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We study the growth of energy-density perturbations in inflationary-universe models, applying an
extension of Bardeen’s gauge-invariant framework derived in a previous paper. The complete
analysis is exemplified in the case of the ‘“new inflationary universe” of Linde and Albrecht and
Steinhardt. For this model we obtain the following result: the amplitude of energy-density fluctua-
tions at horizon crossing is of order 50, far too large to match with the usual pictures of galaxy for-
mation. Our result agrees with other published analyses. We conclude that the amplification of
energy-density perturbations is determined by the change in the equation of state between initial and
final Hubble radius crossing. It is, however, independent of the phase structure between the two
crossings. In particular, it is independent of the reheating mechanism. We also derive a simple for-
mula which describes the complete evolution of perturbations outside the horizon whenever entropy
and anisotropic stress perturbations are unimportant. Finally, we comment on previous published
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methods and discuss their limitations.

I. INTRODUCTION

Two years ago Guth! proposed a new variant of the
standard big-bang cosmology, which could solve many of
the problems that arise in the usual formulation (e.g., the
horizon, flatness, and monopole problems) without des-
troying the successes (e.g., nucleosynthesis). The main
idea was to consider matter in the very early universe as
described by a grand unified field theory with a meta-
stable ground state corresponding to unbroken gauge sym-
metry, and a stable ground state (the state we are in today)
with broken symmetry. In its originally proposed form,!
the “old” inflationary universe did not “gracefully exit” to
a spatially homogeneous, or even approximately homo-
geneous, final state. It thus disagreed with cosmological
observation.

The problem of graceful exit was solved in a modified
variant, the “new” inflationary universe, independently
proposed by Linde? and by Albrecht and Steinhardt.® The
crucial point was to require that the potential of the Higgs
field responsible for symmetry breaking be of Coleman-
Weinberg* type, i.e., that the mass term be fine tuned to
zero. In this case the effective potential of the Higgs field
¢ has the shape given in Fig. 1.

At high temperatures T >>0, where o is the scale of
grand unified symmetry breaking and is of order 10'*
GeV in models such as the minimal SU(5) Georgi-
Glashow model,’ the symmetric ground state is rendered
stable by finite-temperature corrections to the effective po-
tential.® When T drops below o, ¢ =0 becomes unstable.
Although the exact evolution of the system immediately
after the onset of metastability is not well understood (see,
e.g., the review in Ref. 7), it is generally assumed that the
time evolution can be described semiclassically almost im-
mediately. Due to quantum fluctuations (see below) the
expectation value (@) of the Higgs field ¢ starts with a
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value of order H, and with an initial velocity of order H 2
and then begins to move towards the minimum at o ac-
cording to the classical equations of motion for the effec-
tive potential. Here, H is the Hubble constant given by

2
87G

H?==77p(0)= A o?. (1.1)

M planck

For the minimal SU(5) model, H ~10° GeV.

That the initial fluctuation in ¢ is set in scale by the
value H can be justified independently on thermal,
quantum-mechanical, and gravitational grounds. First,
the location of the relative maximum of the finite-
temperature effective potential is of order H. Second, the
exit point of a quantum-mechanical tunneling event
through the finite-temperature potential barrier is of this
order. Third, Hawking radiation in the de Sitter phase®®
induces quantum fluctuations in ¢ of order H. In a cer-
tain sense, H is “the only scale around” available to the
initial fluctuations: while o determines the height of the
effective potential, only H appears as a characteristic pa-
rameter in its shape near the origin. Likewise, the expan-
sion of the background spacetime knows only about H,
through Eq. (1.1).

Since the slope of the effective potential near the origin
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FIG. 1. Effective potential in the new inflationary universe.
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is only of order H?, the expectation value ¢ (we hen-
ceforth drop the expectation-value brackets) can remain
near the origin for a period set in scale by H~! times
some nondimensional factor. As we will see below, this
factor can arguably be on the order of (27)? or larger.
During this period the potential energy will remain virtu-
ally constant. Hence integration of the Friedmann-
Robertson-Walker (FRW) equation

L2
a
a

shows the universe to be in a “de Sitter phase” character-
ized by exponential growth (inflation) of the scale factor
a(t). After this period, ¢ finds the true minimum of the
potential, whose height and slope are both set in scale by
o, whose inverse is the characteristic time, much shorter
than one inverse Hubble time, for the next stage of evolu-
tion: The value of ¢ oscillates about the true minimum
with an amplitude which is rapidly damped due to terms
in the effective action coupling ¢ to other quantum fields,
in particular fermions.!° The damping corresponds to
particle production and reheating of the universe. Since
the reheating period is very short (order o—!) compared to
the expansion period H ~!, the red-shift of the energy is
negligible and the universe will reheat to a temperature of
order 0. In the ensuing radiation-dominated FRW period,
baryogenesis and nucleosynthesis proceed as in the usual
big-bang cosmology.

Recently, it was recognized!!—!# that the new inflation-
ary universe provides a mechanism which might generate
the primordial energy-density perturbations necessary for
galaxy formation, from first principles and without postu-
lating special initial conditions. Hawking radiation in the
de Sitter phase®® will produce quantum field fluctuations
on all scales A. The fluctuations cross the de Sitter hor-
izon at times ¢,; (initial horizon crossing of the scale A).
As first discussed by Mukhanov and Chibisov!® and by
Lukash,!® one of the two physical modes of induced gravi-
tational perturbations does not decay while it is outside
the horizon. The fluctuation reenters the FRW horizon at
a final horizon crossing time f,, with an amplitude that
has increased by a factor that is independent of A. We
will show in this paper that this increase can be viewed as
being due to the change in the equation of state during
and immediately before reheating, but that an approxi-
mate conservation law guarantees that the increase is in-
dependent of the details of the reheating.

De Sitter space is time-translational invariant. There-
fore any perturbations, such as Hawking radiation, that
are intrinsic to the spacetime will cross their respective
horizons with some invariant amplitude. Perturbations
which cross later correspond to smaller comoving spatial
scales A; these perturbations will reenter their FRW hor-
izon earlier. If the growth factor between the initial and
final crossing times f,; and ?, is indeed independent of A,
then the amplitudes at times #,; will be independent of A,
even though #,, does depend on A. This is the so-called
Zel’dovich!” spectrum of perturbations, whose single free
parameter is conventionally denoted €, where

=2 (1.3)

3 (1.2)
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Plausible, although not definitively accepted, models of
galaxy formation require € to be in the range of 10—3*1,
A plausible theory of the early universe should produce a
value of € in this range.

It is a significant success of the new inflationary
universe that it produces a Zel’dovich spectrum at all.
Unfortunately, as the authors of Refs. 11—14 discovered,
the predicted value of € is much too large. While Refs.
11--14 all obtain roughly the same value for €, they do so
by very different, and in some ways incomplete, methods.
One purpose of this paper is to give a careful and com-
plete calculation of € for the new inflationary universe; we
would not want to reject so elegant a model until we are
certain that its € is being calculated correctly. Doing so,
we obtain approximately the same answer as previous cal-
culations.

A second purpose of this paper is to reconcile the dif-
ferent calculational methods used in Refs. 11—14. We
will show that the different calculational methods are not
equivalent. There are two mathematically different ef-
fects which enter into the growth of the fluctuations.
Each of Refs. 11—14 compute one or the other of these
effects, but none compute both. For the case of the new
inflationary universe, the effects are both of the same or-
der, so comparable answers were obtained by previous au-
thors. We will show, however, that there are inflationary
models (characterized by different forms of the effective
potential) for which the two effects are not comparable.
For these examples, the application of previous methods
in the literature would give incorrect results. In at least
one further case,!® an incorrect approximation during
reheating has led to a wrong result being obtained for the
new inflationary universe, one in agreement with neither
Refs. 11—14 nor with this paper.

The third purpose of this paper is to exemplify how one
may carefully calculate the growth of fluctuations, not
only in the new inflationary universe, but also in a variety
of different inflationary models.

The outline of this paper is as follows: In Sec. II, we
briefly review the gauge-invariant framework developed in
Ref. 19 (hereafter cited as paper I), and describe the ap-
proximation scheme which is justified for inflationary
models. We develop an approximate conservation law
which can easily be applied to any particular model. In
Sec. III, we apply this scheme specifically to the new in-
flationary universe in considerable detail, with some
technical points relegated to the appendices. In Sec. IV,
we consider several “toy” models, and use them to show
how the growth of the perturbations does not depend on
the details of the particle-physics model while the pertur-
bations are outside of their horizon. Also in the context
of these toy models, we discuss the inadequacies of previ-
ous calculational methods. Section V summarizes our re-
sults.

A few words about our notation. Greek indices run
from O to 3, Latin ones only over the space indices. We
use the Einstein summation convention; m py,,cx stands for
the Planck mass and the equation of state of the back-
ground matter is given by

w:%, (1.4)



e2=2 . (1.5

We expand the metric about a FRW background:
guv=diag(—1,a%(1),a%(1),aX(1) +a(t)gl) . (1.6)

a (1) is the scale factor, gf)}) =0 in the synchronous gauge,
and

gi'=A48;+B ;. (1.7)

Similarly, the energy-momentum tensor can be expanded
into a background piece and a perturbation 7,,. Finally,
the gauge-invariant metric potential ® is in the synchro-
nous gauge given by

Oy =1(4 —adB) . (1.8)

II. OUTLINE OF THE METHOD

In Ref. 19 we derived a complete dynamical system of
equations of motion describing cosmological perturbations
of a FRW universe. The system consists of three com-
ponents: the background metric given by its scale factor
a (t), the metric perturbations which can be described by
the gauge-invariant metric potential ®y(x,?), and third
the matter fields, in our case a single scalar field ¢(X,z).

