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Can a resonant-mass gravitational-wave detector have wideband sensitivity?

Peter F. Michelson
Department ofPhysics and High Energy Physics Labor. atory, Stanford University, Stanford, California 94305

Robert C. Taber
GenRad, Vibration Analysis Diuision, 2855 Bowers Auenue, Santa Clara, California 95051

4,'Received 9 December 1983)

In principle, for an impulsive gravitational-wave signal, the signal-to-noise ratio for a resonant-
mass antenna is independent of frequency if the limiting noise source is the antenna thermal noise.
A gain-bandwidth restriction only arises when the coupling of the resonant antenna to the output
amplifier is considered. Applying Bode s gain-bandwidth theorem we are able to derive in a general
way the linear amplifier sensitivity lixnit for a resonant-mass detector. The practical bandwidth lim-
its for a detector utilizing a superconducting inductive transducer are discussed. A fractional band-
width of -0.17 appears feasible with current technology. Additional bandwidth and sensitivity can
be achieved with an array of detectors.

I. INTRODUCTION

It is generally recognized' that gravitational-wave as-
tronomy has two broad scientific goals: (i) to verify direct-
ly the existence of gravitational radiation and (ii) to use
gravitational radiation as a tool for astronomical observa-
tion. The first goal requires detectors of high sensitivity
while the second goal imposes the additional requirement
that the detector has sufficient bandwidth to allow de-
tailed study of the received waveforms. This will yield
unique information about the coherent bulk motions of
the matter generating the radiation. In this regard gravi-
tational waves can be an important tool for astronomical
observation because "they can reveal features of their
sources which no one could ever learn by electromagnetic,
cosmic-ray, or neutrino studies. "

Since Weber s pioneering attempts to detect gravitation-
al waves, and the subsequent program of observations
with room-temperature, resonant-mass antennas, there
has been a steady effort to develop various kinds of im-
proved detectors. These efforts have focused primarily on
cryogenic resonant-mass detectors and free-mass laser in-
terferometer detectors. In this paper we are concerned
primarily with some issues of principle about the band-
width and sensitivity of resonant-mass detectors.

A common form of resonant-mass detector, first
developed by Weber, consists of a solid right cylindrical
bar with a fundamental longitudinal resonance fo around
1 kHz, where the signal spectral energy density is expect-
ed to be largest' A strain or motion detector monitors
the dynamic strain induced in the fundamental mode by
interaction with the gravitational wave. Because of the

forces responsible for the bar's elasticity, the gravitational
wave does work and thus deposits energy in the odd-order
longitudinal modes. For a short-duration burst signal, the
excitation will appear as a sudden ringing of the bar.

Because the resonant frequency of the bar is determined
by the velocity of sound in the material used, which is
much less than the velocity of gravitational waves, the
size of a resonant-mass antenna is always much smaller
than the radiation wavelength. This large mismatch ac-
counts, in part, for the relative insensitivity of these detec-
tors when compared with radio antennas. Long-baseline
laser interferometers have been proposed as an alternative
which avoids this limitation. ' Although excellent pro-
gress is being made in the development of such optical-
readout detectors, they have not yet reached the level of
sensitivity achieved by resonant-mass detectors. The best
sensitivity reported to date was achieved by a 4800-kg
resonant-mass antenna, operated at 4 K, with an rms
noise level for pulse detection corresponding to a dimen-
sionless antenna strain of 10 ' . However the bandwidth
of this detector was limited to about 2 Hz.

If bar detectors are to be useful for eventually studying
received waveforms both their sensitivity and bandwidth
must be improved. At first it might appear that a
resonant-mass antenna is particularly unsuited for use as a
broadband detector. Indeed it has been stated that bar
detectors "might be able to detect cosmic signals but
would probably miss most of the details of any waves ex-
cept those from periodic sources. ' While this statement is
correct for the present generation of bar detectors it is in-
correct to assume that the high-Q, resonant nature of
these detectors fundamentally limits their bandwidth. As
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will be seen below, a bandwidth restriction only arises
when one considers the coupling of the resonant antenna
to the output amplifier.

II. RESONANT-MASS DETECTORS

thermal noise.
In general, given the form of the signal, the overall

SNR is maximized by means of an optimum linear filter
applied to the detector's output. The optimum SNR that
can be achieved is
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FICx. 1. (a) Electromechanical model of a single mode of a
resonant-mass gravitational radiation detector. The gravitation-
al wave signal is represented by the driving source M(co). The
signal as well as the random noise sources present result in a dis-
placement X, which is converted by the transducer to an electri-
cal signal sensed by the output amplifier. (b) For the purpose of
calculating the SNR, the ideal noiseless amplifier is replaced by
a noiseless resistor with value R,~, . (c) In the case of a sQUID
amplifier there is an inductance I. associated with the amplifier
input.

