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Time development of Higgs field at finite temperature
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We derive the equation of motion of the thermodynamical average of the Higgs field. The fric-
tion term in the equation is explicitly given in simple models. The equation obtained may be
relevant to the cosmological phase transitions.

I. INTRODUCTIQN

On the basis of grand unified theories (GUT's) of
strong and electroweak interactions, an ambitious scenario
of the very early Universe has been proposed for simul-
taneous resolution of the horizon, flatness, and monopole
problems. ' According to the scenario called the infla-
tionary Universe by Guth, the Universe has experienced a
period of exponential expansion at the time of —10 sec
after the beginning of the Universe. However, the original
version which assumes a first-order phase transition has
the serious difficulty that the phase transition will never
be completed. This difficulty has been cured by the new
version of the inflationary Universe; the whole Universe
in sight at present was inside a single bubble. The com-
pletion of the phase transition is not necessary. The new
scenario qualitatively explains the desirable spectrum of
density perturbations which eventually show up as galax-
ies. People working in this field of cosmology have tried
to construct newer versions which can quantitatively fit
the numbers. It seems to us, however, that the basic idea
of the new inflationary scenario —Coleman-Weinberg-type
effective potential —will survive.

In the new inflationary-Universe scenario, the Universe
is supposed to pass through the rolling-down phase in the
Coleman-Weinberg-type potential for quite a long time.
(See Fig. 1). The Higgs field N starts at a point a little bit
away from the top and then rolls down along the long al-
most flat slope to the minimum of the effective potential.
The oscillation around the bottom eventually dies out be-
cause of friction. Or if the friction force is strong enough,
there will be no oscillation and @ simply slowly rolls
down to the bottom. In the literature, the motion of the
thermodynamical average has been analyzed numerically,
where the friction force is phenomenologically introduced.

In this paper, we are going to derive the equation of
motion of the thermodynamical average of the Higgs field
and compute the friction coefficient in simple models.
We note that the friction is responsible for the heat-up of
the Universe in the final stage of the roHing-down phase
transition. The estimate of the strength of the friction
seems very important. Although we are motivated by the

GUT's cosmology, we are primarily concerned with the
nonequilibrium statistical problems of the Higgs system.
In order to understand the basic thermodynamical aspects
of the rolling-down phase, we will work mainly in flat
space-time. Generalization to the Friedmann background
will be briefly discussed in the last section. Detailed
analysis of the equation of motion in the inflationary
background will be published elsewhere.

A sound physical intuition clearly tells us that our
equation for @has the form

HN+ V,'tt(@)+ri(N)@=0 .

V,'tt means the derivative of the effective potential with
respect to @ and the last term represents the friction
force. Our primary aim of this paper is the derivation of
Eq. (1.1) and the computation of g(4). Unfortunately no
reliable theory of a system far from equilibrium has yet
been available. We have to content ourselves to work in
the hydrodynamical regime, i.e., slight-off-equilibrium
state. Hence our derivation is legitimate only if the mac-
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FIG. 1. Schematic description of the Coleman-Weinberg-type
effective potential. Small circles represent the expectation value
of the Higgs field which rolls down to the bottom of the effec-
tive potential.
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roscopic order parameter N varies slowly in corn.parison
with the microscopic time scale of collisions, v„&i, i.e.,

+coll +& (1.2)

This limitation will be very important to the application
to the inflationary Universe.

The plan of this paper is as follows. In Sec. II we
present a heuristic derivation of Eq. (1.1) on the basis of
kinetic theory in the relaxation-time approximation, after
a brief introduction to the elementary evaluation of trans-
port coefficients. We reproduce the same equation by us-
ing Zubarev's method of a nonequilibrium statistical
operator in Sec. III. Here we obtain a closed form for the
friction coefficient q(@), which is valid beyond perturba-
tion theory. In Sec. IV we demonstrate the increase of en-
tropy and discuss the release of energy originally in the
form of Higgs potential energy to radiation (Higgs quan-
ta). We evaluate the friction coefficient at high tempera-
ture in Sec. V. Section VI is devoted to summary, discus-
sions, and brief remarks on the application to cosmology.

heat current

FICx. 2. Temperature T has a gradient in the x direction.
This gradient induces the heat current.

have

II. KINETIC THEORY DERIVATION
B„no———B„P(x)co(P)no(1+no) .

The definition of the heat conductivity ~,

(2.6)

