the devices were initially prepared. No measure-
ment of A has occurred; that is, no information about A
can be discerned from the devices. Similarly,

[72,91 —q2150, [m1—1m2,92—q2]15£0 9)

so no measurement of B nor of 4 — B has occurred either.
Suppose that (by the procedure we have just described) a
measurement of the two-time observable

o, (t;)+ox(ty)=04(t,tf) (10

is carried out on a spin- particle whereby it emerges, say,
that 0, (;,t;)=0 (see Fig. 2). For times ; <t <, the
particle is in no particular quantum state (that is, it can be
associated with no definite values of any complete set of
observables; it is, strictly speaking in a mixture of states,
in what Everett and Wheeler® call a relative state: its state
is correlated to that of the apparatus). Nevertheless it can
be said with certainty of this system that any measure-
ment of, say, 0,(t1,t,) (where t; <t| <t, <ty) will yield
04 (t1,2,)=0 (and the same can be said of each of an in-
finite family of observables of the general form o,
within this interval).

It ought to be born in mind that multiple-time measure-
ments of the sort we have just considered are not collec-
tions of one-time measurements [such as we have treated
in Eq. (2) and what surrounds it], but something altogther
different. A measurement of o, ,(¢,t,) entails neither a
measurement of o, at ¢; nor one of o, at ¢,; indeed, it is
[in the manner of Eq. (9)] incompatible with the latter.

Consider now, more generally, how probabilities associ-l
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ated with given experimental results are to be calculated
under such circumstances. The system is not in any state;
if, then, we are to make calculations involving states we
must enlarge our dynamical system to the point where this
language makes sense: we must, that is, include the
measuring apparatus in that system. States do not afford
here a language (such as exists, via the collapse of the
wave function, for single-time observables) wherein we
need only refer to the system itself in describing the re-
sults of experiments carried out on it. Another language
exists, however; that of paths (in the manner of Feynman),
and this (in the present circumstances) is more powerful;
this affords us what we are seeking.

Suppose that a spin-5 particle is known to be in the
state |0y =7 )= |3 )x at time ¢;, and in the state | 3 ),
at ¢, and that in addition 0,,(#,24)=0. We wish to in-
quire about the probability that a measurement of, say
Oxr (b, 13)(t; <ty <ty <tz <ty <ty) will yield o,,(t5,23)=0
(see Fig. 3). We are instructed by the formalism to sum
the functional exp{iS[path]} over all paths satisfying the
constraints above, to take the absolute square of this sum
(which gives the probability that, given the circumstances
at to, all that is stipulated about the future above will
come to pass), and then to divide this probability by the
sum of those of all possible outcomes of the measurement
at (2,,¢3). Neglecting the interaction of the measuring ap-
paratus with the system (of which we shall speak present-
ly), the sum over all paths in the present case reduces to a
sum over four amplitudes, corresponding to the four
separate trajectories which can contribute to the result
Oy, (t5,t3)=0. These are
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FIG. 2. Two-time measurements are carried out at (¢;,¢7) and
(21,22).

1

-7

2

1
2

!
|
l

1

2>z’
ER

L
2

(11)

z .

[1/72>

C’)-(z(1 '13)¢O o_zx(fl"'4)=O

11/2)

FIG. 3. o, is measured at ¢;, 0, at ts, and two-time measure-
ments are carried out at (¢,24) and (¢,,23).
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The interaction with the measuring apparatus is, on each
of these four trajectories, precisely the same, since each
trajectory interacts throughout with an identical ¢ [in the
manner of Egs. (6) and (7), wherein g, and g, are taken to
be constants of the motion] and the two-time variable of
the system with which g interacts is identical in each case
(each g, that is, interacts by the end of the process with
o, +0,=0). The consequences of the interaction with the
apparatus are therefore the same on each trajectory; the
interaction merely produces an overall phase in the final
amplitude (albeit an uncertain phase); it can, then, for our
purposes, be entirely ignored.

The correct amplitude (up to a phase), then, is the sum
of the four amplitudes, which, as it happens (since the
first and third are negative and the second and fourth are
positive), vanishes. The same result can be obtained
within the language of states, by incorporating the
measuring apparatus into the picture (which is a very
cumbersome procedure); here, however, the language [in
the manner of Eq. (11)] refers exclusively to the spin sys-
tem itself.