A resonant-mass detector is shown schematically in
Fig. 1(a). The mechanical oscillations of the antenna are
transformed into an electrical signal by a motion trans-
ducer and then amplified by an electrical amplifier. The
overall sensitivity and useful bandwidth of the detector
depend on both the noise characteristics of the detector
and the spectral character of the signals. The principal
sources of noise are antenna and transducer thermal noise
and amplifier noise. We assume that the transducer and
amplifier are both linear.

The amplifier noise can be characterized by a series
voltage noise source with spectral density S„, a shunt
current noise source with spectral density 5;, followed by
a noise-free current amplifier. The amplifier noise tem-
perature T, ~ is given by (S„SI /kif and the noise
match impedance is defined as R,„,=(S„/S;)'

The antenna thermal noise is characterized by the spec-
tral density of the Nyquist force noise applied to the an-
tenna given by

Sf(co) =2kif TM, co, /Q, ,

where T, M„co„and Q, are the antenna's temperature,
effective mass, resonant frequency, and mechanical quali-
ty factor, respectively. The thermal noise sources associ-
ated with the transducer can be described in a similar
way. Notice that Sf(co) is a white noise source (i.e., in-
dependent of frequency). An impulsive gravitational-
wave signal applied to the antenna also has a white spec-
trum. Thus the signal to noise ra-tio-(SAR) is independent
of frequency if the limiting noise source is the antenna

S/N= I [ ~M(co)
~

/S„(ai)]dpi, (2)

where M(co) is the Fourier transform of the expected sig-
nal and S„(co) is the noise power spectral density. The in-
tegrand in Eq. (2) is the SNR per unit bandwidth. The
signal and the noise can be referred to any point in the
detector that is convenient. For an impulsive
gravitational-wave signal referred to the antenna input we
find that

III. LINEAR AMPLIFIER SENSITIVITY LIMIT

It is illustrative to first consider Eq. (2) in the zero-
temperature limit where the amplifier noise sources dom-
inate. In this situation we can place an upper limit on the
integral in (2) for the case of an arbitrary linear transducer
coupling the antenna and the amplifier. In order to ac-
complish this, we will first express the SNR in a rather
unorthodox way.

First, note that if we replace the ideal noiseless amplif-
ier in Fig. 1(a) by a noiseless resistor, the SNR of the sys-
tem is unaffected. For analytic convenience we let this
resistance equal R,p, . Having transformed the problem in
this way we can now write the SNR in terms of the reflec-
tion coefficient fo(co), between R,„, and the impedance it
faces. If Z(to) is the complex impedance looking away
from R,„, as shown in Fig. 1(b), then

R,„,—Z
p= R,p, +Z (4)

If we ignore dissipation in the transducer but include
the antenna dissipation, the system will consist of a resis-
tive signal source coupled by a linear lossless transmission
network to a resistive load. By using reciprocity, it can be
shown that the magnitude of p is the same when evaluated
at the source end as it is at the load end. The inclusion of
a transition from mechanical force to electrical voltage
within the transmission system does not alter this fact.
To evaluate p at the source side, R,~, is replaced with the
value of the mechanical dissipation in the antenna and Z
becomes the complex mechanical impedance seen by that
dissipation.

A force with Fourier transform F(to) applied to the an-
tenna will dissipate power in R,~, given by

&.;s(~o) = — -(1—
~ p ~

'),I
+(~)

I
'Q.

4o)gM,
(5)

where Q, and to, are both evaluated before the transducer

~

M(~)
~

'=2eM. ,

where e is the energy that the wave would deposit in the
antenna initially at rest. A common figure of merit is the
detector noise temperature for pulse detection Td, defined
so that pp=1 for E=kgTd.
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Equation (3) has allowed us to substitute 2aM, for
F(co) and remove it from within the integral. The gain-
bandwidth theorem provides the very useful limit

OO 27TCOgf lil dc' (—oo p
(9)

Expressed in this way, the theorem will be directly use-
ful to our present analysis, but we have obscured the fact
that the application of this theorem follows from the una-
voidable reactive impedance of the antenna inertial mass.
Naturally, the equivalence principle tells us that this can-
not be removed from the problem.

A direct power-series expansion of ln(1/
I p I

) in
(1—Ip I

)/(1+
I p I

) produces

is attached to the antenna. This expression is derived
from the definition of p at the antenna side of the net-
work. The real part of the mechanical impedance seen by
the antenna can only be attributed to R pt.

Provided that the amplifier current noise and voltage
noise are uncorrelated, the amplifier noise power in R,pt
can be written as

(Sp-+SI
I

Z
I

)
P„(co)=R,p, IR„,+z I'

Using the appropriate definitions, this becomes

P.(~)= ~ k~T. p(1+ I pl ) .

The SNR can now be obtained from the ratio of signal
power to noise power in R,pt,

I p I
&exp( —irma/5coQa) (12)

over the bandwidth 5' and Ip I
=1 outside this band.