A. Transport coefficients

In order to fainiliarize ourselves with the transport
theory, it is very instructive to recall the elementary com-
putation of heat conductivity. " Consider the case in
which the temperature has a gradient, say, in the x direc-
tion. (See Fig. 2.) Let us compute the energy flow caused
by the temperature gradient in a system of interacting sca-
lar bosons. We have

and Eqs. (2.5) and (2.6) directly lead to

a=P,P„~no(1+no)
(2n. )

p rno(i+no) .
d'p -2

(2m )

(2.7)

(2.8)

( T „(x)&
= f n(p, x) .d p ~(p)px

(2~)' ~ p
(2.1)

Here co(p)=(p +m )'~ and n(p, x)d p/(2m) are the en-
ergy and the number density of particles with momentum
p, respectively. Here n (p, x) is a slight deviation from the
local equilibrium distribution n o(p, x),

( T y & ='g(B Qy+ByQ ),
+T„,+T &=(p& g'7r u, —

(2.9)

(2.10)

Similarly we can obtain the shear viscosity and the bulk
viscosity. %'e just quote the results. The shear viscosity
and bulk viscosity are defined by

n (p,x) = no(p, x)+5n,
no(p, x)= I/(e~'"'"'i' —1) (2.3)

where u is the velocity field. They are obtained as

with P '(x) =T (x) being the local temperature. A simple
evaluation of the deviation 5n is given by the relaxation-
time approximation of the kinetic equation:

~(p)no(p) [1+no(p)], (2.11)P d 3p (~p 2)2

(2m ) co(p)

p ~ 1
B,n+ -Vn = — 5n,

oi(p) ~(p)

where ~(p) is the relaxation time. In the lowest-order ap-
proximation, we obtain the heat current as

P dp (3P csco )TP
~(p)no(p)

(2n ) co(p)

X[I+no(p)] . (2.12)

(To„&=f 3 ( 7.) B„no . —d p ~(P)Px Px

(2m) oi p oi p
(2.5)

With no being the local equilibrium distribution (2.3) we

The expressions agree with the lowest-order evaluation of
the Kubo-type formulas as shown in Ref. 8.

The relaxation time is given by a standard collision in-
tegral
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1 ~P( G P2 8 p3r '(p)=. . . (2~)'&'(p+S ( p—3 I—3)
2m(P) (2m) 2'(P() (2m') 2'(P2) (2m) 2'(P3)

A,
2

IrioV i)l I+&oV 2)i( 1+&0(u3)l —ll+iioV i)liioV'z)&OV 3)I4 (2.13)

in the lowest-order approximation in the quartic coupling
constant in the A,P theory.

e=&y&=tr(py) (2.14)

for a suitable nonequilibrium statistical operator p. In the
next section we shall explicitly construct the statistical
operator p. In this section, however, what we need is the
simple property that the statistical operator p in the
Heisenberg representation is time independent:

(2.15)

To make the presentation as simple as possible, we con-
sider the case of a single scalar field P with a potential
V((t ) which is assumed to be convex everywhere. More-
over, the effective potential V,rr(@), which includes the
finite-temperature effect as well as quantum corrections,
has a shape depicted in Fig. 3(b). As we can subsequently
see, it is straightforward to generalize our method to in-
clude gauge fields. Hence our hypothetical effective po-
tential is actually realized in the Coleman-Weinberg po-
tential.

Now let us start with the field equation for the Heisen-
berg field P:

S. Time development of order parameter

Now we are going to derive the equation of motion of
the thermodynamical average of the Higgs field P:

&q &=0.
We shall also use Eq. (2.20) as a starting point in the sub-
sequent sections.

Let us compute & qr & in Eq. (2.20) using the
relaxation-time approximation of the kinetic equation in a
parallel way to the previous subsection. We proceed,

&y'&= J ~, .(p)
(2~)3 ~(p)

=&+ &o+ I 3 5n, (2.21)
(2m. )3 ~ p

&g'&.= f "~, ', ( ),
(2n. )3 (0(p)

(2.22)

where no(p) is the local equilibrium distribution:

no(p) =1/(e~(~) 1) .— (2.23)

In order to elucidate the essential mechanism of friction,
let us assume that the temperature increase and its inho-
mogeneity by the time development of the Higgs field can
be ignored. Contrary to the previous case of thermal con-
ductivity, the deviation 5n comes from the time depen-
dence of the "mass " of the fiuctuation quanta, which is

P+ V'(P) =0 . (2.16)

Take the thermodynamical average of Eq. (2.16), noting
that the derivatives can be taken out of the average opera-
tion & & because of the time independence of the statisti-
cal operator. We have

GC+& V'(P)&=0.

