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Rotational bands in the baryon spectrum
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As suggested by the bag model, we assume that the ground states of the nucleon and the 5 are
nearly spherical, but the excited even-parity states are quite deformed. This deformation is respon-

sible for the observed low-lying excitations N(1440) 2 and h(1600) 2, on which rotational bands

are built.

I. INTRODUCTION

A striking feature in the excitation spectra of the nu-
cleon and the 5 is the appearance of low-lying even-parity
states. In the quark model, the energy spectrum of a
baryon is generated by exciting one or more quarks to ex-
cited orbitals which appear in groups of alternating pari-
ty. This feature is true both in the bag model' and in the
nonrelativistic constituent-quark model, and this is the
same as in the nuclear shell model. Since the odd-parity
states are seen at excitations of about 500 MeV, one
should expect the even-parity single-particle states to ap-
pear at roughly twice this energy. Yet the X(1440)—,

'

and 6(1600)—', are all found to be lower than the lowest3+

odd-parity states. In the Isgur-Karl nonrelativistic model
(see also Forsyth and Cutkosky ), the even-parity states
are lowered by splitting the 2fuu states using a local (spin-
independent) two-body potential in a first-order perturba-
tion calculation. This first-order calculation splits the
states by the order of fico, and the lowest even-parity exci-
tation is shifted to about the energy of the odd-parity ex-
citations. In this paper we are proposing a new model
for the even-parity excited baryonic states. We propose
that the baryons are highly deformed in the excited even-
parity states, and that these states may be simply
described as members of rotational bands.

Before proceeding with the description of the work, it
may be helpful to give an analogy froin nuclear physics.
In ' 0, eight protons and eight neutrons form a closed-
shell nucleus, with a gap of about 12 MeV between occu-
pied p3/2 orbitals and the unoccupied dq~2 orbitals of the
spherical mean field. The first even-parity excited states
in the single-particle picture should come around 20 MeV,
yet experimentally a 0+ state is found at 6.05 MeV. This
state is a highly collective state, with two-particle —two-
hole, and more importantly four-particle —four-hole exci-
tations from the ground state, which strongly polarize and
deform the core, thereby reducing the excitation energy.
The other low-lying even-parity states form a well defined

rotational band with angular momentum 2+, 4+, 6+, etc.
This feature is quite common in nuclei where the ground
state may be almost spherical, but the excited even-parity
state is highly deformed, leading to the famous "coex-
istence" of collective and single-particle states.

We are proposing a similar model for baryons. In the
bag model, it is expected that the nonlinear boundary con-
ditions will cause the bag to deform in shape for the excit-
ed states. Calculations have been performed for the
single-particle states of a bag as a function of the defor-
mation parameter by various authors. In a baryon, in ad-
dition to the three valence quarks, qq pairs and gluons
may be generated with increasing excitation energy, caus-
ing further deformation of the bag. In this paper we want
to examine the low-lying spectrum of the nucleon and 5
by assuming that in the excited states the valence quarks
are moving in a deformed incan field. The intrinsic states
are generated from a product of the single-particle de-
formed orbitals. Projection into states of good angular
momentum then generates the characteristic I. =0+,2+,
4+, . . . spectrum, which, combined with the total spin
S = —,

' or —', , would generate the spectrum with states of
good J.

For the low-lying odd-parity 1%co states belonging to
the 70 1 representation, the mean field is probably much
less deformed. In the bag model, the lp i' orbital is the
lowest with spherical symmetry, and the 1@3/2 state,
which should be deformed, does not come down much in
energy with deformation. However, the states belonging
to the 56 1 representation around 1900 MeV which have
3fico orbitals should be very deformed in our picture, simi-
lar in situation to ' O. This should result in the observed
lowering in energy of these states, which in the spherical
nonrelativistic quark model could only be lowered by in-
troducing an extra term in the Hamiltonian.

This paper will be of a qualitative nature where we shaB
concentrate on the even-parity excitations of the nucleon
and the b, . The lowering of the excitation energies in a
deformed mean field will be illustrated in Sec. II by con-
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sidering the nonrelativistic model of constituent quarks in
a deformed oscillator potential. Similar considerations
also hold in a deformed bag, but some of the simplicity is
lost. Section III will be devoted to a brief discussion of
the decay properties of these states. In the final section,
we summarize the main differences between the present
model and the conventional quark model.

