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Decay constants and SU(2) mass splittings of pseudoscalar mesons
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Borel-transformed QCD sum rules are applied to pseudoscalar mesons containing a light anti-
quark and a light or heavy quark. We determine the decay constants and the SU(2) mass splittings
of these mesons. A suitable method of extracting the hadronic parameters from the sum rules is dis-
cussed in detail. The relationship of these sum rules to the current algebra sum rules is
emphasized. Our results are in good agreement with the experimental results, where available.

I. INTRODUCTION

The sum-rule technique in quantum chromodynamics
(QCD), introduced by Shifman, Vainshtein, and Za-
kharov, ' has been successfully applied to a variety of
problems. In particular, extensive work' has been done
on quarkonia systems involving both heavy or light
quarks. For heavy-quark systems, Shifman, Vainshtein,
and Zakharov have advocated using finite-moment sum
rules at zero momentum transfer. On the other hand, in
systems involving light quarks only, they suggest using
infinite-moment sum rules in a special limit when the
momentum transfer tends to infinity; these are the Borel-
transformed sum rules.

For systems involving both heavy and light quarks, No-
vikov et al. ' originally chose to use the finite-moment
sum rules. Subsequently, it has been found that the best
sum rules in this case also are the Borel-transformed sum
rules. In this paper we discuss these sum rules in detail.
We deal with pseudoscalar bound states of a light anti-
quark with another quark which could be heavy or light.
In particular, we use the sum rules to determine the decay
constants and the SU(2) mass splittings of pseudoscalar
mesons. Some aspects of this work have been discussed in
recent literature. However, in this paper, we em-
phasize the method of extracting the hadronic parameters
and discuss in detail the stability of the results against
variations in the parameter characterizing the Borel-
transformed sum rules. Another aspect we would like to
emphasize here is the relationship of the QCD sum rules
to the current-algebra sum rules. For systems containing
light quarks, such as the pion, the QCD sum rule reduces
to the current-algebra result in the appropriate limit.
From this point of view the QCD sum rules for pseudo-
scalar mesons can be viewed as generalizing the current-
algebra results. Thus, the study of pseudoscalar mesons
through QCD sum rules is of special significance. For
heavy pseudoscalar mesons, where the soft-meson limit is
inappropriate, the QCD-sum-rule approach leads to new
results.

The study of the decay constants of pseudoscalar
mesons is of importance because of the role they play in

many calculations. Furthermore, the decay constants are
accessible to experiments through the leptonic decay
modes. The electromagnetic mass difference of pions has
been successfully calculated' by the current-algebra tech-
nique, but this technique cannot be applied to heavy pseu-
doscalar mesons. The QCD sum rules, in contrast, allow
one to evaluate in a single framework the hadronic com-
ponent of the SU(2) mass splittings of any arbitrary pseu-
doscalar meson.

The paper is organized as follows. In Sec. II, we briefly
review the QCD-sum-rule technique, and discuss the
Borel-transformed sum rule for pseudoscalar mesons.
The determination of the decay constants is discussed in
Sec. III, where special emphasis is placed on the stability
of the sum rule. In Sec. IV, we discuss the problem of
SU(2) mass splittings.

II. QCD SUM RULE
FOR PSEUDOSCALAR MESON

In attempting to obtain low-energy parameters of had-
rons from QCD, there are two essential problems: (a) how
do we treat the nonperturbative effects of QCD and (b)
how do we extract information on hadrons from a theory
that deals with quark and gluon degrees of freedom?

In response to question (a), an important way nonper-
turbative effects are presumed to manifest themselves is
through the structure of the QCD vacuum via the forma-
tion of quark-antiquark and gluon condensates. The for-
mation of the condensates is a difficult dynamical prob-
lem. So, at present, it is more useful to treat the conden-
sates as parameters, to be fitted from phenomenological
considerations. The problem (b) is solved by a sum-rule
approach: the same quantity (for example, a two-point
function of currents) is evaluated in QCD, incorporating
the condensates discussed above, as well as in terms of
hadronic parameters using an approach based on disper-
sion relations.

To describe pseudoscalar mesons this way, consider the
covariant two-point function of axial-vector currents,

„(t1)=if d. xe'e "(O~ T'(j'„(x)j,(0)) ~O), (I)
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which, from Lorentz invariance, can be written in terms
of transverse and longitudinal invariant functions ~, I

qpqv
(2)

q

where Q2= —q~. The invariant functions, generically
called m(Q ), can be represented in two different ways.