So it emerges even in the nonrelativistic theory that the
formalism of paths is broader and more powerful, in this
sense, at least, than that of states. In such circumstances
as we have considered here, no state at a given time, (nor,
therefore, any notion of evolution from one time to anoth-
er) can be associated with the system in question. Furth-
ermore, a description of the system in terms of a density
matrix (as this, too, is a description at a given time) will
predict merely that the one-time observables of the system
are uncertain. Nonetheless, the path formalism applies to
such circumstances in a very natural way, and leads to a
description of such systems in terms of dispersion-free ob-
servables: multiple-time observables. Such a description
can be obtained as well within the conventional formal-
ism, if the described system is enlarged to include the
measuring apparatus. But what we see here (and it is pre-
cisely here that the path language can do more than the
languages of states or statistical density operators) is that
such an enlargement is unnecessary, that the multiple-time
properties are intrinsic properties of the system itself, and
that a language exists wherein they can be described
without reference to the measuring apparatus, albeit this is
impossible within the language of states or density ma-
trices. It may be that some generalized state language is
possible, a language of multiple-time states which are
eigenstates of multiple-time observables, wherein one
might accomplish the same thing; we should like, in the
future, to study this question more deeply.

And here again it emerges that no experiment whatso-
ever can be constructed (albeit its result is certain) which
leaves all else that is with certainty the case unaltered.
Given (as above), for example, that o,(¢;,t)=0, it fol-
lows both that any measurement of o,,(#,,t,) will with
certainty yield zero, and that any measurement of
ox(t3,t4), (i <ty <ty), and (t3<t4<ty), will certainly
yield zero, and nonetheless if both measurements are car-
ried out on the same system, the results of both will be un-
certain.

These considerations stand at present at their extreme
beginnings; let us in closing indicate along what lines they
may be expected to develop. The trajectories in (11), ac-
cording to the familiar manner of Feynman paths, all be-
gin and end with the same single-time states ( | 3 ), and
| 3);, respectively). There is in this formalism, then,
some vestige of the notion of one-time states, and this (in
the present case, at least) can be done away with, as fol-
lows. It turns out (in this instance) that as long as the ini-
tial x spin and the final z spin have the same sign [as they
do in (11)], o4;(2,,t3) cannot vanish. If they have opposite
signs, on the other hand, it can. If it is found, then, that
O (t1,t4)=0 and o0,,(t,,t3)=0, it must be that either
o.(t;)=+~ and o,(tf)= —+4 or o4(tj)=—+ and
o, ltr)=+ % and this (it can easily be seen) is true entirely
irrespective of what experiments may or may not occur
within the interval ¢, <t <3 [in (11), that interval is free
of any such experiments, for the sake of simplicity]. Con-
sider the amplitude for such a process (wherein we leave
the experiments in the innermost interval unspecified):

HET =30 L=5 ] 5015 | F3). (12a)

FalEr (3L =3 =7 | F1), . (120)
(12) consists of two main terms [(a) and (b) which them-
selves each consist of some unspecified, but necessarily
equal, number of terms] corresponding to the two ways
whereby it can come to pass that o (¢;,t4)=0. The cru-
cial feature of (12) is that whatever our initial state is
| +3)x or | — =)y, there is a relative negative sign be-
tween (12a) and (12b). Given then that o,,(¢,,t3)=0 and
0 (t1,t4)=0, we require no information whatsoever con-
cerning the one-time states at ; and ¢, in order to evaluate
any amplitude of the form (12), since, in any case, every-
thing outside the square brackets serves merely to impose
a relative minus sign between (12a) and (12b). Up to a
phase (and a normalization factor), then, (12) can be re-
placed by

_'z<% ' |'—%)x

wherein two trajectories are superimposed from beginning
to end, and interfere in a new and unfamiliar way, without
even having their initial or final states in common, and
with a definite relative phase. The behavior of such sys-
tems, then, can be defined entirely in terms of the results
of multiple-time experiments (they need not be two-time
experiments; they may be 3-time or 4-time or N-time ex-
periments) and these, it is hoped, can constitute a rich and
entirely complementary formalism to that of states and of
ordinary time evolution.

(13)

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation under Grant No. ISP-80-11451. We are
thankful to Susan Damato for helpful conversations.




29 IS THE USUAL NOTION OF TIME EVOLUTION .. .? I 227

Y. Aharonov and D. Z. Albert, following paper, Phys. Rev. D
29, 228 (1984).

2Combinations of this type are of course not unknown in quan-
tum field theory. The averaging of observables over finite re-
gions of space-time is a common practice there; but, as the
reader will discover, we shall be thinking of such combina-
tions here for different reasons, and in a different way.

3That this cannot be known to an observer until after ¢/ is ir-
relevant; the fact remains that such an observer, albeit after

ty, can say with certainty that any experiment of ¢,, whether
or not he is aware of one having been carried out, must have
yielded X =x;.

4Y. Aharonov et al., Phys. Rev. 134, B1410 (1969).

A detailed consideration of procedures roughly of this type ap-
pears in Y. Aharonov and D. Albert, Phys. Rev. D 24, 359
(1981).

6H. Everett, Rev. Mod. Phys. 29, 454 (1957); J. Wheeler, ibid.
29, 463 (1957).