II. THE DEFORMED-OSCILLATOR MODEL

Consider a nonrelativistic constituent-quark model in
which each valence quark is moving in an axially sym-
metric deformed oscillator:

( COj —C03)
5=3, Mp = T~ ( 2cog +co3 )

2cog +co3
(2)

The single-particle eigenenergies E(n3, nz) are then given
by

E (n 3 nq ) =Act)p(% + & ) —T~flci)p5(2n3 n j )

where N =(n3+nq), n3 and nq being the number of exci-
tation quanta along and perpendicular to the symmetry
axis, respectively. This single-particle spectrum is shown
in Fig. 1, where E(n„n~)/Acop 1s plotted against the de-
formation parameter'5. Note that with the onset of defor-
mation, the orbital angular momentum I of the quark is
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4.0 4.0

5.0
O
3

0-

~ 20
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FIG. 1. The single-particle energy levels of an axially sym-
metric oscillator as a function of the deformation parameter 5.
The parameters %coo and 5 are defined in Eq. (2). The shell gaps
of Aa~„occur for 6=0, but the orbitals with n~ ——0 come down
most for prolate deformation (positive 5).

V= —,mcus (x +y )+—,mco3 z

Such a potential has previously been considered' to
describe the ground state of the nucleon. Define a defor-
mation parameter 5 and a mean frequency cop through the
equations

no longer a good quantum number, but its projection A
along the symmetry axis 3 is still conserved. The single-
particle states with nz ——0, corresponding to A=O, come
down in energy with increasing 5.

We shall assume that the ground state is spherical, and
the deformation parameter 6 is small for the X= 1 excita-
tions, but builds up to a bigger value for the X =2 states.
This feature has been established in nuclei, where, as more
and more particles occupy a given orbital, it gets more
and more deformed. The lowest X=2 excitations, for a
given 5, may obviously be obtained by promoting two
quarks to X =1 orbitals with A=O, or by promoting a
single quark to the X =2 orbital with A=O. In the ab-
sence of deformation the excitation energy of this state
would be 2ficop, but this will reduce to ficop(2 ——', 5) for
nonzero 6. The projection of the I. =0 state from this de-
formed intrinsic state would result in a further lowering
in energy" by an amount (I. )/~, where the expecta-
tion value of I. is taken with respect to the intrinsic
state, and W is the moment of inertia. We shall see that
we expect A' /2W-40 —50 MeV, so (I. )/~ could be
about 300 MeV. If we take hcoo-500 MeV, then the
spherical 1%co odd-parity excitation will appear at about
the same energy as the L =0+ excitation for 5=0.5.

The intrinsic state that we construct should have the
proper permutation symmetry, so that by combining it
with the appropriate SU(6) multiplet 56, 70, or 20, a total-
ly symmetric wave function is obtained. As in the spheri-
cal model, we find one symmetric and two mixed-
symmetry orbital states, but these cannot be labeled (in the
nucleon) as Ss, SM, and D~, because in the intrinsic
state the I values are mixed. The 20 representation cannot
be realized because the L, =1 component is absent in the
lowest-energy state. States of good J can be constructed
by projecting out states of good I. from the intrinsic state,
and combining t. with S=—, or —,. We have one sym-
metric and two mixed-symmetry (MS) states from permu-
tation. The symmetric states give, on projection, I =0, 2,
4, etc., states, and a combination of the two MS states also
yields a JL =0,2,4, band. In the nucleon, the symmetric
band can only combine with S = —,

' to give rise to states of
J= i, ( —,', ~ ), ( ~, ~ ), etc., while the MS band can com-
bine with S = —,

' or S = —,
' to yield a set of states. These

are shown schematically in Fig. 2(a) for the nucleon and
Fig. 2(b) for the A. Up to now the classification scheme is
the same as the O(3) && SU(6) of the standard quark model,
except that the O(3) part of the spectrum has been gen-
erated by the motion of quarks in a deformed field. There
are, however, some important differences in the mixing of
the bands in the two models, with the consequence that
experimental data may be able to distinguish between the
two.

