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We investigate the correctness and accuracy of some recent schemes of implementation of the
QCD duality relation by means of quantum-mechanical example. Such schemes, including a recent-

ly discussed S-matrix method and the Borel-transform method, purport to determine bound states
given high-energy behavior. For a power-law confining potential with no short-range component
both methods work well to predict the leading Regge trajectory. Addition of short-range com-
ponents makes it clear that the nature of the long-range confinement must be specified ab initio;
then the S-matrix method gives a successful numerical approximation to the leading trajectory. The
Borel-transform method is not capable of fitting the widths of states.

I. INTRODUCTION

Application' of duality principles to dispersion rela-
tions for two-point functions in field theory has been of
great interest as a probe of the spectrum and of other
phenomenological low-energy parameters of the theory in
question. In general such principles attempt to use the
high-energy behavior of the two-point function to deter-
mine the low-energy properties; the high-energy behavior
is calculable in the most interesting case, quantum chro-
modynamics (QCD), because of asymptotic freedom.
Indeed, one particular version of these principles, the so-
called "QCD sum rules, " has been extensively used in
phenomenological studies of the hadronic spectrum.

Because of the phenomenological application and in-
terest of duality, its manifestation in a nonrelativistic con-
text has been and continues to be a useful way of assessing
its validity. ' In this paper we present an investigation
of the validity of the duality principle in a fully calculable
nonrelativistic context. We test in particular two methods
of realizing the principle, one based on a recently
developed proof of the identity of the two-point function
of the Schrodinger equation and an analog of the S matrix
for confining potentials as a function of both angular
momentum and energy. The second method we test is
based on the use of the Borel transformation of the
two-point function. We shall refer to these two methods
as the "S-matrix" and the "Sorel-transform" methods,
respectively. We are interested in using asymptotic
behavior to determine the lowest-lying bound state, or
leading trajectory, and the residue, or width, of this state.

Briefly, our conclusions are as follows.
(i) For a pure power-law confining potential —by which

we mean a polynomial confining potential with a fixed
known maximum power —if we know the high-energy
asymptotic behavior to an accuracy determined by the
maximum power, the S-matrix method reproduces the

leading trajectory. The Borel-transform method does not
do quite as well for a given asymptotic correction, al-
though it does better for the full trajectory than earlier
tests of the S-wave bound states. More importantly, it is
subject to rapid systematic improvement if higher asymp-
totic corrections are known.

(ii) When a short-range correction is added to the con-
fining power-law potential all inverse powers in energy for
large energy are modified. Blind application of either
method with a finite number of asymptotic terms will give
a completely misleading picture of the spectrum. For du-
ality to be applied, it is necessary to have independent
knowledge, either of the confining part of the potential or
equivalently of the asymptotic form of the Regge trajectory.
This result confirms earlier conclusions; here we show
how the problem is properly handled in the S-matrix
method.

(iii) The Borel transform method -does not allow deter
mination of the residues of the leading trajectory, nor even
of ratios of residues along the trajectory. This is partly
because all inverse powers in the asymptotic variable con-
tribute to the residue.

In Sec. II, we discuss the basis of the two methods dis-
cussed above. Section III contains a discussion of confin-
ing power-law potentials and determination of the leading
trajectory in two methods. In Sec. IV, we study the ef-
fects of short-range corrections, and in Sec. V we look at
residues.

II. POTENTIALS, ASYMPTOTIC BEHAVIOR,
AND BOUND STATES

We discuss in this section how asymptotic behavior is
correlated with definite potentials and in turn with the
bound states of those potentials. The discussion allows for
a direct connection between asymptotic behavior and
bound states through specification of the large-angular-
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momentum region of the leading Regge trajectory, so that
the tests we make will be applicable even to physical sys-
tems where nonrelativistic behavior is not directly
relevant. We elaborate this important point below.