Then we split the Heisenberg field as

(2.17)

(2.18)

where y is the fluctuation field around the thermodynam-
ical average value @. Expand the potential term in Eq.
(2.17) as

& V(~+~) &= V(~)+ V"(~)&~&

V(3)(~)+ &q'&+
2t

Then we arrive at a key formula:

V(3)(g) )@+V'(@)+ &y'&+ '

Here we have used the identity

(2.19)

(2.20) FIG. 3. Shapes of (a) the potential V(N) in the tree level and
{b) the effective potential V,qq(4) which contains the finite-
temperature effect and quantum corrections.
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given by the second derivative of the potential V(@).
Namely, the energy of fluctuation quanta with momen-
tum p is

~(p) = [p '+ V'(@)]'~' .

Hence the relaxation-time approximation of the kinetic
equation gives

5n = rB—,no

(2.32)

(2.33)

neo= 1 &(e~'"'+1) [&(p)=(p '+~')'" ~'=g'e']
(2.34)

d 3f d M
(2m)' &p

nBo= 1/(e —1) [co(p) =(p +gag ),gyes = V (@)],

=rPn, (1+n )
'[P '+ V"~)]'"

Bt

v"'(e) i
5na = &an@—o ='ranao(1+ neo)

~(p) ' (2.35)

=rPno(1+ no) V"'(e)e .
2~(p)

Putting Eqs. (2.20)—(2.24) together, we finally obtain

CI@+ V,'rr(@)+q(@)@=0.

(2.24)

(2.25)

5ny = —rpnFo =7 ~ny o( 1 n~—o)g 43

&(p)
(2.36)

+ V ff(@)+ ri(@)C =0 (2.37)

Substitution of Eqs. (2.31) and (2.32) with (2.33)—(2.36)
into Eq. (2.30) gives

Here we have used the fact that the first derivative of the
effective potential can be written as

where

V,'rr(N) =V'(@)+, (y )o+
v'"(~)

(2.26)
Vi(C )

V (N)
J

d p Bo

(2~)' ~(p)

The friction coefficient g(@) is obtained as
2

8 p 7 v"'(~)
ri(@)=p f 3 z no(1+no) +

(2m. ) 2'(p) 2

(2.27)

where r is the relaxation time of fluctuation particles and
the local equilibrium distribution no is given in Eq. (2.23).

We did not evaluate (y3), (y ), . . . , which should ap-
pear in Eq. (2.20) though not explicitly written. It is
clear, however, that those terms are higher order in cou-
pling constants. Perhaps the intuitive methods based on
the relaxation-time approximation cannot be pushed fur-
ther to the higher-order calculations. In the next section
we present a more systematic method.

C. Generalization

&0+ V'(4)+g A'=o

if' gpg=0 . —
(2.28)

(2.29)

The extensions to more general field theories are almost
straightforward. We illustrate the procedure in the case
of the Yukawa interaction. The Heisenberg equations of
motion are

8 p ~EO+g2@ + ~ ~ 4

(2~)' &(p)
[V(3)((g))]2 d3pg(@)=

q r~n~o(1+neo)
(2m ) n)(p)~

+g 4
3 & tpnFo( 1 —nFo)

4 2 8 P 1

(2~)' &(p)'

(2.38)

(2.39)

III. KUBO-TYPE FORMULA

A. Hamiltonian density

So far we have not used the precise form of the non-
equilibrium statistical operator p. In this section we expli-
citly construct p following the spirit of Zubarev's
method ' and derive the fluctuation-dissipation Kubo-
type formula for the friction coefficient g(4) in the
linear-response approximation [Eq. (3.21)]. As shown in
the Appendix, in the lowest order in perturbation theory,
the resultant expression for g(@) agrees with the one ob-
tained in Sec. II from the relaxation-time approximation.
Nevertheless the closed form for the friction coefficient is
valuable both in the higher-order computation and in pos-
sible nonperturbative evaluations.

We divide the derivation into the following five steps
and the illustration is made in the simple scalar theory
discussed in the previous section.