(i) Dispersion representation (DR):

—g„~g(Q )+ "2 ~t(Q ),m.„(q)=

(Q2)
1 f Imm(s)

d
s +Q2

From unitarity, the absorptive part Imm(s) will get contri-
butions from hadronic states. The question of a subtrac-
tion in the DR is ignored here. This is because, as we
shall see, the form (3) itself is never used but only its mo-
ment in a suitably high order.

(ii) Operator-product expansion (OPE) in QCD:

~(Q')= +C"(Q')(0~o, ~0) . (4)

Here Ok are local QCD operators, and C (Q ) are the
coefficients in the expansion. If the vacuum state is
chosen to be the perturbative vacuum, the only nonvanish-
ing vacuum expectation value is when Ok is the unit
operator. However, as discussed before, for the true QCD
vacuum, we expect all vacuum expectation values to be
nonzero. For Ok other than the unit operator, these are
the condensates representing the nonperturbative effects. "
The importance of the OPE is that at short distances, . only
a few low-dimensional operators need be considered.
Also, at short distances, because of asymptotic freedom of
QCD, the effective coupling constant is small, so that the
coefficient functions C"(Q ) may be calculated using per-
turbation theory.

The direct sum rule

ment with large n. If we consider the limit

2
bloop n +00

such that

Q /n=M (8)

=C„„(Q )1+g C„,'(Q )q;m;q;

+ Cp, (Q )Gp Gp (9)

where the axial-vector current jz(x) involves the quark
flavors q] and q2 with masses m~ and m2.

j„(x)=q2r, r5qi (10)

and Gz represents the gluon field tensor with the SU(3)
color index a (a =1, . . . , 8). The coefficient functions
C„,(Q ) can be expressed in terms of the transverse and
longitudinal components

is fixed, we obtain, starting from Eq. (5), the Borel-
transformed sum rule. '

In the case when the currents involve a heavy and a
light quark, recent investigation has revealed that the
best sum rules are again the Borel-transformed sum rules,
rather than the finite-moment sum rules. This result is
not surprising since when both heavy and light quarks are
involved, one expects the light quarks to play an impor-
tant role in the dynamics.

Before writing down the Borel-transformed sum rule,
the coefficients of a few low-dimensional operator terms
in the expansion (4) have to be determined. Generally, the
OPE in QCD can be written as

i f d"x e'~'"T*(j &(xj)„(0))

DR=OPE

is generally not useful. This is because the DR is useful
only for low Q, when m(Q ) can be dominated by a few
low-lying hadronic contributions. On the other hand, as
remarked, the OPE is useful only at short distances.
However, for currents j& involving only heavy quarks
(e,b. . . ), of mass M, the quark propagator 1/( Q +M )

connects small distances even at Q =0. Thus in this
case, one might expect the direct sum rule to be useful.
But, in practice, even in this case, finite-moment sum
rules derived from the direct sum rule are found to be
much more useful. '

For currents involving only light quarks ( u, d, s), clearly
the OPE is useful only for large Q . But, if we consider
the nth-order moment of the DR

The expectation value of Eq. (9) in the true QCD vacuum
then leads to Eq. (4). Since we are interested in describing
pseudoscalar mesons, we confine our attention only to the
longitudinal components. These coefficient functions
C~(Q ) may be calculated ' using perturbative QCD.

To calculate C~(Q ), we consider the expectation value
of Eq. (9) in the perturbative vacuum state, when all ma-
trix elements on the right-hand side of Eq. (9) vanish, ex-
cept the expectation value of the unit operator. Then, in
the lowest order in QCD coupling, the coefficient C~(Q )
can be obtained from the diagram of Fig. 1(a). This gives

C( ( Q ) =const+ (m i +m g )
I 2 3

4~

1
~„(Q )=-

n!

'n
d 2 1 Imm. (s)

1T dS
dQ' ( +Q )"+'

1

X f dx[(1 —x)m, +xm2]

m m2
Xln Q'+ +x 1 —x

it is clear that for a given Q, saturation by low-lying
states is better for larger n. These considerations suggest
that for large Q, when the OPE is useful, the DR could
also be usefully employed if we consider its nth-order mo-

(12)

where the constant, independent of Q, is really a diver-
gent term. However, since we are eventually going to take
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m& m~(m~+m2)
m, 'C

Q2

2 2 2
m )

—pl2

Q2

the derivatives of C~(Q ) with respect to Q, this term

will drop out. To calculate C~ '(Q ), we consider the ex-
pectation value of Eq. (9) in the quark state