The identity

Ii(E,v) = —S(v,E) (2.1)

forms the basis for the determination of bound states from
asymptotic behavior. Here

Zv[ak(v) ]
11(E,v)= y

k=o
(2.2)

is the two-point function in the energy variable E and an-
gular momentum variable v=l+ —,', with poles at the
bound-state energies Ex (we suppress the dependence of
Ex on v). The residues of these poles, determining widths,
are in terms of the threshold behavior of the normalized
eigenfunctions uk(v, r) of the Schrodinger equation, name-
ly,

uk(v, r) ~ g„(v)r +'~ [1+(terms that vanish as r —&0)] .
r~o

(2.3)

from high-energy behavior, but the QCD application
should firmly be kept in mind.

The relation between the confining potential and the
asymptotic behavior is as follows: At large E, S(v,E)
takes the form

a, (v)
S(v,E)=( E)—"g ', a,(v) =1. (2.5)

ai(v) may be taken equal to zero by redefinition of E. [In
practical application Eq. (2.5) will be cut off at somes,„.) Consider now the confining potential to be a pure
(even) power:

V(r) =gp~ ir =gz~ 2(r/ro) (2.6)

where g has dimensions of inverse length squared. &eep-
ing g finite allows us to study the infinite squaie weil as
one limit. This parametrization is convenient because the
first nonzero a, for such a potential occurs at s =N: for
potentials as in Eq. (2.6),

4"-'r'(N) r(v+N)
I (2N)I (v —N+1)

S is an analog to the S matrix for confining potentials,

S(v,E)= lim
r~ce u (v, r)

(2.4)

where u(+v, r) are the regular/irregular solutions to the
Schrodinger equation. Here u ( v, r) is line—arly indepen-
dent of u (v, r) and finite. The u (+v, r) are normalized to
behave at the origin like r —"+'~, so that the Wronskian of
the two functions is Zv. For certain potentials there are
physically relevant values of v for which u ( —v, r) is not
finite. In that case proper combinations of u ( —v, r) and
u(v, r) must be used for the irregular solution. It turns
out that neither the poles nor the residues of S(v,E) are
affected by the freedom of definition of the irregular solu-
tion, provided the value of the Wronskian is unchanged.
As for the ordinary S matrix, the bound states correspond
to poles of S. The asymptotic behavior in E is simply ob-
tained in terms of S.

Equation (2.2) is a spectral representation for the two-
point function, analogous to the Kallen-Lehman represen-
tation for the vacuum expectation value of the time-
ordered product of two currents used for relativistic appli-
cation.

Although QCD is surely not describable by a local po-
tential, the present study has direct relevance to QCD be-
cause in that theory too there is a confining interaction
and a perturbative short-range modification, because the
duality principle discussed here is analogous to those used
in QCD sum rules, and also because effective potentials
have been so useful in quarkonium phenoinenology.
Furthermore, in the narrow width approximation, the
various two-point functions for arbitrary spin in QCD are
structurally no different than the two-point functions for
a Schrodinger equation with some equivalent, although
possibly spin and energy dependent, potential. "Our work
here focuses on local potentials as a test of two different
methods of extracting information about the spectrum

This result may be shown for integer values of N using the
methods of Ref. 11. Since the Green's function and~

~

hence S is a smooth function of N for N & 0 the result de-
rived for integer N may be continued to include nonin-
teger N. Alternatively, the Green's-function method, '
in which the confining potential is a perturbation on free
particle motion, will also give Eq. (2.7) even for nonin-
teger values of ¹

The next correction to S for the given potential (2.6)
occurs at the level E . Its coefficient is of course com-
pletely determined by the parameters of V(r).

If V(r) were a finite polynomial of maximum power
ri+ 2, then this maximum power would first manifest it-
self at level E; lower powers in r would already have
appeared in S(v,E) as lower powers of E '. There is no
new information in powers of E ' beyond E