With these restrictive conditions the limit (11) is replaced
by

S/N (
B amp

5' Qa
tanh

7TMg 5coQ,

If 5'�» irma/Q„ then the linear amplifier limit of Eq.
(11) is obtained. This represents a ininimum bandwidth
the detector must have in order to achieve the limit at
zero temperature. Certainly in practice this bandwidth re-
quirement is very easily satisfied.

It is well known' that the antenna thermal noise
present at finite temperature imposes a more significant
bandwidth requirement. This is easily seen by including
the antenna noise in Eq. (8) which gives

S/N =
kB~amp 2~~a

—
I p I dao, (14)2 +y ] p

2

where y=(T/T, p). For an antenna at 3&(10 K with
a resonant frequency of 1 kHz coupled to a quantum-
limited linear amplifier, y-10. For the most sensitive
cryogenic detector operated to date, 7 y-104—10 . If we
apply Eq. (12) in this case and optimize the sensitivity
over a bandwidth 5' »m.co, /Q„ then

7TCOg

S/N ( — 1+
kB Tamp Tamp Qa 5~

In order for the antenna thermal noise to be neglgible the
detector's bandwidth must satisfy the condition

2vrco,
de & ln—OO $ + p

—OO P
(10) '7TCOg

5N ))
amp a

Finally, we can write

B amp

This is the same result as that first given by Giffard.
The apparent difference by a factor of 2 is due to the fact
that we have expressed the signal-to-noise ratio in terms
of the mean square of the noise process rather than the
mean square of the envelope of the noise process. The
derivation given herc allows for an arbitrary lossless linear
transducer and rules out any improvement over Giffard's
result based on more elaborate matching techniques than
were included in his analysis. In fact, this derivation does
not assume that either the antenna or the transducer is a
resonant device.

Equation (9) involves the reflection coefficient over the
entire frequency spectrum. In a practical detector, howev-
er, the response will be limited to a finite frequency range
5'. A useful design objective might be to optimize a
given transducer design so that ln(1/

I p I
) is a maximum

over the prescribed frequency band. From Eq. (9) it is ap-
parent that this can be achieved if ln(1/

I p I
) is zero out-

side the frequency band. In the case that
I p I

is constant
within the band we find that

Before turning to the consideration of a particular
transducer design, an extension of the above analysis is
worth outlining. For the situation shown in Fig. 1(b) it
has been assumed that there is no reactance associated
with the amplifier input. This is not a limitation on the
above analysis because any reactance associated with the
amplifier input can be incorporated into the coupling net-
work and not explicitly considered. %'e can, however, ex-
plicitly consider the effects of a parasitic amplifier reac-
tance by suitably modifying Eq. (9).

To be specific, suppose a series inductance I is associ-
ated with the amplifier as shown in Fig. 1(c). This is, in
fact, an acceptable model for a sqUID amplifier. " It can
be easily shown (see discussion in Ref. 9) that in this case
the gain-bandwidth theorem can be written as

OO R»~ 1
ln —du &2m' min

p ~aL a

If R»t /coal. & 1/Q„ then the gain-bandwidth limit im-
posed by the amplifier is less severe than the one due to
the antenna itself, and the linear amplifier sensitivity limit
can be attained. In practice this inequality is easily ful-
filled.



IV. AN EXAMPLE:
A RESQNANT TRANSDUCER DETECTGR

In the remainder of this paper we explicitly consider
both the continuous source sensitivity and the pulse sensi-
tivity and bandwidth of a resonant-mass detector coupled
to a resonant transducer. Specifically we have in mind a
superconducting modulated inductance transducer cou-
pled to a SQUID amplifier. This type of transducer is in
use both at Stanford University and the University of
Maryland. ' The results, however, are applicable to more
situations than just this particular case.

The sensitivity of a resonant-mass antenna with a
resonant modulated-inductance transducer has previously
been discussed. ' The detector noise temperature for pulse
detection was computed numerically for conditions ap-
propriate to the operation of the Standford 4800-kg detec-
tor. The limitations on detector bandwidth and the sensi-
tivity to continuous sources were not considered.

The electromechanical equivalent circuit model of the
complete detector is shown in Fig. 2. The electromechani-
cal coupling is included through the force generator I',
and the voltage generator V, . These quantities can be
written as

+, =(PM, ~, L)'~2I, ,

V, =(PM, co, 2L)'~2X, ,

where I, is the current Aowing into the transducer, 1. is
the inductance seen at the transducer output, M, is the
transducer mass, and P is a dimensionless coupling con-
stant (see below). The antenna effective mass M, is ap-
proximately one-half of the total mass for a cylindrical
antenna. The compliance K, ' and damping p, are fixed
by the actual mechanical Q value and resonant frequency
of the antenna. This also applies to the transducer param-
eters.