Up to now, we have ignored the effect of the residual
quark-quark interaction on the rotational spectra. First,
let us consider the spin-orbit potential that one expects to
have from the one-gluon-exchange mechanism. In the
presence of such a force, the three component of the orbi-
tal angular momentum A is no longer a good quantum
number (J3, of course, is). The spin-orbit potential mixes
states of different A, but this mixing is inhibited due to
the large splitting in energy between such states that is
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FICx. 2. (a) A schematic picture of the even-parity excited

states of the nucleon. The states are grouped in rotational bands
of orbital angular momentum (L), orbital permutation symme-
try [symmetric (Sym) or mixed symmetry (MS)], spin (S), and
the SU(6) representation (56 and 70). (b) A schematic descrip-
tion of the even-parity excited states of the h. The classification
is done in the same way as in (a).

brought about by deformation. In the limit of large defor-
mation, A becomes, again, a good quantum number. For
the A=O state that has come down most in energy, the
spin-orbit contribution is zero. Thus in the rotational
bands the spin-orbit force has little effect and the even-
parity states are insensitive to the strength of this force.
A similar argument does not hold for the tensor force,
and, as in Ref. 4, we have to assume that it is small in or-
der that the spins S=—,

' and S=—, couple weakly to the
collective rotations, with little mixing between the two.
We also assume that most of the central spin-independent

long-range q-q interaction has already been absorbed in
the mean field, unlike the conventional quark model
where this played a crucial role. In our model, the most
important residual force between the quarks is the very-
short-range hyperfine interaction, which causes consider-
able mixing between the 56 and the 70 bands in the nu-
cleon. In the conventional quark model, this mixing was
largely inhibited by the splitting between these bands due
to the central spin-independent force.

We now discuss the even-parity excitation spectrum in
some detail. In Fig. 3, the experimentally established'
states of the nucleon and b, are shown by unbroken lines
and the more uncertain data are given in dashed lines. We
have grouped these in rotational bands according to our
model, along with the expected, but as yet unseen
members of the band by dot-dashed lines. We begin with
6, which has the simpler spectrum. The lowest excited
state listed' is the (two-star) 1550 —, state, and the next
is the (three-star) 1600 —,

' state. The nominal energy of
the latter state is 1600 MeV, although the baryon table
quotes an uncertainty in its mass in the range 1500—1900
MeV. Recent phase-shift analyses' ' give its mass as
1600+50 and 1522 MeV, respectively, so there is reason to
believe that it is low lying. In our model we expect a 56
J=—, and a 70 J=—,', which are the lowest-lying

3+ I +

members (band heads) of two rotational bands. We expect
these two states to be nearly degenerate in energy, and not
split substantially by the central part of the qq interaction
as in previous calculations. ' The sphtting is caused not
by the hyperfine interaction, which cannot mix S = —, and
S = —, states, but only by the (weak) tensor force. As in
the previous calculations, we expect the 70 states to couple
weakly to the elastic mN channel. The splitting between
N(1440) and b, (1600) in previous models comes out a
factor of 2 too large. This is because in the spherical
model these two states have a structure similar to the
respective ground states (being nodal excitations), and the
hyperfine splitting is about the same as in the ground
state. In the present model, both N(1440) and 6(1600)
are deformed and have a different structure from the
spherical ground state, and a very-short-range hyperfine
interaction would yield less splitting. We expect near-
degenerate states of 5 with spins —,'+, —,', —', +, and —',
coming from the 56 2+ coupling to S= —,', and these are
seen between 1900 and 1950 MeV. We would also expect
a degenerate pair in 6 with spins —,

' and —, coming
from the 70 2+ coupled to S = —,'. These should be weak-
ly coupled in the mN channel and it is not surprising that
they are not seen. Going higher up in the energy spec-
trum of 6, we also expect the states —, , —, , —, , and

5+ 7+ +

arising from the 56 4+ states. The splitting between
the L =0+ and L =2+ states in the rotational band of 6
is about 300 MeV. If we take a rotational spectrum of the
form (fi /~)L (L +1), where W is the moment of iner-
tia, then this gives fi /2JI'=50 MeV. If the moment of
inertia was constant, then the 4+ states should be about
1000 MeV above the band head at 1600 MeV. An —,' is
seen at about 2420 MeV in b„a— at 2300 MeV (two

7+ 2

star), and a —, at 2400 MeV (one star, shown by a dashed
line in Fig. 3). We believe these to be the 56 4+ states.
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FIG. 3. The even-parity excited states in the nucleon and 5
arranged in rotational bands. The solid line corresponds to ex-
perimental states given a three- or four-star status by the Parti-
cle Data Group (Ref. 12). The dashed lines are one- and two-
star states [with the exception of the 6(2200) which has been
seen in only one analysis and is not given a star status]. The
dot-dashed lines correspond to states predicted by the model
that have not been observed experimentally.