~
q;), and

average over the spin and momentum of the quark. In
lowest-order QCD, we get contributions to CI '(Q~) and
C~ '(Q ) from diagrams of the type of Fig. 1(b). After
some algebra, we get

value of the right-hand side of Eq. (9) does not single out
the operator term G&~G& . In fact the operators q;m;q;
contribute' to the gluon expectation values to the same or-
der in a, [see Fig. 1(c')]. To lowest order in QCD cou-

G, G2 Gl
pling, we may then express C =C '+C, where C
arises from Fig. 1(c) and C ' from Fig. 1(c'). For the
longitudinal component, we get

G a (m~ —mp) 2

C(
' ———

48m 4m ~m2 Q
r

where

(m)+m2)' Q4+ 2 (1—u)
Sm, ' Q' ' (13)

3(3u +1)(1—u ) 1 1+u
v 2v 1 —v

9v4+4v'+3
4 (16)

Q =Q +(m) —m2)

4' ) Ply
v =1+

(14)
and

c,"= ' (c, '+c, ').
12%

(17)

m Ul)+m2
m, C

Q2
1 2 3

2Q4
(m) —3m)m2 —2m2 )

+ ~ ~ ~

m2
mz CI can be obtained from Eq. (13) by interchanging
m&~m2. Expressed as a power series in 1/Q, Eq. (13)
can be written as

Expanding in 1/Q, we find

G, a, (m+m)'S + ~ ~ ~

128' m~m2 Q

G2 a, (m~+m2)2
I + ~ ~ ~

12m m, m, Q'

so that

(19)

with a similar expansion for m2CI '.
The calculation of C is more complicated. The expec-

tation value of Eq. (9) in one gluon state leads to a contri-
bution proportional to the QCD coupling a, on the left-
hand side [see Fig. 1(c)]. However, the gluon expectation

G G2 G2
C, =C( +C) ——O 4 (20)

It is important to note that to order 1/Q, the contribu-
tion to CI cancels out.

Taking the expectation value of Eq. (9) in the true QCD
vacuum state, we get

m~(Q )=Cf(Q )+ gcl '(Q )(0 ~q;m;q; 0)

(a)

+c, (Q')(o
~ G,' G,'. ~

0 &+ . (21)

If we ignore the higher-dimensional operator terms in Eq.
(21), we may also ignore the O(1/Q ) terms from the
coefficient functions (15) and (20). Thus, to this order,
the gluon condensate will not contribute' to n.~(Q ). We
are now ready to write down the Borel-transformed sum
rule. For this purpose, we operate on both sides of Eq.
(21), by the operator

gluon

L~ —— lim (Q2)"
g2 „(n—I )!

g 2/+ M2

d

dQ
(22)

(c)
Using the dispersion representation (3) for xi(Q ) and the
identities

(c')

FICz. 1. Lowest-order diagrams for the coefficient functions
in the OPE.

1 1
LM z

——
2 exp( —s/M ),Q+s M

1 1 1

(Q2)k (k 1)/ (M2)k

(23)
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we obtain the Borel-transformed sum rule

1—f 1m', (s)e s™ds
1

Imm(s)e ™ds =mI fz e

+continuum, (27)

where

+0 1

M
(24)

= CI (M ) —(m&+m2)(0
~
q, q, +q2q2

~

0)
where mz and fz are the mass and the decay constant of
the pseudoscalar meson. Our definition of fz is so nor-
malized that for the pion, f =130 MeV. The continuum
contribution is given by

Ci(M )=M LMCi(Q )

00 8/M2continuum =— Im~(s) e '~ ds,
'o

(28)

3 2
1

M (m~+m2) dx[mi(1 x)+—m2x]
4~ 0

~ e —g(x)/M (25)

and

m m
g(x)= +

An alternative and perhaps simpler way of deriving Eq.
(24) is to start with the Ward identity relating mI to the
pseudoscalar two-point function:

i f d x e'&'"(0
~
T(Bp„(x)B„j,(0))

~

0)

= —(m, +m2)(0
~
q&q&+q2qq

~
0)+q mi .

This approach also shows that the cancellation of the
gluon-condensate contribution to n I to order 1/Q is not
accidental. Since 8J&(x)=(m~+m2)P(x), where P(x) is
the pseudoscalar density, the gluon contribution to the
left-hand side of the Ward identity will be proportional to

2

(0
i
O'„6„'„

i
0),

from dimensional considerations.
In the sum rule (24), M is a parameter, which can take

any arbitrary value subject only to the constraint that the
approximations used in writing down Eq. (24) should be
valid. These constraints arise from the following con-
siderations. In determining the OPE coefficients we used
perturbative QCD. It is easy to see that a, (Q ), which
depends logarithmically on Q, goes over' to a, (M )

under Borel transformation. Thus the neglect of a, terms
is justified for all M, for which a, (M ) «1. This im-
plies choosing M such that M »AQcD where AQcD is
the QCD scale parameter. Furthermore, in writing down
the sum rule (24), we neglected 0 (1/Q ) terms in C and
C . It is easy to see that this is justified if we choose
M & m &,m2. The neglect of the higher-dimensional con-
densates is justified since one expects the mass scales of
the condensates to be related to the QCD scale parameter.
The role of the Borel transformation is clear from Eq.
(23). The dispersion integrand is now exponentially
damped while the terms in the OPE are factorially
suppressed.