To calculate the sensitivity of the detector it is neces-
sary to specify all the noise sources. The thermal noise
associated with the antenna damping is characterized by
the force noise spectral density Sf, given by Eq. (1). The
transducer force-noise spectral density S, is given by the
same expression with M, and Q, substituted for M, and
Q„respectively. Finally the current noise and voltage
noise of the amplifier have been included in the output
electrical circuit.

The transducer in use on the gravity wave detector at
Stanford' can be described by the model of Fig. 2. It
makes use of the low mechanical and electrical losses in
superconducting materials. Oscillations of the antenna

end-face are coupled to the fundamental eigenmode of a
superconducting diaphragm, which modulates the induc-
tance of current-carrying superconducting pickup coils,
causing an ac voltage proportional to the velocity of the
diaphragm to appear at the output terminals. The output
signal from the transducer is fed to the input coil of a
SQUID amplifier. The inductance I. in Fig. 2 includes
both the input inductance of the SQUID and the induc-
tance of the pickup coils.

Because of the magnetic fields produced by the stored
currents, displacement of the diaphragm causes not only
an induced proportional current to flow in the SQUID coil
but also produces an electromagnetic force tending to re-
turn the diaphragm to its equilibrium position. This addi-
tional restoring force has the effect of raising the resonant
frequency of the transducer. This is easily seen by consid-
ering the equations of motion for the system in the ab-
sence of noise ol dlsslpatlon:

M, (X, +co, X, )=I's —M, (X, +X', ), (20)

M, [X,+X,+(K, /m, )X,]=(PM,co, L)'~ I, , (21)

LI, = (13M,a), L)—'i X, . (22)

I'g(t) is the signal applied to the antenna. Integrating Eq.
(22) and combining with Eq. (21) gives

X, +m, X,= —X~, (23)

where the transducer resonant frequency is given by'

(24)

The first term is the mechanical resonant frequency of the
transducer in the absence of any magnetic restoring force.
The second term is the shift due to the electromagnetic
coupling. Pcs, /ra, is the ratio of electromagnetic energy
stored in the transducer to the total energy in the trans-
ducer.

For maximum sensitivity the transducer is usually
operated so that ~, =~, . In this mode the diaphragm is
made so that with the optimum magnetic restoring force
present the transducer is tuned exactly to the antenna's
resonant frequency. The antenna and the transducer act
as a pair of coupled oscillators and the resonances split
into two eigenfrequencies given by

67+ co+ 1 + (25)

where h=(M, /M, )' . It can be shown that a given am-
plitude of antenna motion is associated with an amplitude
of transducer motion which is larger by a factor 6

A NTENNA RESONANT TRANSDUCER AMPLIFIER
Sv

/////&/z////////
FIG. 2. Electromechanical model of a resonant, inductive

transducer coupled to a resonant-mass antenna. The elec-
tromechanical transduction is included through the voltage gen-
erator V, and the force generator E,. These generators, as well
as the noise sources, are described in the text.

Having specified the noise sources we can solve Eq. (3)
for the SNR and then compute the pulse-detection noise
temperature Td. In general this can best be done numeri-
cally. ' However, some insight can be gained by analyti-
cally considering the narrow-bandwidth case: Lo ~~ cu, .

The first step is to find the total detector noise referred
to the antenna's input. In the limit of high Q's and
6 ~(I we find
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S„(co)= 2k' TM, co, Q,
Q Qg2

antenna

noise

k~ TampMa Cua+ 2 PA,

2 2 2

2 +
COa

transducer

noise

2 2'2
Q)a

2
COa

1

Q
2

2 2'2—CO

2
COa

1

Q2

2 2 2
CO —CO 1+

amplifier

voltage noise
amplifier

current noise (26)

where A, =R,p, /co, l. characterizes the coupling of the
transducer and the amplifier. Q

' = (Q, '+ Q, ')/2,
where Q, is the transducer Q value. In the above expres-
sion the additional approximation has been made that the
amplifier voltage noise has a minimum only at co, . The
minima can be shown to actually occur at

to=co, [1 13/2+(i3—/4+6 )' ]'

Therefore, in order for the approximation in Eq. (26) to be
strictly valid, we must require 6 «P /4.

Figure 3 shows the frequency dependence of each term
that contributes to the total noise power spectrum for
various values of the coupling parameter PA, . The value
of b, is 0.1 for all the cases shown in Figs. 3(a)—3(c). Fig-
ure 3(d) shows the SNR per unit bandwidth (for an im-
pulse signal) for each of these cases. In general, the usable
bandwidth of the system is restricted to lie between the
normal-mode frequencies because of the steep increase in
the amplifier current noise contribution (solid curve) out-
side this bandwidth. The minima of the current noise
occur at the normal-mode frequencies. The contribution
of the transducer thermal noise and amplifier voltage
noise (dotted curve) has a minimum at the antenna fre-
quency and increases, as shown, away from tu, . The an-
tenna thermal noise (dashed line) is, of course, white when
referred to the antenna input.