We now turn to a discussion of how the two methods
discussed in the Introduction can be used to specify the
ground states given the asymptotic behavior. The S-
matrix method makes direct use of Eqs. (2.1) and (2.2) by
"reading" the potential which produces the asymptotic
behavior in (2.5). More precisely, suppose the a, are
specified up to s~,„. Then one would first check that the
coefficients are not in the specified ratios which would
imply a confining force is of lower power than corre-
sponds to the highest power of E '. [An r confining po-
tential first appears in O(1/E~) but would also appear in
O(l/E ), . . . . If s,„=4 then by looking at the coeffi-
cients of E ', s &s,„,one could decide if an r" confine-
ment or an r confineinent were implied. ] Let us suppose
that s,„ implies a confinement -r™x2. Then the S-
matrix method simply "reads" this potential' and writes
its bound states using the Schrodinger equation. To the
extent that s,„ is not large enough to reflect the "true"
confining potential the result will be increasingly wrong as
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v increases. In physical application to QCD, where it has
been shown that asymptotic trajectories are linear, this is
unlikely to be the case, since such trajectories correspond
to nonrelativistic harmonic confinement —r, i.e.,
~max =2.

Consider linear confinement with s „=2. Suppose
that perturbative calculation at large E yielded an E
term in addition to E, not in accord with linear trajec-
tories. We would conclude that such a term came from a
short-range correction to the long-range confining poten-
tial and is part of a necessarily infinite series to be handled
with perturbation theory as described in Ref. 9. We re-
turn to this question in Sec. IV.

Let us now summarize the Borel-transform method: As
ordinarily used the Borel-transform method uses no in-
formation beyond that contained in the asymptotic form
(2.5). In Ref. 3 it was noted that if the sign of E in Eq.
(2.2) is changed, then the factor (Ep +E) ' exceeds
(Ek+E) ', k&0. To make this factor dominate, a large
number of derivatives in E suffices, ' that is, for large n,

and in particular

~(Ep+E) (2.9)

2v[ak(v) l'
min En+1

(1 E / )n~i~+1

While this is rigorously true for infinite n and E, the
choice of, say, using M„&/M„rather than (2.9), or of
other possibilities at finite n has been investigated for S
waves in Ref. 8, and we shall not deal with such questions
here. We treat the problem in the now standard way,
namely, to search for a minimum in R„as a function of n
and evaluate R„at that n;„. As we shall see, for power-
type confinement or for potentials which can be expanded
in powers of r, n;„occurs at a value proportional to E,
namely, n;„=E/e The .result expressed in (2.8) then be-
comes equivalent to Borel transformation of II( —E,v):

M„—= ( —1)" 1

I (n +1) dE
II( E,v)—

2v[ak(v)]' 2v[ap(v)]'

(E +E)"+' (E +E)" ' (2.8)

, +2v[ak(v)] e

Now use Eqs. (2.1) and (2.5). We have

(2.10)

Il
max

( —1)" S(v, —E)=(—1)"g ~, (v)( —1)'E
dE ', p 1(v—s —n+1)

1 (v+1), „'"~s(v)( —1) (v n) (v —n —s—+1)
I (v n+1—) Es v. . (v —s+1) (2.11)

t

Pl+1
n —v

(v —n) . (v n —s—+1)
v (v—s+1)

(v —n —1) (v n —s)—1+ Es v. (v —s+ 1)

(2.12)

One now finds the minimum of Eq. (2.12) as a function of n, n;„, notes for large E that n;„=E/E(v, s,„),and substi-
tutes this value back into R„, which has the form

IR =E+E +0nmin 0

The constant term is E0. We save specific evaluation for Sec. III, but reemphasize that in its usual form this method ap-
proximates bound states with no assumption on the nature of the confinement. This fact proves to be a failure of the
method. The point is that, as in the S-matrix method, knowledge of the nature of the confining potential (as dis-
tinguished from the short-range corrections) is necessary for finding the leading trajectory, and the Borel-transform
method does not take that into account. This limitation of the uncritical use of the Borel-transform method, as applied
to a calculation of the effective potential was independently recognized by the authors of the first references in Ref. 10.
The correct way to deal with short-range corrections in the S-matrix method has been indicated by us in Ref. 9 and will
be made more explicit in Sec. IV of this paper.