The dispersion integral gets qontributions from pseu-
doscalar hadronic states. Separating out the contribution
from the pseudoscalar-meson poles, we have

where s0 is the lowest threshold for multihadronic contri-
bution.

For the lightest quarks u or d, when the pseudoscalar
meson is ~, it is easy to see that the sum rule (24) col-
lapses to the well-known current-algebra result in the ap-
proximate limit. To see this, note that the perturbative
term C on the right-hand side of Eq. (24) is O(m„~ )
whereas the quark condensate term is O(m„d). Thus, in
the chiral limit (m„~~O, m ~0), with pion-pole domi-
nance, the sum rule (24) reproduces the current-algebra re-
sult'4

m f = —(m„+md)(0~uu+dd ~0) . (29)

(0( uu (0) =(0(dd ~0)=—(250 MeV) (30)

If the quark condensate is SU(3) invariant, the result (30)
can also be extended to the strange quark. It is well
known that nonvanishing values of quark condensates sig-
nal spontaneous breaking of chiral symmetry. Since spon-
taneously broken chiral symmetries involving the heavier
quarks c,b, . . . , are not expected to be good symmetries,
it would be dangerous to extend Eq. (30) to heavy-quark
condensates. Shifman, Vainshtein, and Zakharov' have
shown that for heavy quarks, the condensate in fact is
suppressed by the heavy-quark mass

(O~qqqq ~0)= — 0 G'„„G„', 0)12m~ m

+0
mg

2 (31)

A simple proof of Eq. (31) is sketched in Appendix A.
Using the value of the gluon condensate determined' from
the J/g spectroscopy, it is easy to check that

(Oi cc
i
0) ——,', (0

i
uu

i
0)

and

For heavier pseudoscalar mesons (K,D,F,B, . . . ), we can
thus view the sum rule (24) as providing a generalization
to the current-algebra result. A salient feature of this gen-
eralization is the perturbative term on the right-hand side
of Eq. (24), which acquires greater importance for heavier
quarks.

The current-algebra sum rule (29) can be used to deter-
mine the quark condensate if the current-algebra masses
of u and d are known. Assuming that the quark conden-
sate is SU(2) invariant, and m„+md —11 MeV, one gets'
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(oils io)= —,', (oiuu io) .

Thus, the heavy-quark condensates may be neglected.

III. DECAY CONSTANTS
OF PSEUDOSCAI. AR MESONS

We now apply the sum rule (24), to evaluate the decay
constants fp of the pseudoscalar mesons. Furthermore,
this evaluation must be carried out consistently for all
values of the parameter M from M —a few GeV to
M = oo. As discussed in the last section we will take

M;„2(M2( ~ . (32)

For heavy pseudoscalar mesons (D,B, . . . ) to be specific,
we will choose M;„=so, where, as defined before, so is
the threshold for the hadronic continuum. For the K-
meson case, so ——(mx+2m ) is too low a value for M,
so we will choose Mm;„—1 GeV in this case.

The continuum contribution is difficult to calculate.
However, some general constraints on this contribution
can easily be obtained. First, since the spectral function
Imn. (s) is positive definite, the continuum contribution
must also be positive definite. Furthermore as M ~co,
the sum rule (24) develops a divergence, since the pertur-
bative contribution on the right-hand side is proportional
to M . In principle, this should be canceled from the con-
tinuum contribution. The simplest way to achieve this is
to assume that the hadronic contribution for sufficiently
large energies can effectively be represented by the quark-
antiquark state. Thus, in Eq. (28), we take

It is easy to verify that Eqs. (37) and (38) lead to the result
(25) if we make the substitution

m m
s =g'(x) =-

x 1 —x (39)

Using Eqs. (27) and (34) in the sum rule (24) and
transferring CF to the right-hand side, we may rewrite the
Borel-transformed sum rule as

mp /M
mp fp e +C~

= C (M, AO) —(mi+mz)(0
i qiqi+qzqz i

0)

+0 1

M
(40)

where

C (M, Ao)=C (M )—Cp(M, AD)