They are below the estimate of 2600 MeV because rela-
tivistic effects should cause the moment of inertia to in-
crease for the more excited states.

The nucleon is slightly more complicated than the A.
Here we expect three band heads with L =0: a 56
J=—, , a70 J=—, , anda70 J=—,

' . Weexpectinthe] + &+ 3 +

present model the 70 J= —, state to be nearly degenerate
3+

with the A(1600) and couple weakly to the ~N channel.
It is interesting that there is a weak (one-star) state,
N(1540) —,', which may be the 70 J=—,

' band head.
With a weak tensor force, this should not mix with the
S = —,

' states. The other two low-lying states, 56 J= —,

and 70 J= —,', can and do mix through the spin-
dependent hyperfine interaction, giving much of the split-
ting between N(1440) —, and N(1710)—, . From the de-
cays we expect a 25% admixture of 70 —,

' in N(1440),
and correspondingly a 25% admixture of 56 —,

' in
N (1710) (see Sec. III).

We find the 2+ state built on the N (1440) at 1700 MeV
[N(1680)—, and N(1720) —,

' ], a splitting of 260 MeV
from the 0+. The moment of inertia is thus the same or
slightly greater than the A. In the rotor model we would
expect the 4+ at 2300 MeV. We find the —', at 2200
MeV (2150—2300). Again a bit low, as expected, if the
moment of inertia increases with excitation. The expected

is not seen at this energy, but there is a (three-star)

at 1990 MeV which couples rather weakly to the m%
channel. Perhaps this state is the L =2 member of the 70J=—, band, which should be in this energy range, al-
though with very small coupling to the n.X channel. If
this is true, then the —', state in the N(1440) band has
not been seen yet possibly due to a large total width. Note
also that we expect three other L =2 states in the 70 —,

3 +

band as shown in Fig. 3, nearly degenerate with
N(1990)—, , which have not been seen either because of
their small coupling to the m.2V channel. The 2+ rotation-
al state build on the N(1710) is expected slightly above
2000 MeV. The —, state is seen at this energy, but the

is unseen. There is a one-star J= —, N (2100),3 + ~ ~ & +

which, if it really exists, may belong to the 20 representa-
tion, which would not move down in energy in our model
since A&0.

The A particle spectrum is quite similar to the nucleon
and is generally consistent with the rotational model.
Classification of the bands is very similar to the nucleon,
and we shall not discuss it here. The X spectrum, on the
other hand, has many more levels since both the 8 and 10
SU(3) representations are present. It is also complicated
by poorer experimental data. There are many one- and
two-star states. ' Also, most of the predictions we would
make for the X are just the SU(6) predictions and are not
unique to our model. Thus at the present stage there is
little to be learned about the validity of the rotational
model from the X spectrum. However, we would like to
make one prediction. The location of the state analogous
to the b.(1600) (56 S = —, ) is not yet determined experi-
mentally. However, there is evidence for the l. =2 rota-
tional states built with this state as the band head. The
L =2 states occur between 2000 and 2100 MeV with the

being particularly strong. Using the moment of iner-
tia from the b, , we predict the band head (J= —,

'
) to be

between 1650 and 1750 MeV and possibly identified with
the bumps at 1690 MeV, whose spin and parity is as yet
undetermined. This prediction is in disagreement with
Isgur and Karl, whose lowest —, X state is at 1865 MeV.

Before ending this section, we would like to comment
on the moment-of-inertia parameter. From the fits to the
experimental data, we have seen that

=40—50 MeV . (4)

The rigid moment of inertia of a rotating sphere of mass
M and radius R is 5 MR . Taking M =1500 MeV and
R =0.9 fm yields A /2Jr„s;d——40 MeV. This very rough
estimate is consistent with the value obtained from the fit.

III. DECAY PROPERTIES

Since we are using a basis of good SU(6), it makes sense
to use the SU(6) ~ XO(3) of Melosh' and Hey, Litchfield,
and Cashmore' to describe the decays. Since this model
is reasonably successful for the 56 2+ decays, we expect
our rotational model to also be reasonable. The main
difference from Hey, Litchfield, and Cashmore for the 56
2+ decays is that our states are not pure 56, but may con-
tain appreciable mixtures of 70. This would tend to
reduce the ~N decay strengths somewhat for 2V* decays
compared to 5* decays. We would not expect the pure 70
states to couple to the mN channel, the same as in the non-
relativistic quark model. '