III. TEST GF THE SOREL-TRANSFORM METHOD FGR POWER-LAW CONFINING POTENTIALS

For a numerical test we consider a single power as in Eq. (2.6). The asymptotic behavior in E of S(v,E) is then trun-
cated with E, and is given by Eq. (2.7). For such potentials it is uninteresting to test the S-matrix method, which
simply reads back the corresponding confining potential. To test the Borel-transform method we compute R„as in Eq.
(2.12):
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(„+1) ( —1) a~N(v n——1) (v —n N—+1)R„=E 1+
(n —v) E v. . (v—N+1)

( —1)"g»,4"-'r(N +1)r(N)r(v+N)1— (v —n —1) (v n—N—+ 1)
E"r(2N) r(v+1)

(3.1)

Anticipating that the minimum in R„occurs at n~;„-E, we keep the largest power of n in the Q(g2& 2) term of (3 1)
and the first correction in (n + 1)/(n —v). Then

gz~ 24 'I'(N+ 1)I (N)r(v+N)
R„=E 1+— n (3.2)

n E I (2N)l (v+1)

and minimizing with respect to n, we find

n;„=E/e,
where

1/e(v, N)

I (2N)I (v+2)
(N —1 )4 I (N + 1 )I (N)r(v+N)g2~

(3.3)

(3.4)

I

become large,

Eo ~ v (g2x 2)1/N
large N ro

(3.9)

This should be compared to the exact square-well trajecto-
ry, determined by the zeros of J (kro), k =E. For large
v, the leading zero is at v, i.e., Eo""'——(v/ro) The .ap-
proximation becomes exact in this limit.

It is instructive to compare Eq. (3.8) with the large-v
classical trajectory, determined by minimal circular orbits,

Inserting n;„back into Eq. (3.2}, we find for the leading
trajectory

Eo' —— + V(r) ~, (3.10)

Eo e(v&N) —— (v+ 1) . (3.5) where r;„is determined by minimization of V(r)+ v /r,
1/(2N)

Let us first compare the result to the harmonic oscilla-
tor N =2. Here we find gzx —z(N —1}

(3.11)

Eo ——2V'4/3~gp (1+v),
which should be compared to the exact answer

(3 6) so that

2/Nt ( )1/N]N (N
—

1 )1/x —1 (3.12)

E x ct 2~(l+ ) (3.7} The (correct) v dependences are the same for Eqs. (3.8)
and (3.12). In Fig. 1 we plot the coefficients of

The approximation gets the linearity right and slightly
overshoots the slope. We return to the harmonic oscilla-
tor case later to study systematic improvement of the
method.

For S waves (v= —,), a case previously studied, Eq.
(3.5) reduces to

2.6—

2.4—

3Eo(v= —, )=—
2 K —I

I /X
2(g2~ 2)N (N —1)r(N)

3

202

2.0—

As it stands, and as it was remarked in Ref. 8, this ap-
proximation, quite good for the harmonic oscillator, gets
progressively worse as we approach the square well,
X—+ oo, when

1.8—

1.6

3 XEo(v= —, ) =——~ a) .
2 8

For the full trajectory, however, the method does far
better. If we first let v become large, we find

1.2

1.0

I I I I I I I

3 4 5 6 7 8 9 10~4

2/N( )1/X—
V~ oo

82K —2

~ 1/N
N(N —1)I (N)

4I (2N)

(3.8)

This result has the correct v dependence. If we now let N

FIG. 1. Comparison of two large-v approximations for the
leading Regge trajectory E& for V(r)=gr, with v depen-
dence and g dependence removed. Curve (a) corresponds to the
classical trajectory (circular orbits) (Eq. (3.12), while curve (b) is
determined by the Sorel-summation method (Eq. 3.8). Both
curves approach the asymptote 1 for X—+ 00 (the square well).
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v ~ (g2~ 2)'~ as a function of X.
One further test is useful, namely, an assessment of the

effect of carrying more terms in S. As we shall see, the
importance of this test is magnified when we consider
short-range corrections in Sec. IV. The work of Beavis,
Chu, and Kaus" can be used to extract the second correc-
tion for the harmonic oscillator, namely,

ai(v) =0, aq(v) = ——,
' v(v —l)g2, a3(v) =0,

a4(v) ——,', v(v —1)(v—2)(v —3)(5v+ 7)g2
(3.13)

Application of the Borel-transform method to S truncated
now at E rather than E gives us

&S 1/4 —1/2
nmin E( i6 ) g2

rather than the earlier value

I /2 —1/2n;„=E( 4 ) g2

1 p p
E2 E4

~ ~ ~

Use of only a few terms would be quite misleading, since
these suggest a power law V-r, r

Our second purpose is to test numerically the perturba-
tive scheme developed in Ref. 9 for finding the shifts in
the bound-state poles due to a short-range interaction.