Consider now the dependence of the noise spectrum and
the SNR on PA, . For case (a) the value of PA, has been ad-
justed so that the SNR as a function of frequency is maxi-
mally flat between the normal-mode frequencies. This is
accomplished by requiring that d 5„/d~ =0 at m, which
leads to the condition

42= —,
'

(pA, )2+ — pA, +
amp t

In practice the last term can be ignored. This gives the
SNR shown as the dotted curve in Fig. 3(d).

For case (b) the value of PA, has been increased by a fac-
tor of 3. This has reduced the overall contribution of the
current noise and increased the transducer and voltage
noise contributions. The SNR now peaks at the antenna
resonant frequency and the usable bandwidth is now con-
trolled primarily by the voltage noise. Increasing PA, fur-
ther will narrow the bandwidth but not substantially in-
crease the SNR at the antenna frequency bemuse eventu-
ally the antenna thermal noise becomes the limiting noise
source [provided P /4&&h; see discussion of Eq. (27)].
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FIG. 3. Contributions to the detector noise power spectrum
referred to the antenna input. For cases (a), (b), and (c) 6 is
0.10. The contribution from the antenna thermal noise (dashed
line), the amplifier current noise (solid curve), and the amplifier
voltage noise and transducer thermal noise (dotted curve} are
shown for each case. For the approximation discussed in the
text, the amplifier voltage noise and the transducer thermal
noise have the same frequency dependence. In all these cases
T/T, p is 10 and the Q values are 10'. For case (a) PA, is equal
to the value given by Eq. (28), while for cases (b) and (c) pA, is 3
times and —, times the value for case (a), respectively. The
signal-to-noise ratio for each case is shown in (d): (dotted curve)
case (a}, (dashed curve) case (b), and (solid curve) case (c).

I

Increasing PA, above the value given by Eq. (28) will not
improve the overall pulse sensitivity and eventually will
lead to loss of sensitivity. This statement assumes that b
is held fixed and that the antenna temperature is nonzero.
In practice if a larger than optimal value of PA, were
achieved the bandwidth 6 of the system could be in-
creased by increasing the transducer mass to satisfy Eq.
(28).

The effect of decreasing PA, below the value given by
Eq. (28) is illustrated in Fig. 3(c). The voltage noise is re-
duced but the current noise is increased. This leads to the
SNR shown as the solid curve in Fig. 3(d). The SNR
peaks near the normal-mode frequencies. By decreasing
PA, further the SNR at the normal-mode frequencies will
increase until the antenna and transducer thermal noise
dominates. The overall bandwidth will decrease and the
pulse sensitivity will be reduced.

The optimization of the detector for pulse detection can
be achieved by obtaining a flat SNR over the widest possi-
ble bandwidth. At zero temperature the linear amplifier
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limit can easily be attained under far less restrictive condi-
tions that do not necessarily dictate a flat SNR [see Eq.
(13)]. At finite temperature, consideration of the wide-
band antenna thermal noise leads to the conclusion stated
above.

Using the bandwidth condition of Eq. (28) and Eqs. (2),
(3) and (26), and letting Q, =Q„ the detector noise tem-
perature for pulse detection is given approximately by

'2 1/2
5T

Td —
4 Tamp' ~T g

+ T
bT, pg,

(29)

In the limit T/Q, b, »T, p the thermal noise dom-
inates and the detector noise temperature is given by

3 &T
2 Eg,

(30)

In this regime the detector noise temperature improves as
the detection bandwidth is widened. In the opposite limit
T/Q, b. « T, p thginear amplifier limit is achieved (ap-
proximately) and the pulse sensitivity is independent of
bandwidth.

VI. CONTINUOUS SOURCE SENSITIVITY

S/X =h, (31)

where ~ is the observation time, I is the effective length of
the antenna, and S„(&os) is the noise power spectral densi-
ty, referred to the input, evaluated at co=cog. If the anten-
na resonant frequency coincides with the source frequency
then the minimum detectable wave strain for unity SNR
is given by

4k' T
rnarg —,M, co, I

't

1 1 Tamp PA, 2 5 Q
g'g' 2 T g'g PA, Q Pi,

The detection of a narrowband continuous source places
different requirements on the detector. If the frequency
of the source is known the best strategy is well known to
be to tune the antenna so that its resonant frequency coin-
cides with the source frequency. This is only necessary to
overcome the amplifier noise. Since resonant-mass detec-
tors are usually operated under conditions for which
T p ((T it is possible to obtain sensitivity that is limit-
ed by the antenna thermal noise over a bandwidth large
compared to co, /Q, .