Exactly in the same way as we did in Sec. IIB, we write
down the expectation value of the equation of motion
(2.28) to obtain

o~+ V'(~)+ (q )+ +g(yy) =o. (2.30)
v'"(c )

2

In the -original Lagrangian,

L, =-,'(a„y)' —v(y)

we put

(3.1)

( g) d p nBO d p 5n8

(2~)' ~(p) (2~)' ~(p)
' (2.31)

The expectation values (gP) and (Pg) are evaluated by
the relaxation-time approximation as

(3 2)

and regard the fluctuatio field y around the c-number
function N as a dynamical variable. We have

L =—@ +@y+—,y ——,[&;(@+p)]'—V(C+p) . (3.3)
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It is very convenient to change the Lagrangian density
(3.3) by a total time derivative so that the interference
term @jr is eliminated:

L'=L — (Cp+ f 4'dt')
dt

= ——,N + —,y ——,
' [8;(N+p)] —V(@+y)—4y .

(3.4)

Then the standard canonical formalism gives the Hamil-
tonian (we omit the prime on H) as

FKx. 4. Cancellation of the tadpole contribution by the
source term.

velocity field here. ) The source term jy is inserted to en-
sure the important property of the local statistical opera-
tor

H =H@+H~+H),

H~ = —,4'+ —,(8;@)'+V(+),

H~=2m +2(Bq) +, q +, y +
V"(4') 2 V"'(@)

H )
——y[U@+ V'(@)] .

(3.5a)

(3.5b)

(3.5c)

(p).=«(p p) =(p) =+ . (3.8)

The thermodynamical parameter j is internally fixed by
the condition exactly in the same way that the tempera-
ture P ' is internally determined by the condition

(H), =tr(p, H)=(H) . (3.9)

[If we employ H instead of H, we would need an extra
source term k (xt)m(xt) and the further condition

We keep the linear term (3.5c) in the fluctuation field y,
since N is chosen as the thermodynamical average of the
original Heisenberg operator P rather than a classical
solution.

In effect we have chosen a suitable Hamiltonian in
which the influences of the time-dependent order parame-
ter @on the fluctuation are minimized.

Our canonically transformed Hamiltonian is time
dependent due to the c-number background field and is
related to the original conserved Hamiltonian H as

H =H+y@—m@ . (3 6)

For readers who are still uneasy about our change of the
Hamiltonian, we can say that in the subsequent construc-
tion of the local equilibrium operator our choice (3.6) is
most economical, though the original H leads to the same
local equilibrium operator and hence to the nonequilibri-
um statistical operator.

B. Local statistical operator

Throughout this paper we always assume that in a
small region of space-time, local thermal equilibrium
holds. Roughly speaking, the local equilibrium statistical
operator is the product of the statistical operator of the
Gibbs ensemble at each spatial point. Following the spirit
of Zubarev's method, we propose

p&
—

Q& 'exp —f d xp(xt)[H(xt)+j (xt)y(xt)]
(3.7)

trpl ——1

(To simplify our presentation, we have not included the

(~&,—=tr(p, ~) =(~&

and will end up with the same expression for p~. ] Ab-
sorbing the c-number part of the Hamiltonian into the
normalization and the linear term H& in the Hamiltonian
into the source term, we have

pI =Q'~ 'exp —f d x P(xt)[H&(xt)+F(xt)y(xt)] . ,

(3.10)
F =j+ 4&+ V'(@) .

I.et us see how the requirement (3.8) determines F (or
j). With p=N+y [Eq. (3.2)], Eq. (3.8) becomes

(3.11)

This is nothing but the condition that the tadpole contri-
bution cancels the source term (Fig. 4). In the one-loop
approximation, we have

V(3)((g) ) (3.12)

This completes the construction of the local statistical
operator.

C. Nonequilibrium statistical operator

Zubarev himself did not mention any possible applica-
tion of his method of the nonequilibrium statistical opera-
tor to the time development of the order parameter in his
textbook. A natural extension of Zubarev's method gives
the following nonequilibrium statistical operator for our
problem as

T

p=Q' 'exp —e f dt'e" "f d x'13(x't')[H~(x't')+F(x't')y(x't')] (@~+0), (3.13)
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where Q is the normalization factor so that trp= l. The exponent of the nonequilibrium operator is a sort of long time
average

t
e f dt'e"-"

of the exponent of the local equilibrium operator (3.10).
It is easy to see the time independence of p, which we have used in the derivation of the equation for the thermo-

dynamical average of the Higgs field in the previous section. The time derivative of the exponent is
t

e —f d x'P(x't)[H~(x't)+F(x't)q&(x't)]+e f dt'e" "f d x'P(x't')[II~(x't')+F(x't')y(x't')]
I

The first term in the large parentheses is the exponent of the local statistical operator and the second one is that of the
nonequilibrium operator. They are assumed to be finite. Because of the extra e in front of the parentheses, the above
quantity vanishes in the limit e~ + 0.