A 2

Im~«(s)e
so

Using the result (38) and the substitution (39) in Eq. (41),
we get

C (M, A0)

= 3 2
X(

z M (mi+mz) dx [m i(1—x)+mzx]
4m XO

X(e -g(X)/~'

(42)

Imm(s) = 1m'(s), s & Ao (33)
where x 0 are the roots of the quadratic equation
g(x) =Ao':

continuum =C~+ C~, (34)

where C~ and Cp are the near- and far-continuum contri-
butions:

A 2

Cz ———I Imn. (s)e 'i ds,1 —s/M2
'7T 0

1 QO —s/M~
Cp =—,Imvr«(s)e 'i ds .

Ao

(35)

(36)

The far-continuum contribution Cp is very similar to the
perturbative contribution C given by Eq (25). In. fact
Eq. (25) can be written as

C = — Imm. «(s)e 'j ds .—s M2

'0 (37)

Imn «(s) is the absorptive part of Fig. 1(a), and is given by

(mi 4-mz) 2 3/2Imn«(s) = [s —(m, —mz) ]s2

X[s —(mi+mz) ]' (38)

The parameter Ap represents the energy beyond which the
replacement of the hadronic continuum by the quark-
antiquark state is a good approximation. Clearly, we
must have Ap &sp, the continuum threshold. We split
the continuum contribution into two pieces

1
xp ———1—

2

2 2
' 1/2

m, —m, 1 (m, —mz)+—1—
Ap , 2 Ap

1/2
(mi+mz)

X
Ap

(43)

Cw &0. (44)

In practice, it should be noted that if one chooses Ao in-
correctly as too low, one could overestimate the far-
continuum contribution on the basis of the approximation
(33), which in turn could imply a negative C~, in contra-
diction to the constraint (44). Thus the constraint (44),
provides a lower bound on Ap, as we shall see below. It is
also clear from Eq. (35) that Cz as a function of M would
be smallest for the lowest allowed value of M. This is be-
cause the exponential damping in the integral would be
most effective for this M value. In what follows we
would consider C~ at M =M;„ to be negligible. Then
for M & M~j„we expect C~ to be a small positive con-

Observe that as M ~ oo, C is finite, unlike C .
We now study the sum rule (40). For a given pseudo-

scalar meson, the problem is to deteiinine fp and Ao that
provide the best fit to the sum rule for the entire range of
M values being considered. However in Eq. (40), the
near-continuum contribution is unknown, except for the
positivity constraint
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tribution, increasing with M, provided of course the far
continuum has not been overestimated, i.e., provided the
choice of Ao is suitably made.

In practice, the determination of fz and Ao is achieved
as follows. %"e plot the pole term and the right-hand side
(RHS) of the sum rule (40), separately as a function of M
for several different choices of the parameter Ao. The
pole term contains the unknown parameter fz. However,
as discussed above, for each choice of Ao, we normalize
the pole term to be equal to the RHS contribution at
M =M;„. %'e now check that for the range
M;„&M & ae, the pole term and the RHS of Eq. (38)
satisfy the inequality

pole term (RHS (45)

which follows from Eq. (40) if we use the inequality (44).
The choices of Ao that violate the inequality (45) are au-
tomatically rejected. Finally, the determination of Ao is
achieved by the requirement that the two curves approxi-
mate each other as closely as possible, while still satisfy-
ing (45). In this case the effect of the near contribution
would be small for the entire range of M values being
considered. With Ao determined, the numerical value of
the RHS at M =M;„, determines the normalization of
the pole term, and hence the decay constant fz.

We illustrate this procedure for the D meson in Fig. 2.
As a function of M, the plot of the pole term is shown by
)& and of the RHS by O. We have displayed three graphs
for different Ao values. For Ao ——2.4 GeV, the appropri-

ately normalized pole curve lies above the curve for the
RHS, thus violating the inequality (45). The case when
Ao=2. 8 GeV satisfies the requirement (45), but the gap
between the two curves, which is a measure of C&, is
quite wide. The case when Ao ——2.6 GeV, clearly gives the
best fit according to the requirements listed above. Thus,
for D meson, we determine Ao ——2.6 GeV, and hence from
the normalization of the pole term at M =so, the decay
constant f~ =0.19 GeV.

This procedure can easily be extended to other pseudo-
scalar mesons. Our results for the best fits to Ao and fp
for various mesons are displayed in Table I. The mass of
the pseudoscalar meso~, mp, and the current-algebra mass
of the heavy quark, m~, used in the numerical work are
also displayed in Table I. Our calculated average for fz is
in good agreement with the experimental result
ft /f =1.2. We similarly believe that our results for fD
and fz are quite reliable, although it is difficult to assign
a quantitative level of accuracy. The case of the T meson
is clearly illustrative.