The SNR for detection of a continuous source at fre-
quency mg with dimensionless strain amplitude h, is given
by

—i06
E

~N ~ ~0+0Mg+
U)

10
I—

l-
jN

hl
M

i06

—lO

r'
—10

E
6l o

QJ0 ~~CO

0
CO I-
V) 0
0
CQ CO

UJ
CO

Q IOQ I

DETECTOR BANDWIDTH, nQJg /QJg

FICx. 4. Detector sensitivity to burst sources and continuous
sources as a function of detector bandwidth. It is assumed that
the frequency of the continuous source is within the bandwidth
Ace, and that the spectral density of the burst source is constant
over this bandwidth. For a fractional bandwidth equal to
4T/QT, p the sensitivity is nearly optimal for both kinds of
sources.

posing the bandwidth condition of Eq. (28), the minimum
detectable wave strain becomes

4k~T 1, , T, pgb,

~&&e —,M, ~. I

(33)

2
Q

2

2')~ 7
(34)

For a bandwidth 6-4T/QT, p the sensitivity is nearly
optimal for both kinds of sources. If T=50 mK, Q = 10
and T, p=5&&10 K then a 4800-kg detector resonant
at 1 kHz has a continuous source sensitivity at the noise
level of 5&&10 /day~~ in a bandwidth of 40 Hz. The
pulse-detection noise temperature is within a factor of 3
of the amplifier noise temperature for these conditions.

The prefactor in the above expression is the strain sensi-
tivity if only antenna thermal noise is present. The factor
in brackets approaches —, as T, p

—+0. This is a conse-
quence of imposing Eq. (28) which forces PA, ~O for fixed
6 in such a way that the amplifier current noise at co, ap-
proaches half the antenna thermal noise. It is of course
not necessary to impose Eq. (28). By restricting the band-
width 5 and maintaining sufficient coupling such that
6 /pA, «2T/T, pQ the thermal sensitivity limit can be
achieved. However, imposing Eq. (28) ensures that the
SNR will be nearly constant over the bandwidth A.

Figure 4 illustrates the sensitivity to both burst sources
and continuous sources as a function of bandwidth. The
burst sensitivity can be expressed in terms of the
minimum detectable dimensionless wave strain of the sig-
nal pulse hb. For the uniform bandwidth condition of
Eq. (28) it is straightforward to show that the sensitivities
are related by

Since T, p/T «1 there is no need to minimize the con-
tribution of the amplifier noise by excessively restricting
the bandwidth A. For 5»g ' and pi, »g ' and im-

VII. PRACTICAL CONSIDERATIONS

It is clear that the most important factors affecting
detector sensitivity and bandwidth are Q, antenna tem-
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where M, is the transducer mass and M„ is the mass that
can be resonated at the antenna frequency by the elec-
tromagnetic contribution to the spring constant. For a
particular transducer design M, does not depend on M, .
In the Stanford transducer it is determined by the strength
of the stored magnetic field, the spacing of the pickup
coils, etc. A design objective is to maximize M„. In the
present Stanford transducer M„ is about 10 g. It appears
that this value can be increased by at least a factor of 3 to
4 by optimizing the present design.

The 4800-kg detector at Stanford has been operated at
about 4 K. Because of electrical losses in the transducer
the value of Q, was limited to about 2)&10 . For these
reasons the detector has not yet achieved the linear am-
plifier sensitivity limit and the optimum transducer mass
determined from Eq. (28) is governed primarily by the
second term.

By operating the detector at lower temperature and
achieving much higher Q values, the limiting factor in
determining 5 will be the first term of Eq. (28). Under
these conditions the fractional bandwidth can be written
as

b. =(M, /M, )' '=(M„A, /M, )' ' . (36)

If M„=10 g and X= 1, then for the Stanford detector,
hf -15 Hz. Clearly it is desirable to increase M„as
much as possible.

The parameter A, =R,~, /co, L depends both on the noise
characteristics of the amplifier and the output impedance
of the transducer as seen by the amplifier. In the case of a
properly optimized dc sgUID amplifier' the amplifier
noise match impedance R,~, is approximately given by

AoPt ECX COLI-
2 (37)

where L; is the inductance of the SQU)D input coil, co is
the signal frequency, a is the input coil coupling coeffi-
cient, and e is a complicated factor that depends on the
detailed sQUID parameters. Numerically e is of order uni-
ty. If the input coil is tightly coupled to the SQUID, then

can also approach unity. Typically values of Q,
' 0.5

to 0.8 have been achieved. '

The inductance L is the sum of L; and the inductance
of the pair of superconducting transducer pickup coils L, .
For a flat pair of circular coils of area 2 wound with wire
of diameter d, the inductance of each pickup coil is

perature, amplifier noise temperature, and the coupling
parameters P and A, . If the temperature is low enough the
pulse-detection noise temperature wi11 approach T, „and
the fractional bandwidth h, will be approximately PA, . It
is therefore desirable to achieve the largest values possible
for both P and A, .