All three components are coupled. The FRW equations
relate the scale factor to the space-averaged matter
energy-momentum tensor
2

EH2=%[) with p=—(T9) , (2.1)

a
a

2
%] = —87Gp with p=+(T}) . (2.2)

2% 4
a

Formally, averaging is to be performed with respect to the
FRW coordinates. In practice we can average over con-
stant time hypersurfaces in any gauge in which the metric
perturbations are small (of order A). The correction terms
in the gravitational perturbation equations will then be of
order A? and hence negligible.

The gauge-invariant equation of motion for ® is

Dy +(4+43¢,2)HOy +3H (¢, —w)Py =1 , 2.3)

I(t,X) is a combination of matter source terms. Its pre-
cise form will be discussed below. Both the matter and
the background metric couple to ®y. The former deter-
mines the equation of state of the system, i.e., the func-
tions w and ¢,2, and also the matter source terms I(z,X ).
The latter determines H (¢). Finally, the metric fluctua-
tions couple back to matter: they enter into the equations
of motion for matter, e.g., for a single scalar field ¢(X,¢)
in the synchronous gauge

—-6,2—3%8,+a_2V2+D‘” d=V'(8) . (2.4)

The term D! is the correction term linear in metric per-
turbations:

ROBERT BRANDENBERGER AND RONALD KAHN 29

D(l)(¢)E —a _2gij(1)¢,ij—a _2gf{:(1)¢,j
—5ho+3ah b 2.5)
h=gV=34+V?B . (2.6)

The necessary initial conditions for the above dynami-
cal system follow from Hawking radiation. Curved
spacetime induces fluctuations in the quantum field. By
the Einstein constraint equations

Oy =47Ga®>VHTY" —3aaV2TER) , 2.7)
Oy =47G [a®VHTYY —3aaV2TEW)], (2.8)

the matter perturbations are inextricably linked to metric
inhomogeneities.

The gravitational side of the dynamical system is
described in terms of gauge-invariant quantities. Not so
the matter side. Unless the background solution ¢q(z) is
time independent, the deviation 8¢(X,¢) of the scalar func-
tion ¢(X,t) from its background value will not be gauge
independent. The only way to construct a gauge-invariant
function from 8¢(X,?) is to combine it with a metric per-
turbation with opposite gauge transformation properties.'?
We choose to stick with 8¢(X,#). In order to evolve the
matter field we must therefore pick a gauge and in that
gauge determine gi,l,,) in terms of ®y, the matter source
terms Z?; (see below) and any initial conditions required
to totally fix the gauge. For example, in the synchronous
gauge A (¢) and B (¢t) are determined by integrating (I3.23)
and (I3.7),

A=—87Ga*vV2Z,, 2.9)

B=(aa)~ (4 —2@y), (2.10)
and specifying 4 (¢;) and B(t;) at some initial time ;.

We now turn to the reformulation of the dynamical
equation of motion for ®g as an approximate conserva-
tion law.

Bardeen, Steinhardt, and Turner'* noticed that for per-
turbations with wavelength greater than the Hubble radius
H™', a metric potential ¢ is approximately conserved.
The term & was defined in terms of the uniform Hubble-
constant metric perturbation A,

k2

=h +——————— ,
t=hu a?127G(p+p)

(2.11)

h, is the coefficient of the longitudinal spatial harmonic
for the metric perturbation g:,lv). As such it is proportion-
al to what we should denote 34 —k?B, but in the uniform
Hubble-constant gauge. The statement {=O0 can be de-
rived from the equations of motion for metric perturba-
tions in the uniform Hubble-constant gauge [see formulas
(2.13) and (2.14) in Ref. 14] provided entropy and aniso-
tropic stress terms can be neglected, and provided we are
outside the Hubble radius (such that terms with an addi-
tional factor k2/H?a? are irrelevant).

In terms of our gauge-invariant variables, { can be writ-
ten as
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2 (DH +H_1(i)H

- Dy
=37 13w T

l+9

k 1
aH 14w
(2.12)

For the purposes of this paper, Eq. (2.12) may be regarded
as the definition of §{. Readers familiar with the uniform
Hubble-constant gauge analysis'* will easily recognize the
equivalence of (2.11) and (2.12) using formula (2.43) of
Ref. 14.

We claim that ¢ is constant for perturbations outside
the Hubble radius provided entropy and anisotropic stress
source terms are negligible. The proof is simple: using
the continuity equation to substitute for w and the FRW
equations to determine H, we derive

2EH(1+w)=Dy +(4+3¢,2)HOy

+3(cs2—w)H Dy (2.13)

[up to terms with an additional factor (k/aH)?. Thus
for the growing mode £=0 is equivalent to the homogene-
ous equation of motion (2.3) for ®y. (The decaying mode
can be of the same order as the subdominant source terms.
Hence for it the conservation law is not a good approxi-
mation.) In the absence of matter source terms § is a con-
served quantity outside the horizon.

The above analysis also shows that the descriptions of
the homogeneous growth of perturbations in comoving
and uniform Hubble-constant variables are in fact identi-
cal.

For perturbations outside the Hubble radius the con-
stant of motion is

Oy +H_l(i>1{
14w

In a de Sitter-type phase the second term is negligible.
Comparing initial and final horizon crossings ¢; and t; in
inflationary-universe models [which have 1+w(tf)——

+Py . (2.14)

and <I>H(tf)—0], we obtain
$O4(t)+H ™ 'Dy(t)
@H(tf)=£ 3 PH\j H\l;
+3 D) . (2.15)

At horizon crossing ®p is simply related to the relative
energy-density perturbation in the comoving gauge. By
the constraint equation (2.7),

Ot =221,) 2.16)
2p
(and analogously at ¢7). Hence the physical interpretation
of our conservation law is that the ratio of the energy-
density perturbation over the total nonvacuum energy is
the same at initial and final horizon crossings.

Our method may now be summarized as follows. We
first consider the complete dynamical system, matter, and
geometry, and analyze its evolution in each phase of the
cosmological model. In particular, we determine the mag-
nitude of the matter source terms in Eq. (2.3). If they are
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negligible, then the amplification of perturbations can
only depend on the change in the equation of state, since
it eniers only the left-hand side of Eq. (2.3). In this case
we can apply Eq. (2.15) to obtain the magnitude of
energy-density fluctuations at final horizon crossing.
Checking the magnitude of matter source terms must
however, be an integral part of any application.

We analyze the effect of matter source terms in Eq.
(2.3) using the Green’s-function method. We set

Oy =04 +0F .

The term @ is the solution of the homogeneous equation
[i.e., Eq. (2.3) with I(#)=0] with the given initial condi-
tions. It represents the increase in ®y due to gravitation-
al effects alone. ®% is the particular solution of the inho-
mogeneous equation (2.3) with vanishing initial conditions
for both ®5 and ®y. Physically it represents the addi-
tional perturbations caused by the matter perturbations
which were initially set in motion.

As an ordinary second-order differential equation (2.3)
admits two eigenmodes f(¢) and f,(¢). Thus

M (t)=c f1(D+crf>(2) ,

where ¢ and ¢, are determined by matching initial condi-
tions. By the Green’s-function method

(2.17)

(2.18)

@5 ()= —£1(1) [ Tl fr(tdr’
0

+£0 [ 1@t f1(e0ar 2.19)
0
where ¢ is the initial time and
e =[f2(t)f1() —Fr(t) f1 ()]~ (2.20)

In order to determine the effect of matter source terms,
we need the eigenmodes f(¢) and f,(z). Thus we need to
solve the complete dynamical system (2.1)—(2.10). In gen-
eral it will be impossible to find an exact analytic solution.
We propose the following approximation scheme: we will
cut the link between metric perturbations and matter, i.e.,
we will evolve the scalar field ¢(X,?) in the unperturbed
background metric. This approximation will only be good
if we evolve matter in a gauge in which metric perturba-
tions are small (or at least remain small long enough). In
a constant-¢ gauge this will not be true for typical
inflationary-universe models. As we will show in Sec.
III, Hawking radiation in a de Sitter phase of an inflation-
ary universe generates large quantum field perturbations.
The surfaces of constant ¢ will therefore have a large ex-
trinsic curvature perturbation. In Appendix A we prove
that the induced relative metric perturbations are of order
1, much too large for perturbation theory to be valid. In
the synchronous gauge on the other hand, the metric fluc-
tuations remain small up to reheating.

A second approximation is to determine the equation of
state w(¢) and c;%(¢) by considering only the spatially
homogeneous evolution of matter. In the case of the new
inflationary universe this leads to a rapid transition from
a de Sitter-type equation of state to a radiation-dominated
FRW phase, rapid in the sense that the transition period 7
is much shorter than H~!. Thus the Hubble parameter
H (t) is constant to an excellent approximation.
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With these approximations, the calculation of energy-
density fluctuations in inflationary-universe models
proceeds in two steps. Given H (z), we first determine the
evolution of the scalar field in the synchronous gauge.
This determines w(¢) and ¢;%(¢) and thus the crucial devi-
ations in the equation of state from that of an exact de
Sitter phase. We also obtain the matter source terms.
Next, we solve the equation of motion for ®y using the
method of (2.17)—(2.20). We thus obtain the time
development of metric perturbations. The term @y at fi-
nal horizon crossing is related to the quantity we want to
calculate, the energy-density perturbation 8p/p in comov-
ing coordinates, by (2.16).

Both to obtain a better understanding of the physics
and to facilitate the mathematical analysis, we analyze the
dynamical system separately in the various phases of the
model being considered. A phase is a time interval with
some characteristic time evolution of the equation of
state. How we pick the phases will depend on the particu-
lar particle-physics model we consider.