Writing

ee =,&e
E(( () ' —I E((' —()

)
df;

in the expression (3.13) and integrating by parts we have

p=g' 'exp —f d x P(xt)[H+(xt)+F(xt)y(xt)]

+ f dt'e" "f d x'P(x't') c-number terms —y[ 4+ V,'tt(4)]+Fy+ 4qr +
V(3)(@)

00
crf

2~

dt'e~" ') f d x'l3(x't')[H&(x't')+F(x't')q&(x't')] (3.14)

Here we have used the field equation for p and the fact

V,'tt(@)= V'(N)+ (y )o+
V(3)(e)

2

= V'(4) F, — (3.15)

in the manipulation of the second term in the exponent in Eq. (3.14). The first term in the exponent represents the local
equilibrium part. The rest causes nonequilibrium effects.

D. Linear-response approximation

In order to see the essential point of our problem let us assume for the moment that the temperature increase and inho-
mogeneity by the space-time development of our order parameter are negligible. Such a case may be realized if a huge
heat reservoir of particles is present without being affected by the order parameter. The expression which includes the
temperature and velocity change in space-time will be given in Sec. VI.

Let us assume that the time development of the Higgs field is so slow that we can expand the nonequilibrium statisti-
cal operator p around the local equilibrium operator pI and keep the linear term in 4. Write

A =P f d x(H~+F(p),
(3.16)

t V(3) q)8 =P dt'e"' " c-number terms j[U4+ V,'tt(4)—]+Fy+ 4y +
00

e

We use the expansion forinula
1

e —A+8 e —A+ d e Arg e —Awe —A+. . .
0

to obtain an approximation
1

p= 1+ f dr(e" B e —(8)o) pt,

where

(,'&)o=tr(pP) .

Then we obtain

(3.17)
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(qP) (qP)o+P f dt'e"' " (qP(x, t),qr (x't')) 4(x't') —(qr (xt),y(x't'))[CIA+ V,'tt(N)]

+ (p (xt),p(x't'))F (3.18)

The parentheses (, ) are defined by
1

(X,I")= f dr(X(e "'Fe"'—(r) )), (3.19)

which is called a relaxation function or a correlation func-
tion of X and K

Note that the relaxation function has a short time
correlation:

, etc. ,

with r being a relaxation time (see Appendix). As we al-
ways assume, @varies slowly and does not change signifi-
cantly during the collision time of constituent particles.
We may take the factors V' '(C&)C&, etc. , out of the in-
tegration. Substitute the expression (3.18) for (y ) into
the equation for N

V(3)(@)o~+ V(~)+ «')+
2!

obtained in the previous section on the very general
ground. Then we end up with the equation

Cld&+ Vert(@)+il(4)4=0, (3.20)

with the friction coefficient being

il( )=p f d x' f dt'e" " H~(xt), H&(x't')

+ y+il(@)jBI'

(3.21)

Equation (3.21) is a Kubo-type formula and a manifesta-
tion of the fluctuation-dissipation theorem.

E. Evaluation of the Kubo formula

The evaluation of the correlation function in perturba-
tion theory has been done in Ref. 8; In the Appendix, we
shall give a brief sketch of its procedure. The only term
which does not'vanish in the lowest-order approximation
in perturbation theory is

dissipation formula is that we can compute the higher-
order corrections in perturbation theory and maybe in a
nonperturbative way.

IV. ENTROPY PRODUCTION

In this section we show the increase of entropy due to
the friction force. The generation of entropy partially
supports the validity of our approach to nonequilibrium
processes. It is indispensable for the application to the in-
flationary Universe. Following Zubarev, we define entro-

py as

S = —(1npt ), (4.1)

and S(x) is entropy density. Differentiating Q/ with
respect to P, F, and 4, we obtain the thermodynamical re-
lations

5 lnQj = —(H, (xt)),= —(H, {xt)),
5 xt

where pt is the local equilibrium statistical operator (3.10).
Here we cannot choose the quantity —(lnp) as entropy,
since it is time independent from Eq. (2.15). Equation
(4.1) can be intuitively interpreted as follows. In the hy-
drodynarnical regime thermal equilibrium is locally real-
ized on a scale of mean free path and entropy is locally
defined at each domain. So entropy of the whole system
is given by summing up the local entropy. From Eq.
(3.10), the explicit form of entropy is

S=lnQ/+ f d'x P(xt)(H~(xt)+F(xt)g)(xt) )
—:f d xS(x), (4.2)

where

Q/ =tr exp —f d x P(xt)[H (xt)+F(xt) p(xt)]

(4.3)

'2
V"'(e)

p fd x' f dt'e" "(qP(xt),p2(x't')) .