Recall that P is the ratio of electromagnetic energy
stored in the transducer to the total energy in the trans-
ducer. In principle, this ratio can be unity. In the
modulated-inductance transducer in use at Stanford it is
limited by practical considerations. To discuss these limi-
tations it is convenient to express P as

M,

APoL (x)=LO+ X,d2 (38)

where Lo is the inductance of each coil when the dia-
phragm is in its equilibrium position, X is the displace-
ment of the diaphragm from equilibrium. L, =Lo/2
since the pickup coils are connected in parallel.

The coupling parameter M, A, can be expressed in terms
of these inductances as

&.It Io dL

cog cog dX

2

(L;+L, ) (39)

3p()XO

2d
(41)

where Xo is the equilibrium diaphragm coil spacing, then
Eq. (40) can be rewritten as

Q) 2Xo
(42)

where Io has been expressed in terms of the magnetic
field intensity H between the coil and diaphragm. po is
the permeability of free space. The maximum value of H
is limited by the lower critical field of the superconductor.
It is desirable to use a material with a large critical field
and to achieve very close spacing with a large area coil.
Of course the coil characteristics must be selected so that
L,=L;. For example, with A=5X10 m, Xo ——10
m, co, =5&&10 sec ', ea =1, and H=9)&10 amp/m
(the lower critical field of niobium), we find (M, A, )=100
g. With this value the Stanford detector would have a
bandwidth Af -30 Hz. With a squID amplifier operating
at the quantum limit (T, „-5X10 K) and Q=10,
the pulse-detection noise temperature Td will approach
T, p if T&150mK.

Recall that Q is determined by both the antenna Q and
the transducer Q. It has been experimentally observed'
that the Q value of the modulated inductance transducer
in use at Stanford varies with /3 approximately as

1 1 +
Qt Q Q.

(43)

where Q is the mechanical Q value with no current
stored. The relationship indicates that a damping mecha-
nism exists that is equivalent to a fixed loss in the electri-
cal circuit. This is characterized by a Q value of Q, .
Typically we have found Q, —3&& 10 although in one
prototype transducer Q, ) 10 . In order to achieve a high
overall Q value a large value of Q, /P is required. For ex-
ample, if bf-30 Hz, then Q, )4 &( 10 is required to
have Q —10 .

where Io is the persistent dc current stored in the trans-
ducer coils. Using Eq. (37), this becomes

eo. L; IodL/dX
M, k=

co, ' L;+L]
Assuming that en is independent of L;, this quantity is
optimized if L; =L, . If we approximate the transducer
inductance by
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VIII. MULTIMODE TRANSDUCER

Richard has suggested' the use of a mechanically
resonant intermediate mass between the antenna and the
transducer as a way of effectively increasing p. Richard

as considered the case where the intermediate mass M; is
equal to (M,M, ) . If this two-mode transducer is
operated in a resonant mode with the stored magnetic
ield adjusted to tune the resonant frequency of the trans-

ducer mass to the uncoupled antenna resonant frequency
and if the intermediate mass spring constant is selected so
that k;=M;m~, then it is easily shown that the three
normal-mode frequencies are given by

V)

LU
C

O

0 ~
Z O

CO~ =CO+

co+ =co 1+
2

(44)

lA

C

(b)

where b, 2
——(4M, /M, )' . Recall that for the single-mode

transducer the analogous quantity is iven b
(M /M )'". Thus for a given transducer mass the max-
imum available bandwidth 62co, for the two-mode trans-
ducer case is larger by (4M, /M, )'~ than the bandwidth
for the single-mode transducer case. Richard has previ-
ously emphasized this benefit. '

The sensitivity analysis in this case can be carried out in
t e same manner as the analysis for the single-mode
transducer case. Accurate results are best obtained nu-
merically, but for b.z && 1 approximate analytic results can
be obtained. The results are only summarized here.

If the temperature is low enough and the Q's are suffi-
ciently high then the detector noise temperature Td will
be limited by the amplifier noise. Again, the usable band-
width of the system is restricted to lie between the
normal-mode frequencies co+ because of the increase of
the amplifier current noise contribution outside this band-
width.

Figure 5 shows the frequency dependence of the noise

(28). b, is
spectrum and the SNR for the case when pA, t' f' E .

2 is equal to 0.1 and all of the Q values are 10 .
Applying condition (28) gives the SNR shown as the solid
curve in Fig. 5(b). This leads to approximately uniform
ripple of the SNR over the bandwidth hzco, . The dotted

d S
curve shows the SNR when pA, is adj t d t

„/dao equal to zero at the antenna resonant frequen-
cy. This condition is identical to Eq. (28) provided that

is replaced by 62 /2. As can be seen from Fi . 5(b)
these two choices lead to essentially the same result for
Td. In the amplifier limit the fractional bandwidth is
given by

& =(,/, ) =( &/ )' '

This expression should be compared with Eq. (36) for the
single-mode transducer case. For M A, = 100 dr = g an
M, =2.4X 10 g this gives a bandwidth 0f-150 Hz for
the Stanford detector. With a SQUID amplifier operating

noise temperature Td will approach T, p if T &750 mK.
o achieve a high overall Q and the larger bandwidth

with the tw-o-mode transducer places a more severe re-
quirement on Q, than does the single-mode transducer.