For our detailed analysis of the new inflationary
universe in Sec. III, it will be convenient to slightly
rewrite the source terms. In Ref. 19 they were given in
the form

I =47G[— P —3¢,?Ha’V 22,

+3HX %2 —w +c¢,a’Py+a’HP,)] . 2.21)
In terms of the matter perturbations T#" D,
ﬂlzaZV-—ZTf{,(’l) ,
Pr=a*>V-X5,; TV —3v-2T4") (2.22)

P,—TY%D
st °

2, is the anisotropic stress and is individually gauge in-
variant, & is the pressure perturbation, and Z; a matter
flux term. The combination of Z7; and Z7; in (2.21) is
gauge invariant. For a scalar field ¢ as matter source
(I4.5) through (14.7) give

P1=a "V b )yt 597 —5a V)

—V($)—3(s?)

+5a72(V)) +(V (),

Pr=a" VA ;¢ y—3aV "4 ;)i » (2.23)
Py=—a g, -

We first extract a gauge-invariant piece from Z;:
91=%a28,~jT'7“)—%V2.@2 ) (2.24)

Next we observe that
Py=—2HP,+a [V 2a*s,; TV —3v2T9")], .
(2.25)

The first piece cancels one of the terms proportional to
Z,in (2.21). Thus (2.3) can be rewritten as

Dy +(4+3¢,)HPy +3H 2 —w)Py =1,  (2.26)
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I=Iy+Ip+I+1+1; . 2.27)

Expressions 1,,, 5» and I are individually gauge invari-
ant, I, and I; only jointly. In general terms

Ill = —47TG%028,']'TU(1) N

I, =47Ga*(5,; TV —3v=214)1 |

I, =4rGH[a*V X8, TV —-3v-2T4))] ,, (2.28)

I, =127GH*a*V=X8; TV —3v-2T4V)(c,2—w) ,
Iy=—12wGe,2Ha?>v —21% ")
For a scalar field it follows by (2.23) that
I =—47G[ 54>~ 5a " A(V$P—V($)— ()
a2V V()] ,
I, =47Ga [ 3(V$)— V2 ;) ;5] ,

I, =4wGH[V-AV$)* -3V %4, ) ;1,, 229

I, =120GH?(¢;* —w)[V ™2V -3V 40 ;)51 ,
I;=127GHc*V =4 s ;) ; -
Compared to 1 5 and I,, I, is suppressed by a factor

k?a—2H~%. Outside the horizon this factor is much
smaller than one (k ~!a=H"! is precisely the horizon-
crossing condition). Thus for our application I, is negli-
gible. Except near tz the order of magnitude of the other
source terms can be roughly estimated in the following
way:

Ill "“(’nPlanck)_2 | Ap | ’

Ii""(’nl’lanck)__2}12 | ¢ l 2 4
(2.30)
12 ~(mPlanck)~2H2(csz_w) ' ¢ | 2 ’

13 ~(W‘Planck)-—2‘f12cs2 l d’ | 2 .

The term |¢ | is the magnitude of the Higgs field, | Ap |
is the amplitude of the pressure oscillation on the constant
time hypersurfaces, and time derivatives have been re-
placed by the inverse expansion period H.

Since the quantum field perturbations are large, at least
in the case of the new inflationary universe, it is incorrect
to a priori neglect I, and I ; compared to the other matter

source terms. Our analysis (see Sec. III and Appendix C)
proves however that in the essential period near reheating
the pressure perturbation and flux terms I,; and I; dom-
inate.

III. THE NEW INFLATIONARY UNIVERSE

We will describe the application of our method in con-
siderable detail for the case of greatest physical interest,
the new inflationary universe of Linde? and Albrecht and
Steinhardt.> These calculations can then be straightfor-
wardly extended to other particle physics models. We will
omit many details in our discussion of toy models in Sec.
I\A
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The one-loop effective potential in the minimal SU(5)
Georgi-Glashow model with Coleman-Weinberg potential
is

2
V(g)=+Bo*+B¢* It L | 3.1)
o 2
The constant B is given, e.g., in Ref. 20:
5625 g*
=== 8 3.2
1024 2 ° (3.2)

where g is the SU(5) coupling constant.

We will first apply the conservation law (2.15) to obtain
the value of energy-density fluctuations at horizon cross-
ing under the assumption that the matter source terms are
negligible. In a second step we will go back and carefully
investigate the time development of ®j keeping track of
the simultaneous growth of matter perturbations at each
instant.

A. Application of the conservation law

In order to be able to apply the conservation law (2.15)
we must first investigate the equation of motion of the
background homogeneous scalar field ¢(z) and of the sca-
lar field perturbations 84(X,¢) for times ¢; at which scales
of astronomical interest cross the de Sitter-Hubble radius.
We need this analysis to determine the initial metric per-
turbations.

The new inflationary universe is based on the assump-
tion that after some initial period in which gravitational
effects dominate?! or after a phase transition, either
homogeneous in space?? or via the formation of bubbles of
the new phase in a surrounding sea of the old symmetric
phase,?® the quantum field can be described semiclassical-
ly. The expectation value of the quantum field will start
moving homogeneously in space (or at least homogeneous-
ly compared to wavelengths within the present horizon)
towards the value ¢ =0 according to the classical equa-
tion of motion for ¢ in the effective potential ¥ (¢). The
initial value for ¢ at time ¢, the beginning of the rolling
phase, is of order H.

We will first focus on the k =0 mode ¢(z).

The first approximation in solving the equation of
motion for ¢ is to replace the logarithm in (3.1) by a nega-
tive constant of order InH?/0? in the de Sitter phase.
This is a good approximation, since during most of the
rolling phase the value of ¢ will be of order H and hence
the logarithm will change only very slowly. Equation
(3.1) can be rewritten as

V(d)=V(0)—+rd*, (3.3)

A is of order unity since the SU(5) coupling constant at
the grand unification scale (our renormalization point) is
of order 0.5. Following Ref. 11, we will use A=0.5 in any
numerical evaluations.
down when ¢, becomes of order o and the positive curva-
ture of the effective potential near the absolute minimum
becomes non-negligible. The time 7z when this occurs
signals the end of the de Sitter phase. For the sake of de-
finiteness we define tz by

The approximation will break .
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doltr)=40 . (3.4)

Since the slope of the effective potential near the origin
is very small, the initial field acceleration ¢, will be negli-
gible. The second approximation in solving the equation
of motion

bo-+3Hdo=—V"(dy)

for ¢, is therefore to neglect the second time derivative.
We obtain the very simple equation

(3.5)

3Hpo(t) =N (1) , (3.6)
which has the solution
3H 172 )
3H
= 3.8
2A¢,%(0) 6.8

t* is the time when the approximate solution ¢(z) shoots
off to infinity. Since this will occur at about the time ¢,
reaches the point where the approximation (3.3) for the ef-
fective potential breaks down, ¢* is a good measure of the
duration of the de Sitter phase.

In order to obtain sufficient inflation to solve the
homogeneity and flatness problems, the period of inflation

must satisfy!>?
t*>65H!. (3.9)

This requirement constrains the initial value of ¢, at

t =0, the beginning of the rolling phase. If we set
¢0(0)=7yH, then by (3.8) and (3.9)
3 172
v < T3.(—)I ~0.2 (3.10)

By dimensional analysis ¥ should be of order 1. Our
value is at the lower end of the admissible range. This is
the fine-tuning problem in the new inflationary universe, a
problem emphasized by Starobinskii.!* It is distinct from
the mass fine tuning needed to obtain a Coleman-
Weinberg potential. As we will show below, (3.10) is per-
fectly acceptable if the initial value is generated exclusive-
ly by quantum fluctuations in curved spacetime.
We consider fluctuations of galactic scales, i.e., with
physical wavelength
1 ~10%1t.yr~10*® Gev~! (3.11)
and comoving wave number

a(3°K)l_1

k=a(tR) a(tR)

~a(tg)x 1071 GeV . (3.12)

The horizon-crossing condition is
H '=k~'a, (3.13)
where

a(t)=exp[H (t —tg)]a(tg) .
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Hence on galactic scales

(tg —1;)=~50H !, (3.14)

Thus at horizon crossing ¢; the scalar field and its velocity
are

Bolt;)~10""H, ¢o(t;)~10"3H? . (3.15)

Next we will analyze scalar field fluctuations. The de
Sitter phase plays two important roles in the evolution of
matter fluctuations. All initial classical perfect-fluid-type
matter fluctuations and their associated metric perturba-
tions will decay exponentially in the supercooling phase
prior to rolling. There is no Jeans instability for de Sitter
space.?* This is easy to verify in our formalism: as
demonstrated in Sec. IV, ®; decays exponentially when
the corrections to the de Sitter equation of state are deter-
mined by a perfect fluid. On the other hand, all quantum
fields in de Sitter space® or in a de Sitter phase of a FRW
universe’ experience the Hawking effect: Hawking radia-
tion induces quantum field fluctuations on all scales in-
side the Hubble radius H ~!(¢) (outside the Hubble radius
no microphysical effects can act coherently).

We will consider perturbations characterized by a
comoving wave number k. Outside the horizon the fluc-
tuations will evolve classically. The initial perturbation
8¢(k) is determined by Hawking radiation at horizon
crossing ;. The term 8¢(k) is the average deviation of
¢(X,t) from the mean value ¢y(?) on a scale k. By stan-
dard statistics (see, e.g., Ref. 25) it is related to the corre-
lation function for which we use the two-point function of
the quantum field:

172
k3

o E,i =
d(k,t;) 20

[ %e T (3(%,0)(0,1))

(3.16)

Since early in the de Sitter phase the potential at ¢o(¢) is
almost flat, the two-point function can be taken to be that
of a scalar field in de Sitter space, i.e. (see Ref. 12),

. 2
($(%,1)6(0,)) = — E_In(H | X |) . (3.17)
T
Hence
H2 172
(k)= | = ] ~10"'H . (3.18)
T

Sé(ﬁ,t,-) is obtained by solving the linearized field equa-
tion of motion (see Appendix B). From the known values
of ¢y and 8¢ at ¢; it follows immediately that

8¢(K,t;)~10"H .