We close this section with a few comments.
(i) From Table I, we see that f~ increases very slowly as

the mass of the pseudoscalar meson increases rapidly
(ii) The quark condensate term in the sum rule (40)

represents the nonperturbative contribution. The relative
contribution of the nonperturbative term to the perturba-
tive term C in determining fp is very important for
low-mass mesons, but decreases rapidly as we go to
heavier pseudoscalar mesons. This confirms the feature
that bound states of heavy quarks can be regarded as per-
turbative systems in QCD.

x)o
l2—

IO—

Ao= 2.4 GeV
I I I I I

8 IO l2 I4 16

4—
I

XXXXXXXXXXXXXXXXXXX

X
0

5I

pol e
RHS

= M (GeV)

IV. SU(2) MASS SPLITTINCxS
OF PSEUDOSCALAR MESONS

It is well known that isospin symmetry is broken by
electromagnetism and by the u-d quark mass difference.
The mass splitting between members of an SU(2) multi-
plet is, accordingly made up of electromagnetic and had-
ronic contributions, respectively. For the pseudoscalar
meson s

xlQ l4-
I2—

Ao= 2.6 GaV

I I I I I I I I

2 4 6 8 IO l2 I4 16

RHS
pol e

= M(GBV)

Pd =Qd,

P„=gu,
the mass difference

2= 2 2Amp =mp —mp

(46)

(47)

XIQ
l6—
l4—
l2—
IQ—

OO

XXXXXXXXXXXXXX„XXX
0

ox
X

RHS

pol e

can then be written as a sum of two pieces

Meson
P(gq) mp (CxeV) Ao (GeV) fz (CxeV)

TABLE I. Values of Ao and fp determined from the best fit
to the sum rule.

4—
I I I

2 4 6

Ao= 2 BGeV.
I I I I I

8 IO I2 I4 I6
= M(GeV)

FICx. 2. The pole term ( && ) and RHS (0 ) of the sum rule (40)
for the D meson as functions of M with different values of Ao.

D
B
T

0.494

1.86
5.2

30

0.112 (Ref. 15)
0.150 (Ref. 16)
1.26 (Ref. 1)
4.24 (Ref. 3)

26

1.9

2.6
6.0

30—32

0.140
0.165
0.19
0.23

0.4—0.6
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Am p' (——b m p')I, +(~mp')r-

For pions, since the m
—+-m. mass difference gets contri-

butions from I=2 operators, and the u-d mass-difference
term transforms as I= 1, we have in the lowest order of
the u-d mass difference

(bm )g ——0 .

The only contribution to the m —+-m mass difference thus
comes from the electromagnetic interactions, which has
been calculated' using standard current-algebra tech-
niques. Note that for K, D, and 8, the mass difference
gets contributions from I=1 operators, so unlike pions,
the hadronic component of the mass difference will not
vanish.

The use of the current-algebra technique to calculate
the hadronic or the electromagnetic mass differences is of
limited applicability. It is a useful technique for pions,
and to some extent for kaons. Certainly for D and 8
mesons, it is not applicable. Here' we propose to use the
QCD sum rules to calculate the hadronic mass differ-
ences. The electromagnetic mass differences are much
harder to evaluate, and we wi11 estimate these using

Dashen's theorem' and a suitable generalization of it.

A. Hadronic component of mass difference

We use the QCD sum rule (40) for Pd and P„. Since
the quark Q is much heavier than u or d, we can derive
an approximate form for C . Setting m ~

——m~ and
m2 ——m (m„or md) in Eq. (42), C (M, Ao) can be writ-
ten as

3C (M, Ao)= M Img [IC)(a,b) ——,'(1—b)2e '~b]

+mgm [Xo(a,b) —(1 b—)e '~~]

where

+O(m )I, (50)

2 2

a= —, b=mg mg
Ao'

and Ko ~(a, b) are related to incomplete I" functions:

Ko(a, b) =a [I ( —l, a) —I ( —l,a/b)],
K&(a, b) =a [I ( —l, a) —I ( —l,a/b)]

(51)

—a [I ( —2,a) —I ( —2,alb)] .
In the last section, we found that with the parameters

fp and A chosen appropriately, the sum rule (40) is well
satisfied for the entire range of M values, with a negligible
near-continuum contribution. Accordingly, we will
neglect Cz for all M. Subtracting the sum rules (40) for

fp [mp exp( mp„ /M ) —m—p exp( —mp /M )]