(3.22)

In the lowest order in the skeleton expansion (Fig. 5) for
the expression (3.22), we get the same expression for il{@)
derived by the relaxation-time approximation of the kinet-
ic equation. The obvious merit of the fluctuation-

FICx. 5. Feynman diagram of the lowest-order skeleton ex-
pansion for the correlation function in Eqs. (3.12) and (A1).
Hatched parts denote the self-energy.
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5 lnQt'

5F(xt)
= —p(xt)(y(xt) )o

= —p(q(xt)) =o, (4.4b)

Gz(po p)
= f d4x e' " "'

I i—8(t t')—([C(xt),C(x't'))) I .

(4.10)

5 lnQt'
P(—xt)[ —'V'"(C&)(q (xt) ) + ] (4.4c)

5@(xt)

The second and third equalities of Eqs. (4.4a) and (4.4b)
are derived from Eqs. (3.8), (3.9), and (3.11).

Now it is easy to show that the friction force generates
entropy. Differentiating the entropy (4.2) with respect to
t and using relations (4.4), we obtain

S(x)=p(xt)N(xt)[ ,' V"'—(@)((q) —(q )o)+ ] . (4.5)

Since the terms in the brackets are identical to the friction
force, the change of entropy can be expressed as

J(co, p)(1 —e ~)
Gzpop =

Pp —CO+ l 6
(4.1 1)

Here the spectral function takes the form

J(I)=Qt '2 1(~ I
C(O) Im ) I'e "5'(p p" »—. —

(4.12)

Substituting the spectral representation (4.11) into the ex-
pression of the friction coefficient (4.9), we obtain

%"e use the spectral representation of the retarded Green's
function:

S(x)=p(xt)g(@)[@(xt)] (4.6)
g( 4&)=2m PJ (0) . (4.13)

g(C)=p f d'x'
r

t
X f dt'e"' " H+(xt), H&(x't')

+
&

y+ rt(@)j . (4.7)
ar

Here we have used the relation j (xt) =g(@)@(xt)which
is derived from Eqs. (3.10), (3.15), and (3.20). Further
more, Eq. (4.7) becomes

t
g(@)=Pf d x' f dt'e" ''(C(x), C(x't')),

where

(4 7')

The rest is to prove that the friction coefficient is always
positive. The full expression for the friction coefficient is
given by

Since Eq. (4.12) ensures the positivity of the spectral func-
tion, we conclude that the entropy certainly increases.

The entropy production can be intuitively explained as
follows. As the c-number part N(xt) varies in time, it dis-
turbs the fluctuation qr(xt) around itself. The distur-
bances generate entropy and have a tendency to resist the
motion of C&(xt). Using the equation for @ in (1.1), we
obtain

S(x)= —p(xt) I —,
'

C (xt)+ —,
' [a,e(xt)]'+ V„,(e) I.dt

(4.14)

This equation means that entropy is generated by the
release of the energy stored in the c-number part of N.
Although our Hamiltonian H, Eq. (3.5), explicitly de-
pends on time, its average value (H) =tr(pH) is con-
served. This can be written as

((H ) —(H ) )= — [—,'4~+ —,'(8k@) + V,ff(C )]
C(xt) = [H„(xt)+F(xt)q (xt)]+g(C )q(xt), (4.8)

(4.15)

'9(~') =' Gz(po p)
~70 p —0 p —0

where

(4.9)

since (y) =(y)o——(jo) =(jp)o——0. As shown in the Ap-
pendix, the friction coefficient can be expressed in terms
of the retarded Green's function:

From Eq. (4.15), we can see that we have to choose
(H+) —(H~)o rather than (H~) as the internal energy
of radiation. The local equilibrium average (H~ )o, which
we have subtracted from (H&), corresponds to a contri-
bution of radiation to the effective potential. Thus we re-
place the Hamiltonian H~ by H~ (H~)o in the statisti-—
cal operators p and pp. For example, the local statistical
operator becomes

pt Q"'I 'exp ———f d x p(xt) I [H~(xt) (H (xt))o]+F(xt)p(xt—)I (4.16)

Since this change of Hamiltonian is just a c number, it does not alter the results we have previously obtained. Introduc-
ing the local free energy W(xt) and the internal energy u (xt) as

f d'x p(xt)W(xt)= lnQI", u(xt)=(H, ) —(H,—)o,
we obtain familiar relations of thermodynamics:

W(xt) =u (xt) p'(xt)S (xt), — (4.17)
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du(xt)=p '(xt)dS(xt) .