Equations (3.15), (3.18), and (3.19) are the initial values
required to compute w(¢;) and the metric perturbations at
4.

Pressure and energy are given by the homogeneous
mode ¢o(2):

p(1) =3¢ )+ V(do(2)) ,
(1) =%do2(1)—V(go(1)) .

(3.19)

(3.20)
(3.21)

Hence
(1) $’
(=L =142 3.22
) 6.2
In particular, at ¢;
4
14+ w(f;)~10"* g ] . (3.23)
In Appendix B we verify that
@y (t;)~H ~'dy(1;)
2
~10-% | —H J . (3.24)
M planck
Applying our conservation law (2.15) and using
H o (3.25)
o M planck
[see (2.1)], we immediately conclude
Dy (25)=~10. (3.26)

This value for 8p/p is four or five orders of magnitude
larger than the acceptable experimental value.

So far we neglected the matter source terms in Eq. (2.3).
In order to take them into account, we must explicitly in-
tegrate (2.3) phase by phase. This detailed analysis will
also shed more light on the causes of the increase in ®.

B. Equation of state

In the new inflationary universe we distinguish three
phases, the de Sitter phase (rolling phase) during which
the k =0 mode ¢((?) is evolving towards the minimum of
the effective potential at ¢ =0, the reheating phase at time
tg (of length o~1), during which the vacuum energy of
the scalar field is rapidly converted into thermal energy of
baryons, and the ensuing FRW phase up to the time #; at
which the perturbations reenter the horizon.

It will be convenient to separate the de Sitter phase into
two periods. In the first, the field value @y(¢) is increasing
very slowly. ¢o(¢) is of the order H and thus the devia-
tions in the equation of state from that of an exact de
Sitter space are negligible. Equation (2.6) is a good ap-
proximation to the equation of motion. Once

B(t)=3Hp(1) ,

the approximation (2.6) breaks down. The time t; at
which this breakdown occurs signals the end of the first
de Sitter period. By (3.7) and (3.27),

(3.27)

(t*—tp)=2H"1. (3.28)
The value of ¢, at the end of this first period is
172
$oltp)= || H. (3.29)

In the second period of the de Sitter phase lasting from
tp to tz we must solve (3.5) in a different approximation.
Since beginning at fz the ¢, term dominates over the
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Hubble damping term, we can neglect the latter. Equa-
tion (3.5) becomes

o) =Ado (1) .
Equivalently, we can solve either of the two first-order
differential equations

172
A

N 2
2 ¢Oa

(3.30)

o)== (3.31)

which can be explicitly integrated. The solution of the
equation with the + sign gives a growing mode, the oth-
er a decaying mode. The general solution is
172

[a—(t—15)]7"

2
do(t)=c; [I

2 172
+c; {7 [a+(t —tp)]! (3.32)
with
2 172
a= |- o~ Ntg)=(3)2H 1, (3.33)

where ¢; and c¢, are determined by matching the initial
conditions at 3. We can easily check that O <c, <c;.
Hence we can drop the decaying mode entirely and write
172
[a—(t—t5)]7}.

bo(t)= (3.34)

A

It is easy to check our method for self-consistency. As
t increases from tp to g, both $o and ¢y® increase from
~H? to ~0°, while 3H¢, only grows from ~H?> to
~Ho?. Dropping the Hubble damping term is therefore
justified. The physical reason is that the second period of
the de Sitter phase is short compared to the Hubble ex-
pansion time H ~!: Since the end of the de Sitter phase is
determined by ¢o(tg ) =0 (3.34) gives

(tg —tg)~a=(E)2H 1, (3.35)
Hence in this period the kinematics of the scalar field ¢
dominates over Hubble red-shift.

We can now determine the equation of state in the de
Sitter phase. Since ¢(¢f)~H? in the entire first period of
the de Sitter phase, Eq. (3.22) shows that w=—1 is an
excellent approximation. In period 2,

—l<w<s. (3.36)

A significant deviation of w from the value w = —1 only
starts in the final interval of length o~!. Since both c,?
and the source terms in the equation of motion for ®y
vary by many orders of magnitude in this time interval,
setting w = —1 in the entire de Sitter phase is a good ap-
proximation.

¢, can be reexpressed using the continuity equation

et=B = — P __—_ 14y (3.37)

o 3p+pH
with
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_ 20

3H$o
From (3.7) it follows that in the first de Sitter period y
will be small. As ¢ increases from ¢; to tz, —y will grow
from ~10% to ~1. Hence ¢;=—1 is a good approxima-
tion. We have thus verified that the deviations from the
equation of state

=—3f. (3.38)

w=cl=—1 (3.39)
of a perfect de Sitter space are negligible.
In the second de Sitter period, however, by (3.34),
f=[la—(t—tp)]"H!. (3.40)

f and hence |c,?| will increase in time from a value of
order 1 to one of order 10° (see Fig. 2)

f: ﬁ(l)—»é’(l)% ast:tp—tg . (3.41)
This time dependence of the deviation in the equation of
state from that of an exact de Sitter space is typical for
the new inflationary universe or for any model in which
the deviation is produced by a homogeneously evolving
and accelerating scalar field. In Sec. IV, we will show
that perfect fluid matter red-shifting away in the presence
of a large cosmological constant leads to an entirely dif-
ferent equation of state. We can explain the curves of
Fig. 2 in the following way. Shortly before reheating the
pressure increases due to the growing scalar-field kinetic
energy. At the same time the energy density only de-
creases insignificantly (it is red-shifting away, but
o~ '<<H ™). Thus p is minute, leading to the very large
value of ¢,2 [by (3.37)].

Next we turn to the equation of state during reheating.
Once the scalar field ¢(t) reaches ¢ =30 at time 1, the
approximation (3.3) for the effective potential breaks
down. The curvature of the potential at its minimum o
begins to dominate. Thus the Higgs field starts rapidly
oscillating about ¢=0. Via Yukawa coupling terms in
the gauge field Hamiltonian this leads to the production

-10°-

FIG. 2. Equation of state near reheating. c,? is graphed
linearly for ¢;2> — 1, but logarithmically for ¢,2 < —1.
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of baryons whose equation of state is that of a relativistic
gas. This process is discussed in detail in Ref. 10. The
consequence of the evolution of the scalar field is an effec-
tive damping term I'¢ in the equation of motion for ¢.
The energy py in the scalar field hence decreases exponen-
tially,

(s L(t—tp

'o(tg) (3.42)

and is transformed into thermal energy p,(t). Since
I'~o0 >>H, the Hubble red-shift is negligible in determin-
ing w(¢).

The equation of state is given by

prt)=e TR )pf(tR):e_

(3.43)
(3.44)

p( t)=pf(t)+pm(t)2p(tR) ’
p()=ps(t)+p,(2) .

The pressure ps(t) from the scalar-field component of
matter can be calculated using the quantum-field equation
of motion (see Appendix D). Averaging over one oscilla-
tion period gives

pr(t)=0. (3.45)

We interpret this as the pressure of a coherent state of
scalar particles at rest. The thermal pressure obviously is

Pm()=1pm (D) . (3.46)
Hence
wit)=+(1—e TR (3.47)

To obtain c¢;%(¢) we must keep track of the Hubble expan-
sion: p,,(¢) and p(t) red-shift. Hence
I —T—tp)
YT .

As sketched in Fig. 2, both w(¢) and ¢;%(¢) rapidly relax
towards their FRW values + during reheating.

e 2 () =w (1) — (3.48)

C. Matter source terms

As we showed in Sec. III A, Hawking radiation pro-
duces initial matter inhomogeneities at horizon crossing.
We will propagate these perturbations up to reheating ac-
cording to the scalar field equation and use the result to
determine the matter source terms.

An important point to note is that the linear approxi-
mation for

8¢(X,t)=¢(X,t)—do(t) (3.49)

breaks down as soon as 8¢(X,t)~¢y(?). Using Eq. (B1),
we can show that this happens almost immediately after
horizon crossing. In Appendix B we demonstrate that
during the entire de Sitter phase the scalar field perturba-
tions can be encoded in the form

(X, t)=¢o(t —67(X)) (3.50)
as a space-dependent time lag
= o 8p(X,1)
87(% )—ei KT gr(i ) 2P o11) (3.51)

é(t;)
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whose amplitude is time independent and by (3.50), (3.51),
and (3.7) is given by

172
srik)= |22 | g2 | B | (3.52)
37 k
By (3.12), for galactic scale perturbations,
dr~10H ' . (3.53)

It is this large value of the time lag which is ultimately re-
sponsible for the excessive magnitude of the inhomo-
geneities in the new inflationary universe.

It is important to remark at this point that in many
particle physics models an asymptotic time lag 87(X ) can
be defined by (3.50) in the limit ¢>>¢;. The value ob-
tained may or may not agree with the initial “time lag”
(3.51). The logarithmic potential model of Sec. IV is an
example for which the two expressions do not agree.

Returning for a moment to our approximation scheme
outlined in Sec. II: If we had chosen to determine w(z)
and ¢,(¢) from the space-averaged values of p () and p(1),
the transition in the equation of state would have been
slow. Over a period 67 the universe changes from being
all in a de Sitter phase to being all in a FRW phase. Ex-
pressions w(¢) and ¢,*(¢) will thus slowly change over this
period; H (¢) can no longer be set constant up to reheating.
We were not able to find a good analytic approximation.
Hence the entire analysis would have to be numerical.
Since the source terms do not dominate, the conservation
law (2.15) applies and guarantees that the analysis will be
independent of this approximation.