We consider for these purposes the potential

of E coming from a short-range potential corresponds to
the short-distance expansion of the potential in powers of
r. If the only information available from perturbative cal-
culation is a finite number of terms in E, then there is
no way to tell if the series corresponds to a short-range or
a long-range potential. A simple example which illus-
trates this point is provided by the function I/(E+p ),
associated with short-range potentials, which has large-E
expansion

and a value for Eo, V(r)=gr A, (l ——e "' ) . (4.1)

=1.99~g, (1+v) . (3.14)

IV. EFFECTS OF SHORT-RANGE POTENTIAI. S

The coefficient 1.99 can be compared to the leading-
approximation result 2.3 and the exact coefficient 2. Evi-
dently the Borel-transform method is susceptible to sys-
tematic improvement for the class of potentials we have
discussed. Many of these results and others on the Borel-
transform method may be found in the first paper in Ref.
10.

It is interesting to compare these results to an early im-
plementation of the duality principle, the a expansion.
This method was applied to the harmonic oscillator and
"zeroth-order" and "first-order" corrections were used to
search for the ground state starting from the large-E
behavior of the two-point function. The slopes of the
leading trajectory in these two approximations were found
to be, respectively, 2.33, ~g2 and 2.06 ~g2, compared
with the corresponding numbers 2.30 ~gz and 1.99 ~g2
for the Borel-transform method.

The expansion of S(v, E) is to—O(E )
T

CX2 CX3

S(v, —e) =(+E)' 1+ —— + .
E2 E3

where"

a2 ————,
' v(v —1)(g —Ap ),

a3 ————,', v(v —1)(v —4)Ap

(4.2)

(4.3)

(4.4)

2a2(v —n —1)
1+ E v(v 1)—

3a3(v —n —1)(v n —2)—
E v(v 1)(v—2)— (4.5)

We first apply the Borel-transform method uncritically
to this case. If we cut the series in Eq. (4.2) with the E
term, we "read" an harmonic oscillator with a shifted
spring constant, g~g —A,p . If we include the E term,
we "read" a mixed r, r potential and find from Eq.
(2.12) that

Short-range contributions to the confining interaction
present us with an entirely different set of problems. Such
components can affect the large-E asymptotic form of the
two-point function in ways which mimic long-range
forces if only a finite number of terms in E ' are known.
Physically, however, short-range forces should have no ef-
fect on the large v portion of the trajectory. This difficul-
ty is already evident in the work of Ref. 9, where it is
pointed out that information on the nature of the long-
range force must be known or assumed, to distinguish the
short-range corrections. A scheme to deal with the short-
range forces is developed there.

Our purpose in this section is twofold: first, to show
how straightforward application of either the S-matrix or
the Borel-transform method when there is a short-range
component is wrong. The key observation is already con-
tained in Ref. 11: the large-E form of S in inverse powers

e ——, (g —Ap ) ——', Ap (v+2)=0,
and Eo to be given by

4 (g —Aiu, )(v+1)'- '+"+3
4& 4(v+1)(v+2)+ kp

(4.6)

(4.7)

Before studying these equations in detail, several com-
ments are in order. First, for sufficiently large v we see
that the only real root of Eq. (4.6) is

e ~ [—', Xp4(v+2)]'", (4.&)