Equations (4.14) and (4.18) imply the release of the energy of the c-number part N to the radiation.

V. EVAI.UATION OF FRICTION COEFFICIENT AT HIGH TEMPERATURE

(4.18)

In order to evaluate the expression for the friction coefficient [Eq. (2.27)] we need the relaxation time r as a function
of momentum p. In the scalar model we have

1

dpi'

d p3r '(p)=. . . (2~) & (p+pl p2 —p3)—
2co(p) (2m')32co(pi) (2m) 2co(p2) (2m) 2'(p3)

A,
2

I no(pl )[1+no(p2)][1+no(p3) l —[1+no(pl )]no(p2)no(p3) I4
(5.1)

where

A, = V' ', co(p)=(m +p )'~, and m = V"(Cl) .

We have taken account of the four-point contact interaction only for simplicity and do not consider the nonrenormaliz-
able interactions (i.e., V'"'=0, n & 5). The Born diagrams which come from the cubic interaction become higher-order
corrections at high temperature and in relativistic regions. We can carry out the eight integrations of Eq. (5.1) to obtain

'(p) = 1 dc''(co' —m')'"et '

2 m Pcop

1

ej
' —1

1
ln

e —e

sinh —,
'

Pco

slflh 2 pco

+ y dco'(co' —m')' 'e~ 1 1
~g + ~ ~p ln

e —1 e —e

+p dco e
CO e —e

1

e~' —1

pN 13(.ci)—ci) )

ln
e —1

(5.2)

In the high-temperature limit T»I, we have

] A T
2 3m'

(5.3)

[V' '(C&)] 2 3 1 T
T m

(5.4)

for p»m. It is worthwhile to point out that r 'co is
constant in the high-temperature and ultrarelativistic
limits.

Now let us evaluate the friction coefficient at high tem-
perature. Owing to the Bose factor in the integrand, the
most important contribution comes from the region
T-p »m and we obtain

diation of Higgs quanta. The high-temperature behavior
of the friction coefficient is roughly

(V' ') 1 T
q(@)- — —ln

T ppz

We have a few remarks on the possible applications to
the cosmology, particularly to the inflationary stage of the
early Universe. In the kinetic theory approach we can
easily go over to Friedmann space-time, if we neglect the
Hawking radiation by the background gravitational
field. ' We just quote the final result in the spatially flat
case, which also includes the effect of the temperature in-
crease by friction:

VI. SUMMARY AND DISCUSSIONS

We have derived the equation of motion for the ther-
modynamical average of the Higgs field [Eq. (1.1)] with
the friction term both by the kinetic theory and by
Zubarev's method of nonequilibrium statistical operator.
The friction coefficient is expressed by the Kubo-type for-
mula which agrees with the result of the relaxation-time
approximation of kinetic theory in the lowest order in per-
turbation theory. It is shown that the total entropy in-
creases when the Higgs field rolls down and that the po-
tential energy of the classical Higgs field turns into the ra-

4& —a 'b, C + V,'tt(C )+q(@)N= —y(C )c);u; .

(6.1)

Here we have used the ideal-gas relation

p=pc, c);uc

and

(6.2)

d3 ~ 2

y= —V' '(@)f P c, co — no(1+no),
(2m ) 2co

(6.3)
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with c, and u; being the sound velocity and the velocity
field, respectively. a (t) is the scale factor of the
Robertson-Walker metric:

ds =dt a—(t)dx (6 4)

and the temperature in V,'~f, g, and y is the red-shifted
temperature

T = Toa '(t) . (6 5)

However as we have emphasized in the Introduction,
Eq. (6.1) is valid only if the hydrodynamical condition is
satisfied:

~« /a/a /, f
4/4f .

One has to be careful about the region in which Eq. (6.1)
is applicable. We also have to study the low-temperature
behavior of the friction coefficient. Detailed analysis is in
progress.

On the other hand it is not straightforward to more
rigorously derive the equation for the order parameter in
curved space-time on the basis of Zubarev's method.

APPENDIX

In this appendix, we give a brief sketch of the evalua-
tion of the friction coefficient in perturbation theory. A
similar procedure has been explained in detail in Ref. 8.