The magnitude and time dependence of the matter
source terms can now be calculated by inserting into Eq.
(2.29). As sketched in more detail in Appendix B, but is
already intuitively clear from (2.30), I;; and I; are the
dominant terms in the entire de Sitter phase. In the first
period

I(t)=To(t* —1)~2 (3.54)
with
2
M planck

In the second period, Ap space as ¢o*. Hence by (3.34)
and (3.40)

I(t)~I H*f*. (3.56)

At reheating the scalar-field inhomogeneities get
transformed into radiation fluid inhomogeneities. Their
amplitude during reheating is equal to their amplitude at
the end of the de Sitter phase. In the FRW phase, howev-
er, the matter source terms will red-shift away as the
background fluid itself. This approximation is consistent
with our approximation scheme. Taking geometric per-
turbations into account for the matter evolution would
lessen the decrease (a reflection of the Jeans instability of
a FRW universe with a relativistic fluid). Note that it
would be incorrect to turn the matter sources off after
reheating. The Tj; perturbations are freely specifiable,
but not the flux terms. They are related to the geometric
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perturbations via the constraint equations.
From (3.54), (3.55), and the above discussion we there-
fore conclude that in the FRW phase

a(t)

I(t)~H?
0 a(tz)

(3.57)

D. Evolution of &y

We have now determined all the quantities which enter
into the equation of motion (2.3) for ®; and can begin a
phase-by-phase analysis of the growth of ®.

In the first de Sitter period te[t;,z5] it is justified to

work with the following approximation to (2.3):
Sy +HDy=I,(t*—1)"2. (3.58)

As in every spacetime with ¢,2=w, one eigenmode is con-
stant while the other decays,

fl(t)=1 )
Hie—t) (3.59)
—H(t—t
falt)=e ",
=gl (3.60)
By matching initial conditions we obtain
H( ) H 2
DY (t)= |d;+dpe " ] ———] (3.61)
M planck

with d, and d, both constants of order 103, On the oth-
er hand, by the Green’s function formula (2.19),

@ () I H " [(t*—1) "1 —(¢*—1;)" 1] . (3.62)
Hence at 3 the particular solution dominates:
Oy (tg)®(tpg )y ,
(3.63)

Dy (1) D2 (1) I H .

We conclude that in the first de Sitter period immedi-
ately after horizon crossing matter source terms are non-
negligible. They contribute by the same order of magni-
tude to ®y, and the factors of order unity are in fact
slightly larger.

In the second period of the de Sitter phase w = —1 is
the only justifiable approximation. The equation of
motion (2.3) for &y becomes

Oy +(1—4f )\ Hdy —4H Oy =I(t)~I H*f* . (3.64)

Since |c,%| is rapidly increasing, the constant mode of
the first de Sitter phase becomes a growing mode. Its ex-
act form was first given by Bardeen, Steinhardt, and
Turner in Ref. 14. Introducing the abbreviation

E(t)=p(t)+p (1), (3.65)
the modes can be written as
_ t o Bl L,
f1)=H [, exp[H (2 Ol gy
(3.66)

—H(t—tg)

fa(t)=e .

2181

(More details on the growing mode are given in Ref. 26.)
The homogeneous solution ®%(¢) is given by (2.18). By
matching initial conditions at ¢z with (3.63), we find

H 2

M planck

Cl~Cyr== (3-67)

In Appendix C, we verify that the particular solution, i.e.,
the effect of matter source terms, is not dominant. We
also show that ®y and ®y increase by three and four
powers of o /H, respectively,

3

H
Oy(tg)= [7‘;— a=_, (3.68)
4
by(tp)= %lcleH. (3.69)

The large increase in @5 in the second de Sitter period
is mainly a consequence of the homogeneous evolution of
&y, the self-gravitation of initial perturbations in a
universe in which | ¢,?| is rapidly increasing.

The matter perturbations grow concurrently with the
geometric fluctuations. Equation (3.56) gives the exact
time dependence. This time scaling could also be obtained
using the constraint equations. Although I(¢) turns out
to be unimportant in the second de Sitter period, it is im-
portant to keep track of its magnitude for the analysis in
the FRW period.

The upshot of the analysis of Eq. (2.3) during reheating
is that the reheating period I'~! is too short for any order
of magnitude change in @5 or @y to occur. Since no en-
ergy scale larger than o arises in any of the coefficient
functions in (2.3), it is fairly obvious neither ®; nor ®y
can change by more than a factor of order unity. We
check this claim rigorously in Appendix D.

By integrating the FRW equation and matching with
the initial conditions after reheating we obtain

a(t)=altg)[1+2H (t —15)]'/?, (3.70)
H()=H[1+2H (t —tg)]™" (3.71)

during the FRW period. The term H is the de Sitter-
phase Hubble constant. Since c,2=w =—;—, one of the
eigenmodes of the equation of motion

Sy +5H (1) Dy =1(1) (3.72)
is constant. The second decays as

fot)=[142H (t —tg)]732. (3.73)
The homogeneous solution of (3.72) is

D (t)=c,+ey[1+2H (t —15)]7372 . (3.74)

If it were not for the large initial value (3.69) of &y, ®y
would remain constant. Since

cy~®y(tg)H™ !, (3.75)
both ¢, and ¢; must be of order one. Hence
Y (tr)~cy ~1. (3.76)

It is easy to check that ®%(z) is dominated by
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5 ()= — [ Iele)fo(edt’
R

~In[142H (¢t —tg)] . (3.77)

In particular, at horizon crossing ®%(¢) dominates and

@y (17)~50 , (3.78)

in agreement with the results of previous analysis.!!—14

To obtain (3.78), recall that at horizon crossing

Ha(tp) |

[1+2H(tf—tR)]= &

) (3.79)

which for galactic scale perturbations is of order 10*°. We
obtain a spectrum which is scale invariant up to logarith-
mic corrections.

One final comment is appropriate. We agree with Ref.
14 on the magnitude of the increase of ®y during the
FRW period. In Ref. 14 the growth stems from the
homogeneous evolution alone. Nevertheless there is no
disagreement. Our respective equations differ by a term

a~ Wi oy (3.80)

added to both sides of (2.3). Thus part of our dominant
source term appears as one of the coefficients of @ in
Ref. 14.

E. Conclusions

The time evolution of ®j is sketched in Fig. 3. The
amplification of ®y is mainly due to the rapid change in
the equation of state prior to reheating. We keep track of
the time development of the matter source terms. In con-
trast to previous claims we conclude that these source
terms are not negligible. Keeping track of them does not,
however, change the order of magnitude of the final re-
sult, but at most the prefactor of order unity.

Our answer for the amplitude of energy-density fluctua-
tions at horizon crossing agrees with the previous analy-
ses:'!~!* the spectrum is nearly scale invariant, i.e., it de-

4 de Sitter —— e—— FRW
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FIG. 3. Phases of the evolution of the new inflationary
universe and growth of ®y.
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pends only logarithmically on k, but the amplitude is too
large.

An estimate of the accuracy of the various approxima-
tions is given in Ref. 26.

IV. OTHER MODELS
A. General considerations

The first aim of this section is to present toy models
which demonstrate that the final magnitude of energy-
density fluctuations at horizon crossing is independent of
the details of the phase structure of the particle physics
model between the times when scales of interest leave the
Hubble radius and when they reenter. In particular, the
amplification factor of perturbations is independent of the
specific reheating mechanism and of the details of the
quantum-field equation of motion. To this end we will
consider a model with an additional period of inflation at
a lower energy scale, e.g., associated with the Weinberg-
Salam phase transition (Sec. IV B), and a model with inef-
ficient reheating (Sec. IV C).

The conservation law (2.15) renders these claims fairly
obvious. We must check however that the matter source
terms are, in fact, unimportant.

A second aim is to compare the previous methods in
the literature!! ~!* and discuss their limitations.

One of the proposed methods!!—13 is based on evolving
matter perturbations (as scalar field perturbations) in the
unperturbed de Sitter metric up to reheating. At that
point a coordinate transformation to constant ¢ gauge is
performed. By this gauge transformation the perturba-
tions shift to the metric. They are then evolved in time
during the FRW phase according to one of the usual
frameworks for analyzing cosmological perturbations.?”28

The main drawback of this method is that it neglects
metric fluctuations in the de Sitter phase and focuses ex-
clusively on the pressure perturbations induced at reheat-
ing by the time lag in the scalar field. In addition, reheat-
ing is considered to be an instantaneous process.

The authors!!—!3 derive the following “magic” formula:

épg(tf)zHST . 4.1)

87 is the time lag in the evolution of the quantum field.
Most papers naively compute 67 at initial horizon cross-
ing by
8= ———6.¢(t') .
dol(2;)
As stressed by Guth,? the asymptotic value of 87 just be-
fore reheating must be used. Such an asymptotic value
might be difficult to compute. It might also be unreliable,
since close to reheating the linear approximation for 8¢
will break down.
We present a model for which the naive application of
(4.2) fails, but where inserting the asymptotic value for 87

in (4.1) does give the correct result (the logarithmic poten-
tial model of Sec. IV D).

(4.2)
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The second method in the literature! applies Bardeen’s
gauge-invariant analysis of cosmological perturbations®
to the new inflationary universe, consistently in all the
periods. Our method is but a modest extension: we in-
clude the effects of matter source terms by keeping track
of the time evolution of scalar field fluctuations. Refer-
ence 14 focuses exclusively on the self-gravitational in-
crease in the amplitude of fluctuations.

There are two mechanisms which cause initial energy-
density perturbations to grow. The first mechanism,
which we will call “self-gravitation” of initial inhomo-
geneities, is due to the attractive nature of the gravitation-
al force. Overdense regions tend to clump further. The
expansion of the universe counteracts this tendency. The
net balance is self-gravitation. In a radiation dominated
FRW universe this process produces the well-known Jeans
instability (see, e.g., Ref. 31).