As discussed in Sec. II, we anticipate n;„=E/e and keep
the leading terms in E while searching for n;„. %'e find
e to be determined by the roots of the cubic equation
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which only involves the parameters of the short-range po-
tential. The interpretation of this result is simple: by
keeping only up to 0 (E ) in S(v, E), the Borel-
transform method "reads" a confining potential r, with
coefficient Ap, corresponding to the 0 (r ) expansion of
the potential (4.1). This will lead to a misleading trajecto-
ry. %'e show the numerics below; analytically we observe
that for large v,

( E) 1' D( —vkR
D(v, k,R)

(4.13)

D (v*k R) =Do(»k R)[1+Ii(»k R)]

+Dp( —v k R)I2(v k R) (4.14)

where D (+v, k, r) are the two solutions to the Schrodinger
equation with the Wronskian W(+v, —v) = —2v:

Ep-v 4/3 (4.9)
R

I& —— Dp( v, k—, r)Dp(v, k, r)5Vdr,
2v

(4.15)

a trajectory rising more slowly [v-(Ep) ~ ] than linearly
and characteristic of r confinement.

Second, the Borel-transform method requires the right
sign to be applicable: if the short-range component of Eq.
(4.1) were positive rather than negative, we would expect
the physics to change very little. But in the expansion
(4.2) the sign of a3 would change, the large-v root (4.8)
would change sign, and so would Ep. This anomaly
occurs because the method reads an anticonfining r term

Third, let us discuss the choice of roots of Eq. (4.6) in
order to make numerical fits. Knowledge of the large-v
behavior leads one in this case to pick that real root which
reduces to the single real root (4.8) in the large-v limit.
Define the two parameters

Rf Dp (v, k, v)5Vdr .
2v

(4.16)

Do(v, k,R)
Sp( v, E)= lim— =y„(E—E„p) .

~ Dp —v, k, R

Then, expanding in 5V and (E E„o),we fin—d

(4.17)

The zeros of limz Dp(v, k, R) determine the bound-state
poles of the unperturbed problem just as the zeros of
limR D(v, k, R) determine the poles of the perturbed
problem.

It is in fact simpler to look for the zeros of S( —v, E).
We have for the unperturbed problem, near the state E„p,

x =+—,Ap (v+2), y= ——,(g —Ap ) . (4.10)
S( v, E)=y„—(E E„p)+ l—im I2(v, k„p,R),

R~co

Then for fixed Ap and sufficiently large p and/or v,

y +x is positive and there is only the single real root

or the perturbed ground-state energies

E» =E» p
—hm I2(v k p R )/)» (4.18)

a=2[x'+ ~y'+x'
~

]'"
I

(~y +x ~)'
&& cos —' arctan3 X

(4.12)

Next we discuss the S-matrix method in this context.
From the above comments it is clear that knowledge of
the true nature of the confining force is necessary. As a
given of the method, we take such knowledge, not only of
the form of the asymptotic slope but of the coefficient of
that slope. There are claims that this information is
indeed provided in QCD. ' In that case we can treat the
effects of the short-range contribution as a perturbation.
The short-range contribution is determined as far as it can
be determined by the large-E behavior of S.

To illustrate this, we consider again S as in Eq. (4.2)
and add the independent knowledge that the trajectory
behaves at large v like 2vg v. In that case we assume S
results from a potential V =gr +5v. 6V can be any
short-range form with two parameters which are fit from

e=[x+(y3+xz)]'~ +[x —(y +x )'~ ]'~3 . (4.11)

As p and/or v decreases, y +x goes negative and the
proper root is

E =Eo+
v+1

l

1+@ /vg (4.19)

Ep 2~g(v+1) . ——

1.5

1.4

1.3

yt.d&I/ .. ' (c)Fp 1.1 /

~ ~

e~
~ ~

~ ~
~ 0

~ 0
~ 1

~ 1
~ 0

~ ~

(e)1 0

~ 9

If we assume the short-range potential to be of the form in
Eq. (4.1), the integral I2 appearing in Eq. (4.18) is easily
evaluated using harmonic-oscillator wave functions. This
gives for the perturbed top trajectory

a2 ——a2+ —', v(v —1)g
.6 I I I

.3 .4 .5 .6
I ( l

.7 .8 .9 1.0

and a3. We could choose a form such as in Eq. (4.1) but
2 2

another form such as 5V=A, e & " or even a nonexponen-
tial Fade form would be equally good. We now treat this
5V as a perturbation to 0 (A, ) an the S which fallaws from
gr alone. To be specific, write as in Ref. 9