O

O

FREQUENCY ~~a
FIG. 5. (a) Contributions to the detector noise power spec-

trum referred to the antenna input for a detector with a two-
mode transducer: (dashed line) antenna thermal noise, (dot-
dashed curve) intermediate transducer mass th 1erma noise, solid
curve) amplifier current noise and (dotted curve) final transduc-
er mass thermal noise and amp1ifier voltage noise. 5& is 0.1 and
P satisfies Eq. (28). All of the Q values are 10'. (b) Signal-to-
noise ratio: the solid curve corresponds t th d' '

o e con itions o (a)
while the dotted curve is the result of adjusting PA, so that the
SNR is flat at the antenna resonant frequency.

(p&) » = — +
Tamp Qt Tamp Qm Qe

(46)

This implies that k must satisfy

A»2T 1

T, p Q,

If A, ( 1, T=50 mK and T,~p ——5 X 10 K, then (47) re-
quires that Q, »2X 10 . This condition may be very dif-
ficult to satisf iny

'
practice. Lower temperature operation

is a possible remedy.

This is because p is larger in the two-mode transducer for
the same value of magnetic spring constant. This is offset
to some extent by the wider bandwidth that is obtained.

In either case for the transducer thermal n
'

b
negligible compared to the amplifier voltage noise requires
that
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a=(NM„XgM. )'" . (48)

However, in order to reach the amplifier limit the condi-
tion (47) for one transducer must still be satisfied. A
similar result holds for the two-mode transducer case.

We note here that the same result is not obtained in the
case of a single transducer coupled to N SQUID amplifiers,
either in series or in parallel; the only effect this has is to
change the value of I.; and R,z, . Such a scheme may be
useful in obtaining the condition L; =I, but the induc-
tance matching can probably be more easily satisfied by
proper design of the transducer coils.

X. SUMMARY AND DISCUSSION

The ultimate sensitivity of a resonant-mass gravitation-
al wave detector using a linear transducer-amplifier

As we have noted above, to achieve amplifier-limited
detector sensitivity to impulsive signals and to obtain
wideband sensitivity, it is desirable to maximize the quan-
tity PA, . The quantity /3 is maximized, for either the
single-mode or two-mode transducer, by maximizing the
magnetic spring constant. The impedance matching pa-
rameter A, is maximized by proper design and coupling to
the SQUID amplifier. Ideally A, -1 could be achieved with
a SQUID amplifier, but it would be difficult to obtain p-1
with a single-mode or two-mode transducer. In principle
larger values of P could be achieved with an N-mode
transducer (N &3) but the design and construction of
such a system may be difficult.

Given a particular transducer design, one way to in-
crease the detector bandwidth is by coupling N transduc-
ers in parallel to the antenna and summing their outputs.
It is straightforward to show that if each transducer is
tuned to the same resonant frequency, then the SNR is
maximized if all the transducers have the same mass.
Under these conditions the results previously obtained for
the single-transducer case apply, provided that I, and
R,~, are replaced by XM, and XR,„„respectively. In the
amplifier limit for the single-mode transducer the frac-
tional bandwidth is now given by

readout is limited by the amplifier noise. Using the gain-
bandwidth theorem we have shown that the amplifier
limit (11) is a general limit that applies to the use of an ar-
bitrary linear transducer.

To actually achieve the amplifier limit for the detection
of impulsive signals requires that the amplifier noise con-
tribution dominate the thermal noise over a bandwidth
5co & (Taco, /T. , ~Q), Obviously a high-Q, low-
temperature detector is desirable. For a detector resonant
at 1 kHz, operated at 10 mK with an overall Q value of
10 and readout with a quantum-limited linear amplifier,
this requires a bandwidth greater than 60 Hz in order to
achieve the amplifier limit. Thus a relatively wideband
detector is not only desirable for studying the received
waveforms, but is necessary for attaining the linear am-
plifier limit of detector sensitivity. This will, of course,
remain true whether a resonant transducer is used or not.

With the technology presently available using supercon-
ducting inductive resonant transducers, a fractional band-
width of -0.17 is feasible for a 4800-kg antenna. This is
certainly not a fundamental limit and alternative techno-
logies may offer improvements, but this bandwidth is al-
ready adequate for achieving the linear a,mplifier limit
with detectors now under construction

Further increases in sensitivity and bandwidth can be
achieved with an array of independent resonant-mass
detectors. A bandwidth of several kilohertz can be gotten
by appropriate selection of the size of the individual an-
tennas in the array. In addition, an array of independent
detectors can offer a significant advantage over a single
wideband detector in identifying and eliminating non-
thermal events that are internally generated in the detec-
tor.
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