The second source of amplification are pressure pertur-
bations which arise during the evolution of the system.
As is well known (see, e.g., Ref. 27), in a radiation-
dominated FRW universe pressure perturbations of ampli-
tude A acting over a time interval H ! will produce
energy-density fluctuations of amplitude A at horizon
crossing.

The separation into these two mechanisms is not gauge
invariant. In the new inflationary universe, for example,
pressure perturbations at reheating act only during a
period o~!, while in synchronous gauge such perturba-
tions are of order unity during a period 87~H ~!. In the
first gauge the effect is unimportant, in the second cru-
cial. We maintain, however, that neglecting metric fluc-
tuations in the de Sitter phase in method 1 and neglecting
matter source terms for method 2 means neglecting the
component of one of the two mechanisms in the respec-
tive gauge. The best proof of this claim is to present
models for which one of the methods fails. We do this in
Sec. IVD.

When do formulas (4.1) and (4.2) reproduce the entire
homogeneous growth of fluctuations according to our
conservation law (2.15)? We derive a simple criterion
under which this is true. To this end we estimate the or-
der of magnitude of the results for both methods.

To evaluate (2.15) we apply the constraint equations
(2.7) and (2.8). Linearizing in 8¢ (thus, in particular,
dropping subdominant spatial gradient terms) and using
the equations of motion for ¢y(¢) and 8¢4(z), we obtain

10401 +H dy(t;)
47TG 2er—2 . o .

If the “slow-rolling” approximation is valid, i.e., if (}50 is
negligible, then the first term dominates and using the
equation of motion for 8¢(z) once more we obtain [by
(2.15)]

V" (do(2;))06(t;)

Dy (tr)~ -
i dolti) H

(4.4)

If the slow-rolling approximation is not valid, then the
second term in (4.3) dominates and

V' (do(2;))8¢(1;)
¢ 0*(;)

In physical terms if the scale which determines the curva-

ture of the potential at the point ¢(z;) when the perturba-

tions leave the horizon is H, then the “naive” application

of (4.1) and (4.2) will give the correct result.

If, in addition to linearizing in 8¢ we can write
8¢(X,1)=¢(2)87(X), then the two terms on the right-hand
side of Eq. (4.3) cancel. If this Taylor expansion is
valid—and inside the Hubble radius there is no reason this
should be so—then ®y(¢;) is dominated by terms of order
8¢2, in particular by the spatial gradient terms.

Dy ty)~ (4.5)

B. A model with a second period of inflation

In grand unified theories the full gauge symmetry is
usually broken to the observed symmetry group in two or
more stages. For example, in minimal SU(S5),> SU(5) is
broken to SU(3)xSU(2)X<U(1) at the grand unification
scale 0~10'"* GeV. In a second stage, the Weinberg-
Salam phase transition at 0’~100 GeV, the electroweak
symmetry group SU(2) X U(1) is further reduced to the ob-
served U(1) of electromagnetism. We will consider a toy
model in which the Weinberg-Salam transition is a
second-order phase transition mediated by a Coleman-
Weinberg potential. The transition will produce an addi-
tional period of inflation.

The phases in our model are sketched in Fig. 4. The
evolution up to just before t, is as in the new-
inflationary-universe model of Sec. III: the de Sitter
phase of the grand unified symmetry breaking from ¢, to
tg; is followed by reheating at tz;, and a first FRW
phase. Once the universe cools below o, it gets trapped in
the symmetric metastable vacuum state of the Higgs field
mediating the Weinberg-Salam symmetry breaking and
supercools during the interval from ¢, to tz. This phase
is followed by the second rolling phase lasting from ¢z un-
til reheating at tg,.

We consider scales which leave the horizon in the first
rolling phase and reenter in the final FRW phase.
Energy-density fluctuations on these scales are unaffected
by the new phases. The easiest way to see this is to con-
sider (2.15). ®g(#f) depends only on the initial fluctua-

tions ®(#;) and @ (¢;) and on the initial and final equa-
tions of state [w(¢;) and implicitly w (¢/)].

To appreciate the power of the conservation law (2.15),
we will sketch the nontrivial derivation of this result by

T(t)
o
H
o
Ha
t
t t ta t 1,
L2 R oprw A8 B2 Ry
rolling phasel Lrolling phase 2

supercooling phase

FIG. 4. Phases in the model with a second period of infla-
tion.
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integrating the differential equation (2.3) phase by phase.
Up to t,4 the analysis is as in Sec. III:
E(tg,)
Ot ) ———Py(1;) . 4.6

In the supercooling phase the equation of state is given
by

p()=ps(t)+pn,(t),
4.7)
PO=—ps()+5pm(2) .

The expression ps(t)~0"* is the vacuum energy of the
metastable ground. The deviations from a pure de Sitter
phase are given by relativistic matter with an energy den-

sity pp,(z) which is red-shifting away. Since
Pm(t) <<ps(t), we have
w=-—1,
(4.8)
=1

The equation of motion (2.3) for @y becomes (with
H=H,)

Gy +5SHDy +4H* Oy =1(1) . (4.9)
The two modes of the homogeneous equation are

fl(t)‘:e—Ht >

(4.10)
falt)=e 41,
Using ®p(,)=0, we obtain
Dy(t)=die T e T
=@yt [ Le T LTI gy

In the following rolling phase from #3 to tg,, @y is given
by (3.66)

dt’

Qy(t)=cH ft; exp[H (t'—1)] E(: )

E(tg)

—HU—t) 4.12)

+cje
The boundary matching conditions at ¢tz show that the
growing mode of the rolling phase couples only to the de-
caying mode of the supercooling phase,

—4H (tg—t —4H((tg—t,)

¢1=—3d,e @ (1,)e (4.13)

The analysis of the behavior of the growing mode through
reheating gives
E(tg,)

®plty)~——
ulty) E(tp)

cy . (4.14)

The expression E (tg,)~E (t4) is the value after reheating.
Since the nonvacuum part of the energy density red-shifts
away during the supercooling phase, we have

E(tB)=e—4H(tB—rA)E(tA) )

Combining (4.6) and (4.13)—(4.15) gives

(4.15)

E(tg,)

—ETti)—q)H(t,')zl s

the same result as in the case of the new inflationary
universe of Sec. III. In Appendix E we verify that the
source terms in the supercooling phase are unimportant.

An important corollary of our investigation is the ob-
servation that the evolution of ®y in an approximate de
Sitter phase depends crucially on the equation of state of
the small deviation. Red-shifting matter is a decreasing
deviation and leads to a decreasing ®y, an increasing sca-
lar field perturbation on the other hand yields an increas-
ing ®y.

C. Slow-reheating model

The previous example demonstrated that the amplitude
of energy-density fluctuations is independent of the phase
structure between when the scales of interest leave and
reenter the Hubble radius. It was convenient but not vital
to use the recast form (2.15) of the equation of motion for
®y. In this subsection we present a model which shows
that the reheating mechanism is irrelevant for 8p/p(ts).
But this time it is crucial to use (2.15). Trying to in-
tegrate (2.3) step by step through all the phases would
turn into a computational nightmare.

The potential of our toy model is sketched in Fig. 5.
Near the origin it is a quartic with a negative coefficient,
as in the case of the new inflationary-universe model. For
larger values of ¢, the potential is quadratic about the ab-
solute minimum at ¢ =M with curvature of order H?.

We consider perturbations which leave the Hubble ra-
dius in the quartic part of the potential, ie., for
H <¢ <¢.. Thus the initial perturbations and the initial
equation of state are as in the example of Sec. III. Hence
by (4.5), as in the previous example,

2 (4 )1 @.17)

p
[in agreement with (4.1) and (4.2)]. Equation (4.17) fol-
lows from the homogeneous growth of @y alone. Trying
to derive the result by integrating (2.3) quickly leads to
problems. Since ¢ is constant in the initial period of the
evolution, &y will be constant. In the slow-rolling phase,
H =const is an invalid approximation. We are left with a
complicated set of coupled differential equations to deter-
mine the input functions w(#), ¢,%(¢), and H (¢) for (2.3).
Without additional information about the precise values
of the parameters in the model it is impossible even to
find reasonable approximations.

V()

o4

V(p)~-rp*

/

V(@) =00 H ($-M)*

f t ¢
4% M

FIG. 5. Effective potential for the slow-reheating model.
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Another way to understand (4.17) is to consider the
evolution of ®y using synchronous time slicing. The
period Tx of reheating is given by the square root of the
curvature of the effective potential at its minimum (see
Ref. 10). The reason is the following: The decay constant
of the oscillation of the scalar field is of the same order of
magnitude as the physical mass of the Higgs particle
which in turn is given by the square root of the curvature.
Thus in our model

TRe=H !, (4.18)

The time lag 87 of the scalar field is of order 10H ~!, as
in the new inflationary universe of Sec. III. To be specific
we shall assume 27z =87. Consider a point X, with maxi-
mal time for lag. For an interval 87/4, X, will be in the
de Sitter phase while the majority of space will already be
in the FRW phase (see Fig. 6). Thus there will be a rela-
tive pressure perturbation of order 1 over this period. It is
well known (see, e.g., Ref. 27) that these pressure pertur-
bations will develop into energy-density perturbations of
the same order of magnitude at horizon crossing. This
also follows immediately from our Green’s-function for-
malism (inhomogeneous growth of ®5). We consider the
short period 67/2 during which the background equation
of state is FRW. Over this short period H can be taken to
be constant. Thus the two modes of the homogeneous
equation for @y are

f] (t) =1 ’
(4.19)
fz(t)=€ —5tH .
Therefore by (3.46)
8r/2
DYy (tg +87/2)~(SH)™" [ 1(¢")dr’
47 S57
~—|Ap | — . (4.20)
5II("“Plamck)2 | P l 2
Since the magnitude of | Ap | is o*, we obtain
D4 (tg +67/2)~Hb7 . 4.21)

D. Logarithmic-potential model

We will now present a model for which the “naive” ap-
plication of the magic formulas (4.1) and (4.2) gives the
wrong result, but where the asymptotic value of 87 works.
Equation (4.2) fails because the scale which determines

¢ = const

3t

FIG. 6. Constant-time surfaces in comoving gauge viewed in
synchronous coordinates.

the curvature of the potential at the exit point ¢(¢;) is not
H.
For p < ¢ < mpanck the potential is given by

V(qS)———cla"'——cz,u"'ln—L

, (4.22)
M planck

where o>u. Equation (4.22) is a modification of the
Higgs potential one obtains in the reverse-hierarchy super-
symmetric models (see Ref. 32). In particular, in the
geometric-hierarchy model,’> o =u and a natural choice
of the constants gives
s >10%.