C'„(M', A, )]—(m, —m„)&0
I qq+ QQ I

0&+0
M

where we have used SU(2) invariance for the quark condensates, and used q to denote the light quark u or d. Further-

more, we have used the SU(2) result fp fp =fp for the d——ecay constants, which is expected to be good (see comment (i)

at the end of Sec. III).'9 In order to obtain a simple formula for the hadronic mass difference from Eq. (53), we will, «
start with, consider the case M~ 0o. From the asymptotic expansion of the incomplete I functions, Eq. (53) gives

(md —m„)
(mp —mp )p, =d u f 2

3 2
mgAp j. —

4~
m~ m~ m~

2 2 2

2 A 2 A 2
ln —&0

I qq+QQ I
0& (54)

Similarly, if we add the sum rules (40) for Pd and P„and go through the same steps as indicated above, we get

mg 22mp mgAp I—
fp 4m

L

4 2 4
mg my mg

A.'+ A.' A.'ln —2&0
I qq+QQ I

0& (55)

From Eqs. (54) and (55), we get

where

mz —mp

mz

md —mg

mg
(56)

1 —mg2/Ao +(mg /Ao )lnmg /Ao —(4' /3)&o
I qq+ QQ I

o&/mgAo'

1 —mg"/Ao +(mg /Ao )»mg /Ao —(8~ /3)&OI qq+QQ IO&/mgAo
(57)
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I'~ and I'„, we get

If the continuum contribution in the sum rule (40) is com-
pletely neglected, i.e., we set Ao~ co, Eq. (57) shows that
y~1, so that

is given by

f71p —I?lp

mp

md —mu ~~+ m~o rn

mg Alp tPl p
(63)

7?Zp —Pal p
(58)

mp P?Zg

This looks like the naive result in constituent quark
model, although the quark masses we are dealing with are
not constituent quark masses but rather the current-
algebra masses.

For a more realistic determination of y, we adopt the
Ap values obtained in the previous section. This leads to

0.67 (0.70) for the K meso~,
y= 1.44 for the D meson,

2.60 for the 8 meson,

where for the K meson, @=0.67 for m, =112 MeV and

y =0.70 for m, = 150 MeV.

B. Electromagnetic component of mass difference

(mD+ —mDo )r ——(m + —m o ) . (61)

For details, see Appendix B. In view of the rather dif-
ferent masses of the c and u quarks, the validity of P-spin
invariance may be questionable. We will nevertheless use
Eq. (61) to estimate the D+ Dmass differe-nce. Extend-
ing these considerations to b~s symmetry, we have

(m + mo )r (—m +~ m——o2)r—
2 2 — 2 2=(m+ —m o)r —m+ —mo

(62)
From Eqs. (56) and (62), the total SU(2) mass splitting

The electromagnetic mass differences of kaons and
pions are related by Dashen's theorem'

(m + mo )—r (m +—— mo )—r .

The derivation of this result is based on U-spin invariance
of electromagnetic interactions and the soft-pion tech-
nique of current algebra. In view of Eq. (49), the result
(60) allows us to estimate (m + —m o )r in terms of the

experimentally known ~—+-m mass difference.
For the D and the 8 mesons, there is no clear way of

determining the electromagnetic mass differences. If we
assume that electromagnetic interactions are P-spin '

(c~u) invariant, it is easy to see that in the soft-pion lim-
it

where the + ( —) sign arises if I'd is a charged (neutral)
meson. In the literature, several estimates exist for the d-
u mass difference with somewhat varying results, but it is
generally of the order of a few MeV. Here we choose to
evaluate it using the K mass difference as input. The ex-
perimental value of I o —I then gives

mq —m„=1.8 (2.3) MeV (64)

which is consistent with other determinations. ' ' Using
md —I„=2 MeV, the D and 8 mass differences can be
calculated from Eq. (63), and are displayed in Table II.
Our result for the D mass difference is in good agreement
with the experimental value. For the 8 mass difference,
one has to wait for a more precise experimental deter-
mination. For the heavier mesons, the electromagnetic
mass differences as determined from the extended Dashen
theorem are small fractions of the total mass difference,
so that the use of c~u or b~s symmetry in estimating
them is perhaps not crucial to our final result.

V. M DEPENDENCE
OF MASS-DIFFERENCE SUM RULE

So far we have analyzed the mass difference using the
sum rule in the limit M~ ~. This procedure is justified
if the near-continuum contribution is negligible for all M
in our chosen range of M values. It is desirable, however,
to investigate the M dependence of the mass-difference
sum rule (53) to check the stability of our result. For this
purpose, we plot, as before, the RHS of Eq. (53) as well as
the pole term on the LHS separately as a function of M in
the range M;„(M( oo. We adopt the values of fp and
Ap as obtained in Sec. IV. We also take md —m „=2
MeV, and choose the hadronic mass difference between
I'd and P„as found in the M—+no limit. Since we are
now considering the difference sum rule, the near-
continuum contribution to Eq. (53) need not be positive
definite, so no inequality between the RHS and the pole
term exists, as was the case in the original sum rule (40)
discussed in Sec. III.