FIG. 2. The ground-state .nergy Eo for the potential Eq.
(4.1). What is plotted is Eo vs p, withg= 9 and A,p =0.04. (a)

Exact solution; (b) S-matrix method solution; (c) Borel-
summation solution; (d) a-expansion {Ref. 2) solution; (e) the
ground-state energy for the "unperturbed" problem, A, =O.
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/2—

7/

5/2

/

e

potentials provide more accurate approximations to the
bound states. However each one of these corrections make
roughly equal or even increasing contributions to the resi-
dues. Thus all orders in E ' are required to give the resi-
dues. Second, overall functions of v which multiply the
form (2.5) will be important; these factors, which help en-
sure the positivity of the residues, would have to be in-
cluded in perturbative calculation.

Let us apply Eq. (5.1) in a more general form. We have
from Eq. (2.11)

3/

'/2—

E
FIG. 3. The top Regge trajectory for the potential Eq. (4.1).

What is plotted is v vs E, with A,p =0.04 and ~=p =0.02e (a)
and (b) (indistinguishable on this scale), the exact and S-matrix
method results; (c) Borel-summation result; (d) o.-expansion solu-
tion; (e) The ground-state trajectory for the "unperturbed" prob-
lem, A, =O.

Using n;„=E/e(v), we have
n+1

2v[ao(v)] = —[ ne( v)]"+' 1+ 1

I (n +1)
xmax a (v)r(n +s v)x g( —1)'

r(s —v)E'
%'e can also use for 1arge n

(Eo+E)
2v[ao(v)] =—

I (n+1)
xmax a (v)r(n +s v)x g( —1)'

r(s —v)E' min

(5.2)

(5.3)

For numerical comparison of the various methods dis-
cussed above, we first concentrate on S waves (v= —, ). We1

take the following parameters: g = —,
' [convenient because

it gives Eo(v= —,)=1], Ap =0.04, and p varying over
the range 0 to 1. Figure 2 shows four curves: (i) the exact
result according to numerical solution of the Schrodinger
equation, (ii) the S-matrix method result with the short-
range term treated as a perturbation, (iii) the Borel-
transform result, and for completeness (iv) the a-
expansion result, as taken from Ref. 2. Note that as p in-
creases for fixed kp the 5V term becomes shorter range,
and the Borel-transform method "misreads" the confine-
ment to greater degree.

Figure 3 shows the top Regge trajectory for the exact
solution, the S-matrix method, and the Borel-transform
method. The curvature in the Borel-transform trajectory
(v-E ) is clearly visible.

The significance of the observations above for
phenomenology should be clear.

I (n+s —v) „, . 1
I +CJ

I (n+1)E' n

Thus

[e(v)] ' . (5.4)

2v[ao(v)] = —[e(v)] +'e '

max a (V)x g( —1)'
r(s —v)[e(v)] (5.5)

2v[a o( v) ] ~,„„, 4vg r(v+1)
The exact S is given by

(5.6)

e(v) generally will contain powers of the coupling to com-
pensate those in a, (v). So unless the numerical coefficient
in e(v) changes significantly with s,„, and it will not,
each term in the sum of Eq. (5.5) will be important.

The harmonic oscillator provides a useful laboratory to
test these questions. For V(r) =gr, the exact value of the
residue is

V. RESIDUES

2v[ao(v)] =(Eo+E)"+'M„. (5.1)

As we shall see by example, this is inadequate, for the fol-
lowing two reasons. First, higher-order corrections in
E ' to the asymptotic form of S for long-range confining

Because the residue of the pole at E =Ek, 2v[ai, (v)], is
proportional to the width of the state, it is interesting to
ask if it is possible to extract this quantity from methods
discussed above. The S-matrix method "reads" the poten-
tial and so computes the residue directly. Of more interest
is the question of whether the residue can be obtained us-
ing the asymptotic behavior alone. In particular, Eq. (2.8)
suggests that

S(v,E)=g" r(1 —v)
I (1+v)

I — +———
2 2 2

(5.7)

g=E/2(vg ) .