]

(4.23)

In this case there is enough inflation while the Higgs field
is in the flat part of the potential (see Fig. 7) for large
values of ¢. As discussed in Refs. 14, 34, and 35, fluctua-
tions on scales of physical interest leave the horizon in
this period and grow according to (2.15) and (4.1) and
(4.2). The term ®y at horizon crossing is consistent with
observational requirements. The drawback of the model
is that without postulating special supergravity effects
which generate a sharp dip in the potential at ¢ =m pjapcx
there is insufficient reheating. Decoupling theorems (see
Refs. 33 and 35) pose additional problems.

We consider perturbations which leave the horizon at
¢ ~p. (Thus this analysis does not apply to models for
which scales of interest leave the Hubble radius in the flat
part of the potential.) To ensure that this first period is
an approximate de Sitter phase, we require o>u. The
main difference between perturbations which cross the
horizon at ¢ ~u and those which cross in the flat period
is the energy scale which characterizes the slope of the po-
tential at the exit point. For ¢ ~pu the slope is u?, for
large ¢ it is of the order u’H.

The naive application of the magic formula (4.10) gives
2

, (4.24)

Hbr~

which does not agree with the correct evolution of ®j ac-
cording to (2.15).

Initially the damping terms in the equations of motion
for ¢o(?) and 84(t) are subdominant. Hence the natural
initial conditions for matter at horizon crossing ¢; are

bolt;)=p ,

bolt)=p?,
(4.25)
8é(t;)~H ,
8¢(t,)zH,u .
Vi)
, . $

I Mpi
FIG. 7. Sketch of the logarithmic potential model.
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Both ¢¢8¢ and V'(¢,)8¢ are thus of order Hu® and hence
by (4.3)

2 3
. 1 (£ ) | —TL £

Qp(t;))+H ' Py(t;)~ mplmk] Hl . (4.26)

Since
4
1+w(t)~ [H—] , 4.27)
o

Eq. (2.15) gives

LZAPRIE B 4.28)

P

It is easy to check that the source terms are subdom-
inant in the de Sitter phase. Numerically we can verify
that ¢, remains of order u? and 8¢ of order Hy up to the
point at which the damping terms in the matter equations
of motion become important. Hence

I(2) < (M pranck )_2,LL3H (4.29)
and the Green’s-function method gives
4
p | H
< . (4.30)
(1) < e

In this model it is not hard to compute the asymptotic
value of 87. We will now demonstrate that its use in (4.1)
gives the correct result (4.28). The damping terms are
unimportant for

2
p<dot) < B, (4.31)
~H
i.e., for a time interval 7;~H ~!. Afterwards the Hubble
damping terms dominate in the scalar field orientations.
The valid approximation is

3Ho=p*¢o" . 4.32)
The solution is
172
do(t)= | == 2172 (4.33)
0 3H \

Similarly, the linearized perturbation equation for 8¢ has
an approximate solution
—1/2

8¢(1)=0¢(1y) (4.34)

x
to

to~H ~! characterizes the beginning of the second period.
Using 6¢(tg)~u, we see that 87 takes on an asymptotic
limit
5r=280 _ -1 (4.35)
do(t)

Hence (4.1) gives the correct result.

E. Models which “solve” the fluctuation problem

We have already mentioned one particle-physics model
which could potentially solve the fluctuation problem:

the geometric-hierarchy supersymmetric model.>*> Due to
decoupling theorems and insufficient curvature at the ab-
solute minimum of the potential though it seems impossi-
ble to generate sufficient reheating.>’

Softly broken supersymmetry>® has the same draw-
backs. As noticed in Ref. 37, it trivially solves the fluc-
tuation problem, but there is a priori insufficient vacuum
energy to reheat the universe. Both statements follow
from the simple observation that this model only differs
from the standard new inflationary universe by rescaling.

We will denote quantities in the nonsupersymmetric
model without a tilde, in the supersymmetric one with a
tilde. The expression my is the scale of supersymmetry
breaking. Since the one-loop corrections to the effective
potential have opposite signs for bosons and fermions,
there is a reduction in the height of the effective potential.

- mg 2
B(A)= B(A) . (4.36)
This leads to the following rescalings:
_ my
H= H, (4.37)
o
3
== |r, (4.38)
myg
-1
~ mg
(t*—t,»)z ‘ (t*—t,) . (4.39)
o
Hence by (3.37) and (4.1)
L2 e B R (4.40)
P |a 9 | P |u

The fluctuation problem disappears, but since V(0) is
suppressed by (m; /0)? there is insufficient reheating.

Other particle-physics models which have been suggest-
ed in order to solve the fluctuation problem include super-
symmetric primordial inflation,*® primordial inflation in
supergravity,*® and grand unified models with more than
one scale of symmetry breaking.*’ These investigations all
use the magic formula (4.2). We verified that the condi-
tion (4.5) under which (4.2) can be applied is, indeed, satis-
fied in the models of Refs. 38 and 39. We do not com-
ment here on the phenomenology of these models.

Another attempt to solve the fluctuation problem
without abandoning inflation is to investigate in more de-
tail the initial evolution of the system after the onset of
metastability.

Mottola and Lapedes,*! based on previous work by
Hawking and Moss,?? claim that in a potential with
nonzero bare mass of order H the phase transition
proceeds by a quantum tunneling process which is homo-
geneous in space. Inflation then takes place before sym-
metry breaking without generating the homogeneity prob-
lems which afflicted the old inflationary universe. At the
exit point from tunneling the slope of the potential is
larger than in the inflationary universe. Therefore fluc-
tuations will be smaller.*?

A completely different approach described recently by
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Hawking and Moss** and Vilenkin* is to study the initial
evolution of (¢$?) taking quantum corrections in curved
spacetime into account. Both report reduced values for
Sp/p, although the conclusions have been (in our opinion
correctly) questioned by Guth.?

Finally, Linde has proposed a model of chaotic infla-
tion** In large regions of space, in particular in one
which contains the entire presently observed universe, the
Higgs field ¢ is supposed to start out at some initial time
at some large value ¢ > 3mypp,, . In this case sufficient
inflation occurs while ¢ is beginning to roll towards the
absolute minimum of the potential. Provided the cou-
pling constant A is sufficiently small, inhomogeneities will
be small enough.

V. CONCLUSIONS

We analyze the growth of energy-density fluctuations in
inflationary universe models, paying particular attention
to the mechanisms of amplification. We apply an exten-
sion of Bardeen’s gauge-invariant framework derived in
an earlier paper. In particular, we keep track of the ef-
fects of additional matter source terms in the equations
for gravitational perturbations.

We exemplify our method in detail for the example of
the new inflationary universe. In agreement with previous
investigations we obtain the following result: the spec-
trum at horizon crossing is nearly scale invariant but has
an amplitude which exceeds the required value for con-
sistency with galaxy-formation pictures by about five or-
ders of magnitude,

| _so
P |u

for galactic scales.

By examining the detailed evolution of the gauge-
invariant metric potential ®5 we conclude that most of
the amplification takes place as a consequence of the ra-
pid change in the equation of state near reheating.

We then recast the differential equation for ®j in
terms of a conservation law and conclude that the magni-
tude of energy-density fluctuations at horizon crossing de-
pends only on the equation of state when the perturba-
tions leave the horizon (keeping track of the deviation
from an exact de Sitter space is crucial), the initial values
of perturbations at that point (determined by Hawking ra-
diation and the Einstein constraint equations) and the fi-
nal equation of state. In particular, the final answer is in-
dependent of the reheating mechanism or any other de-
tails concerning the phase structure of the model between
initial and final horizon crossing.

Finally, we discuss the limitations of previous methods
and present toy models in which often-quoted magic for-
mulas for 8p/p fail.

Note added. After submission of this manuscript we
received a report (Ref. 46) by Frieman and Turner in
which similar methods are applied to study the evolution
of density perturbations through cosmological phase tran-
sitions.
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APPENDIX A: MAGNITUDE
OF METRIC PERTURBATIONS
IN DIFFERENT GAUGES

In this appendix we show that in the de Sitter phase of
the new inflationary universe the relative metric perturba-
tions are of order unity in comoving coordinates, but
negligibly small in synchronous gauge.

Consider first comoving coordinates. Until reheating
the constant-time hypersurfaces in comoving gauge are
constant ¢ surfaces. The situation is sketched in Fig. 8.