In Fig. 3, we display the results for the D meson. We
see that the two curves match well over the range of M
values considered. This implies that the sum rule (53)
with the mass difference given by our calculations in the
M —+~ limit, is indeed stable against variations in M.

TABLE II. SU{2) mass splittings.

Mass
difference

o —m

m + —m

m o —m

Hadronic
(MeV)

5.3 (input)

4.3
5.9

Electromagnetic
(MeV)

0.35
—0.12

Total
(MeV)

4.0

Experimental
result
(MeV)

4.01+0.13 (Ref. 23)

4.7+0.3 (Ref. 23)

3.4+3.0+2.0 (Ref. 24)
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x)O „
7—

RHS
oo oQ QQ 'QQQ po)eX

Ao= 2.6 GeV

MeV
X md fTIU —2

P
4 6 8 IO)2 I4 I6

= M(GeV)

FIG. 3. Stability of the hadronic D mass splitting against
variation in M.

clearly

my (D+)=my (~+) .

Now consider the P-spin triplet
r

CQ

1
(uu —cc )v'2

D

In terms of the states

(81)

(82)

Similar checks on the stability of the sum rule have been
made in the case of other mass differences.
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(uu —dd ),
2

1
(uu +dd —2ss ),

6
1

(uu +dd +ss —3cc),
12

we can express mp as
' 1/2

(83)

APPENDIX A: HEAVY-QUARK CONDENSATES

Consider the trace of the energy-momentum tensor

P(g) a a
8~ —— Gp G~„+ pm;qgq;,

2g

where the Gell-Mann —Low P function is given by

1 0 1 2
jap — 7T + ~ g8+2v' 3

g]5 ~ (84)

P-spin invariance of the electromagnetic interactions then
implies for the triplet (82)

my (D )=my (np)
2 0 & 2 2 2= 4 my (n )+» my (qs)+ 3 my (y)|s)

p(g) 11—, nj-
g +O(g ),

2g 2(4~)'
(A2} + [my (y)s~m. )+c.c.]4 3

e= (o
I
e,'I o) = -,' (o I e„ I

o) . (A3)

Now, from the decoupling theorem of Appelquist and
Carazzone, we expect the contribution of a heavy quark

q~ would be damped, and be of order 1/m~, where mp, is
the mass of the heavy quark. For an extra flavor of heavy
quark, we can readily find from Eqs. (Al) —(A3), the extra
contribution to e. Since this should be O(1/m~), we ob-
tain

g is the QCD coupling constant, g /4m =a„and nf is the
number of quark flavors. From Lorentz invariance, the
vacuum energy density e, is given by

where

[my (y)is~a. )+c.c.]
1 0

6

+ [my (y)is~a)s)+c. c.],1

3 2

my (a~b)=(b
I HEM Ia) .

Furthermore, if we consider the P-spin-singlet state

vZ
gp

—— ( uu +cc 2dd )=—
6 2 6 3

(85)

(87)

2

, (oI G„'„G„'.Io)+m„(oIq„q„ Io) =o
3 2(4m) Vlg

which yields the results (31) quoted in the text.

APPENDIX B:
GENERALIZED DASHEN THEOREM

(A4)

we have from P-spin invariance,

&n~ IHz"M
I ~~) =o

which leads to
2 00= 4 my (m ) »m (y)s) ——,'m—~(y1| )

+ my(y)s m ) — m (~ g)12

Assume that electromagnetic interactions are P-spin
(c~u) invariant. If we consider the P-spin doublet

~'

D+ cd

Qd

+ ny (gfs~~ ) my ('ll ~YJis)
3 2 0 1 2 0

6 y

— 1 — 1 2—3~ my (nis~y)a) — my (g,~g„) .2 3V2
(88)
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Adding (85) and (88), we get

mr (D )=mr (m )+ (rr ~HEM
~
gs)

3
' 1/2

+2 — ( ~H ~q„) .
3

(89)

get

m (D )=m (rr ). (810)

From Eqs. (81) and (810), we get the generalization of
Dashen's theorem

In the soft-pion limit, the last two terms vanish, and we [m (D+)—m (D )j =[m (sr+) —m (vr )] . (Bll)
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