Let us express the friction coefficient in a tnore con-
venient form for practical calculations. With some ma-
nipulations, Eq. (3.21) can be rewritten as

[y(3)(@)]2

X f d'x' f' dt, e'" "

where

X f dt'G„(x x', t —t'), —
(Al)

Gz(x x', t —t') = i 8—(t —t—')([y (xt),p (x', t')] )0

is the retarded Green's function and ( )o denotes the
average over the thermal equilibrium distribution. In-
tegrations over space-time lead to an expression for g(N):
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G~(ko, k)=Gp(to. k)
I i „-k,+ ~ . (A4)

In the lowest order in the skeleton expansion (Fig. 5)
the temperature Careen's function (A3) is given by

In order to calculate the retarded Green's function, we
make use of the temperature Green's function

Gp(x —x 7 —1 ) = i (T,—[qP(xr)y (x'r')) )o, (A3)

where ~=it is imaginary time, since the Feynman
diagrammatic method is available for the computation of
this function. " First we evaluate the temperature Green's
function (A3) in perturbation theory, then analytically
continue it into the retarded Green's function by means of
the relation'

p3 —+
i Gp(ri ~2, k) =2 iD p(r, —~q, k+ p )iD p(rz —~i, p )

(2m)

d3=2 f 3 f dgidg2no(gi)no(gq)p(qi, k+p)p(g k2)e
(2n )

Here D represents the full propagator of the scalar field y and admits the spectral representation

(A5)

Dp(co„, k)= f d~o
l CO+ —CO

or its Fourier inverse transform'

(A6)

iDp(~, k)= f dip(q, k)no(g)e" ~'~, (A7)

where no is the boson factor no(ri) =(ep" 1)—
If we used the naive perturbation expansion rather than the skeleton expansion, we would have divergent results. We

perform the double Fourier transformations of (A5) with respect to xi and ~q..
& [~)&]—~2&2].

iGp(to„co2, k)= — dr~ d&2e iGp(ri —rz, k) .
0 0
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FKx. 6. Lowest-order skeleton expansion for the full propa-
gator DR(k}.

The integrations over ~~ and ~2 give two kinds of terms,
one proportional to 5~, ~, and the other noi proportional.
The second kind of term should be discarded from the
fact that the Careen's functions should be functions of the
difference between the coordinates only. ' Performing the
analytic continuation (A4), we obtain FICx. 7. Feynrnan diagram for the self-energy XR(k}.

GR(k) 2 I 3 I d Qldg2no(+l)n0())2)p(7/) k+ p)p( f12 P )
d p 1

(2m. ) kP —g) —'g2+ lE'

1

ko+g)+g2+i e
(A8)

Now we evaluate the spectral function p which is given by the imaginary part of the fuH propagator. In the lowest-
order expansion in Fig. 6, the full propagator has the form

DR(k) = Z2
0

(ko+i e) k —m ——XR (kO, k)
(A9)

Here the divergence of the real part of Xz is removed by wave-function and mass renormalizations and the temperature-
dependent contribution to the mass is ignored. The self-energy Xz shown in Fig. 7 can be evaluated in the same manner
as Eq. (A8):

[V'4)(e)]'
~R(k0 k )

3 3 d old 92d 93n0( gl )n0(2)2)n0( 93)pO( 91 P 1 )PO( )2 P2)PO(93 P3)6

X
ko+ l 6 Y/i Y/2

1

ko+iE+XJ]+ g2+ g3

where pO is the spectral function for the free propagator

pO(g, p)=sgn(g)5(21 —p ) .

Putting ImXR(ko, k) = —2koI (k), we obtain the full propagator

DR(k) =
(kO+iI ) —co (k)

with

(A 1 1)

co(k) =(k +m )' ' .

y(3)(C))

2
7no 1+nod p

(2m) 20) (p)

d p) d P2 d 5'3 4(2m) 5 (p+pl p2 p3)———
2'(p) ~ (2w) 20)(pl) (2m. ) 20)(p2) (2~) 20)(p3) 4

The retarded Careen's function can be evaluated by means of the spectral function p(kO, k) = —(1/m )ImDR(ko, k). For
0) » I (k), we finally obtain the expression for 21(N) in the lowest-order skeleton expansion in Fig. 5 as

2

X InO(pl )[1+nO(p2)][1+no(p3)] —[1+no(p, )]nO(p2)no(p3) j . (A13)
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