The series expression Eq. (2.5) comes from the large-E
expansion of the ratio of the two E-dependent I functions
in Eq. (5.7). The factor I (1—v)/I'(1+v), which changes
sign as v passes through positive integers and is crucial for
the positivity of the residues (5.6), will be multiplicative in
Eq. (2.5) and thus not generally available in perturbative
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2v[a (v)]2 e2(1 —v) g4
3

(v+ 1)/2
1 v(v —1)

I (v+1) 2

(5.8)
I

calculation. This pinpoints one problem in the calculation
of residues. Note that for small v this factor is 0 (1).

Let us now apply Eq. (5.5) with the factor
[1(1—v)]/[I (1+v)] included. Truncate the series at
s =2, and recall that then we have Eq. (3.7) for Ep, and
e(v) =V'4g/3, independent of v for the harmonic oscilla-
tor. This will give us

Here the g dependence of a2 cancels the g dependence of
e, so the aq term contribution to the sum is ——,(v+1)
times as big as the ao term. The contributions of higher-
order terms would contribute growing powers of v. Com-
paring Eq. (5.8) to (5.6) we see the v dependence of the ap-
proximation to be thoroughly incorrect.

It is interesting to try to include the entire series in a,
for the harmonic oscillator to see if satisfactory results for
the residues are thereby achieved. For the ratio of E-
dependent I functions of Eq. (5.7) for S( E)—we have the
general expansion'

E 1+v
4vg 2

E 1 —v

4Vg 2

where q, is determined by

E I (v+1)
4vg, , I(v —s+1) '

'S
1+v 1 —v 4Vg

2 ' 2 E (5.9)

~~(1 e )b ~ —y ( 1) (o b)t~+b
s=0

Comparison with Eq. (2.5) yields

(5.10)

( 1)g 1(v+1) 1+v 1 —v
( ~)g

I (v —s+1) ' 2 ' 2
(5.11)

and a factor (4vg ) multiplying (2.5). We next need to evaluate the full sum, s,„~ap, in Eq. (5.5). This sum is of
the form

), ~s ~ I (v+1)
1(s —v)e', 1(s —v)1(v —s+1)

1+v 1 —v
2 ' 2

4vg

I (v+1) g( —1)'q,
S

1+v 1 —v
2 ' 2

4vg

V

sinn. v ~(1 )
4V g

7T

(1+v) 4v g
2 E'

4Vg
1 —exp

—v—1

(5.12)

Insert this result into (5.5), together with the multiplicative factors

(~ )„I (1—v)
I (1+v)

V T

2v[ap(v)] =4v 1 „+, Vg[~(v)]" exp [Ep —2(1+v)Vg ]/e . 1 —exp
L

1"(1+v) e
4vg (5.13)

which must be compared to the exact result (5.6). When
we calculated in the Borel-transform method to 0 (1/E ),
we found a= V'4/3 V g; to 0 (1/E ), e=( —,', )' V g. Evi-
dently as we improve the accuracy of our approximation e
rapidly approaches V g . Similarly, Ep approaches
2(1+v)v g, the exact answer. Thus (5.13) approaches the
exact answer to exponential accuracy.

While it may be comforting to know that the answer
can be reached for a known long-range potential, we
should recall that an infinite number of terms in E ' are

I

never available in practice and that the residues can there-
fore not be calculated this way. It is an accident that for v
of 0(1), the truncated result (5.8) is near the exact form.
For example, for v= —,

' (S waves), (5.8) without the exter-
nal factor I (1—v)/I"(1+ v) is g3~ && 1.76, while the exact
answer is g X2.26. Fortuitous agreement of lower-
order calculation at low v is thus possible.

Of course there may be other handles on the residues,
as, for example, in Refs. 16 and 17. We hope to discuss
these questions in the future.
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