We consider the physical distances As; and As, corre-
sponding to a fixed coordinate distance Ax about two
points X; and X, on the same ¢ =const hypersurface with
minimal and maximal time lag, respectively (in synchro-
nous coordinates, in which the metric fluctuations are
negligible),

H(t(X)+A7)

As,=Axe

H(t(X )+A71)  H((F))
=As;+Ax(e VT _ MM

). (A1)

Since At is of order H ~! in the new inflationary universe,
As,~eAs; . (A2)

For the metric perturbation g,-(j” this immediately implies

1=
8 %) ) (A3)

gij (X3)

Next we verify that in synchronous gauge the metric
perturbations are indeed negligible. The procedure is sim-
ple: the geometric perturbations are obtained by integrat-
ing (2.9) and (2.10). We totally fix the gauge by demand-

t ASo

ASy

Fax L/

X, X2

Ax

> X

FIG. 8. Constant ¢ surfaces viewed from synchronous-gauge
coordinates. Ax is a fixed coordinate distance. AS; and AS, are
the corresponding physical distances at the extremal points of
the constant ¢ surface.
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ing A (tl)—':B(t,):O.
First consider A4 (t). Z3 is expressed in terms of I5(¢),
which scales as I(¢). Thus

t
AWO~H [ 72N (et . (A4)
It is easy to check that up to 3
|A(1)| <1071, (A5)
Thus in Eq. (2.10), the term linear in ®5 dominates,
t k2 e H
B(t)~ f'i WQHU )dt F
t _H(—
~ % Joe " T opanar (A6)
Again it follows that up to #g
|B(t)| <107 1% 2. (A7)

The time derivatives can be estimated similarly (we get an
extra factor 10°). Since outside the horizon the geometric
fluctuations enter into the equation of motion for the sca-
lar field in the combination

h=34+VB (A8)
[see (2.5)], we see they are indeed negligible.

APPENDIX B: ANALYSIS
OF SCALAR FIELD FLUCTUATIONS

In this appendix we will prove some of the statements
made in Sec. III concerning scalar field perturbations.

First we show that in the entire de Sitter phase, the sca-
lar field perturbations may be encoded as a space-
dependent time lag 87(X). Immediately after horizon
crossing 8¢(k) is small compared to ¢y(z) [by (3.10) and

(3.18)]. Therefore the time evolution of 84(k) can be
determined by linearizing (3.6) in 8¢(k) =059,
. 3HSG(1)=30¢2(1)84(1) . (B1)
Explicit integration gives
o 1P
3(t)=584(t;) t*_’ J ) (B2)

Hence 8¢ has the same time dependence as ¢(¢). Hence
by Taylor expansion we immediately obtain (3.50) and
(3.51).

Far outside the horizon the spatial gradient terms in the
equation of motion for ¢ are completely negligible. Hence
for any solution ¢(#), ot —87(X)) will also be a solu-
tion. It is only one of the two independent perturbative
modes. But it is easy to verify it is the dominant one. In
the second period of the de Sitter phase the perturbative
modes are the solutions of

86(X,1)=3Ado(1)84(X,1)
=6[a—(t —t5)]~284(X,1). (B3)
The general solution of (B3) is

8¢(X,t)=ci[a—(t —tp)] ' +crla—(t —15)] . (B4
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The first term corresponds to our mode (3.50), the second
is a decaying mode and hence irrelevant for our investiga-
tion.

Next we analyze the initial conditions for ®; and <i>H,
given by the constraint Egs. (2.7) and (2.8) in terms of the
quantum field perturbations. As discussed in Sec. II, we
evaluate the matter terms in the synchronous gauge.
Linearizing in the perturbations and using (B1), we obtain

TV =~ — b — V()5

A
3H?

2—1|V'($)8¢

(]

~ho $odT . (B5)

By (3.7) and (3.14), ¢o(2;)~10""H and ¢o(t;)~10"H2. It
is easy to check that the flux term in (2.7) is negligible in
comparison with (B5). Hence

H 2

M planck

®y(t;)~10"3

(B6)

The derivative of ®y contains two types of terms: first
terms in which the derivative acts on a (), second those in
which the scalar field is differentiated. The latter are
suppressed with respect to the former by the factor

1
t*—g

H'~102

[this follows from the explicit form of ¢4(?), i.e., from
(3.7)]. Hence

®y(t;)=—47GH 2 | 2HTSV + TP

(aa®),

+3H " 2—2 T
a
+3H-'TE, ](t,.) (B7)
is dominated by the first term and thus
2
Dy (t;)~10"3 H JH. (B8)
M pianck

Finally, we sketch the estimates for the matter source
terms in both periods of the de Sitter phase. An impor-
tant point to realize is that the linear approximation in the
matter perturbations breaks down soon after horizon
crossing. The estimates must therefore be based on the
representation (3.50),

(X, 0)=do(t —57(X))=do(t)+,(1,%) , (B9)

where ¢; has the same order of magnitude as ¢,.

The order-of-magnitude estimates are based on formu-
las (2.29). Outside the horizon I,; contains two impor-
tant terms, the deviation of 5¢ 2 from its mean and the
mean deviation of the potential energy ¥ (¢). The former
scales as ¢?, the latter as ¢o*. It is easy to check, using
the explicit formulas for @y(¢), that in both periods of the
de Sitter phase the potential term dominates. Hence in
the first period we have
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I,,(8)~I, Y (B10)
with
H 2
Iy~ ] . (B11)
M planck
In the second period
2
I~ |—Z— | #2401 . (B12)
M planck

Both I; and I,; scale identically with time. This fol-
lows immediately from (2.29) and the known time depen-
dence of ¢, ¢, and c,>. We should not be surprised. After
all, I; and I, are the only matter source terms which are
not individually gauge invariant. Since they are jointly
gauge invariant, it is reasonable to expect they will scale
identically.

Expression I, is negligible in the first period of the de
Sitter phase, since ¢;>2—w =0. In the second period it is
subdominant since it scales only as f3(¢), as does I,. In

the first period, I scales as (t*—1)72, i.e., as Iu(t) but

its amplitude is smaller, due to the fact that ¢0H 1 < .
Thus we have demonstrated that the total source I(z)
scales according to (B10)—(B12).

APPENDIX C: GREEN’S-FUNCTION METHOD
IN THE DE SITTER PHASE

Here we fill in some details on the evolution of ® in
the second g)erlod of the de Sitter phase. The homogene-
ous part ®%, for late times is dominated by the growing
mode

t ’
h R , E{) .,
&N (tg)~c, H f‘s exp[ H (¢ —t)]E(tB)dt . (c1)
Since tg —tp is smaller than H !, the exponential in
(C1) can be replaced by 1. We know that E(¢')/E(tp)
scales as @o(t')/do(tp) and thus as f*(z). Since, in this

period
d 2
£ = C2
dtf(t) Hft) , (C2)
we get
filtg )zfs(tR) (C3)
and hence
3
h g
~c; |— | . C4
q)H(tR )_C1 H ’ (C4)
Since the dominant term in f(2) is
E (1) . 4 5
H————E(tB) Hf%() , (C5)

we immediately conclude
4

&% (tg)~c, H. (C6)

Using the explicit forms of f(¢) and f,(¢) we get

E(tp) SH—tp)

-1
e(t)=H ()

(C7)

The particular solution ®%(¢) is dominated by the first
term in (2.19), the growing mode contribution

2, () —f1(0) [ Tt )fo(")dt" . (C8)
tp

The integrand is constant. Thus

%(tR )z~f1(tR)Iozc1 (C9)

It is of the same order of magnitude as the homogeneous
part of ®5. Although it is thus not crucial to carry along
the matter source terms in the de Sitter phase, it is wrong
to a priori neglect them as in Ref. 14.

APPENDIX D: DETAILS
ON THE REHEATING PERIOD

We first discuss the scalar-field equation of motion. In
terms of the shifted field X =¢ — o, the potential close to
the absolute minimum can be approximated by a Gauss-
ian,

V(X)=4Bo*X? . (D1)
The initial conditions for X at t; are
X(tR)=——}o, (D2)
/2
X(tg)= 16 27 (D3)

The equation of motion for X(¢) is

X(£)4+TX()= —8Bo™X . (D4)
Its solution is a damped harmonic oscillation

X(t)=c e~ T*2g cos[wy(t —¥)] , (D5)

where w, is of order o and ¢ and ¥ are constants of order
1 determined by the initial conditions.

Next we focus on the equation of motion for ®;. The
only change in the homogeneous equation is the fact that
w(¢) is no longer exactly — 1. Since it is always of order
unity and since the other coefficient functions in Eq.
(2.26) are much larger than order unity, the correction
w=—1 is negligible. Hence the solutions (C1) for the
homogeneous component ®% and (C8) for the contribu-
tion of matter sources can be continued through reheat-
ing. In particular, the extra combination of the sources
during reheating is

t, +7
Ay =fittr) [,

~1rH?f(tg) (D6)

I(t")e(t’)fo(t")dt

and is completely negligible since Tg~0~!. Thus the
values for ®y and ®y immediately after reheating are
given by (3.68) and (3.69), respectively.
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APPENDIX E: COMMENTS
ON THE TOY MODEL OF SEC.1VB

We must verify that the source terms are unimportant
during the supercooling phase. We use the Green’s-
function method (see Sec. III C).

Since the matter source terms red-shift away, they can
be bounded by

|1(2)| <Ige=*H, (E1)

To~(Mpanci ) ~20"* . (E2)
From (4.10) and (2.20)

e(t)=+H e, (E3)

Thus the f| term in (2.19) becomes
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Of (e = [ T(t)elt) f5()d
~5H e (1 —e )
~10"1le—*#H | (E4)
This is to be compared with
Oy (t)~e—H (E5)

Thus the source terms do not dominate.

At this point it is important to note that Hawking radi-
ation in the supercooling phase cannot produce any
coherent inhomogeneities on scales we are considering,
scales which during that phase are far outside the Hubble
radius such that no microphysical effects can act
coherently.

*Presently at the Institute for Theoretical Physics, University of
California, Santa Barbara, California 93106.
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