As pointed out earlier, two states where we differ from
the usual nonrelativistic quark model are the N(1440)
and the N(1710), both J= —,

' states. These we expect to
be mixed perhaps as much as 75—25%. With or without
mixing we cannot explain the large width of the N(1440)
found in Ref. 13. However, if we take the width of Ref.
14, the results are more reasonable. For the decay of the
N(1710) we would have zero for n.N decay without mix-
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+o 01 I'DM& (7)

with an oscillator parameter b =0.48 fm. The calculated
amplitudes are, in the same units as before,

A 1y2 = —24 ~ A 1y2 = 16

To obtain the helicity amplitudes closer to experiment, we
need a wave function'

iN(1440) —, }=0.85
i

Ss —0.51
i

SM }

which yields

—o. 1 1
I
'ss & (8)

A;„=—64, A"„,=43.
In other words, it is necessary to have about 25% or more
of the mixed symmetric state combination in N(1440) —,

'

to reproduce the data. This is not realized in the spherical
model because of the large diagonal splitting of the
N(1440) and N(1710) from the central art of the qq
force. Now consider the state N(1710)—,', which is the
partner in mixing. Here the experimental data' is rather
poor:

A~1~2 ——3+15, A1g2 ——9+30 .

In the quark model with spherical orbitals, the wave func-
tion is now taken to be predominantly S~,

i
N(1710)—, }= 0.94

i
SM }—0. 15

i
Ss }

—o.31 i'DM }—0.07
i

'z, } . (10)

The oscillator parameter is again 0.48 fm. One then gets

ing of the 70 and 56 representations. The partial decay
width of 30 MeV is consistent with about 20% mixing.
Stronger evidence for mixing comes from the photo-decay
data.

The helicity amplitudes A 1~2 and A 1&2 for the
N (1440)—, ~N (940)—,

' +y are known experimental-
ly. ' These are (in units of 10 GeV'~ )

A1n = 70+9, A 1' ——42+23 .

Let us briefly point out the difficulty of reproducing these
data with spherical orbitals. For the N(940) —,', let us
take the state

i
N(940) —, }=0.98

i Ss}—0. 199
i

SM }
with oscillator parameter b =0.7 fm. For N(1440) —,

'

the wave function taken by Koniuk and Isgur' is

iN(1440) —, }= 0.99
i

Ss }+0.17
i

SM }

IV. CONCLUSIONS

The main point of this paper is that although in the
ground state the baryons are spherical, with excitation the
valence quarks see a deformed mean field. A qualitative
analysis has been made by assuming a deformed-
harmonic-oscillator model, although it should be possible
to do a similar analysis with deformed bag orbitals. In
such a model, the X =2 excitations quite naturally come
lower in energy than the N =1 odd-parity excitations if
one assumes that the deformation tends to increase with
the excitation quanta. This will also result in the N =3
56 1 states coming lower in energy than the spherical
quark model.

It has been shown that for those states that come down
in energy most (with L3 ——A=o), the spin-orbit qq poten-
tial is inoperative for large deformation. This is in con-
trast to the spherical quark model, where the spin-orbit
force must be suppressed artificially to fit the data. The
tensor force is assumed to be weak, otherwise there would
be strong mixing between the S=—,

' and S=—, states,
leading to the strong-coupling model. Unlike the con-
ventional models, we assume that the long-range central
spin-independent qq force is mostly absorbed in the mean
field, leaving only the short-range hyperfine interaction as
the main residual interaction. This causes considerable
mixing between the 56 S = —,

' and 70 S = —,
' states in the

nucleon, giving the splitting between the N(1440) ~ and
N(1710)—,', and improving the quality of fit in the
photo-decay data. We also predict that the 70 0+ states
are considerably lower than in the conventional quark
models. These states are hard to see experimentally be-
cause they couple weakly to the mX channel. It is impor-
tant to find experimentally where these states are.

It is well known in nuclear physics that a rotor-type
spectrum is generated by particles moving in a deformed
mean field. ' The single-particle strengths of the spheri-
cal orbitals are spread over these collective states. In our
model, states in the representation 20 0+ do not come
down in energy because A&0, and may be looked upon as
single-particle states. For the rotational bands, we find
that the moment of inertia parameter is close to the rigid
value.

In the present paper, we have not given a prescription
for finding the deformation parameter in a self-consistent
manner for the different excited configurations of the
baryon. For this one would need to start with a Hamil-
tonian which adequately describes the interaction of the
valence quarks, and the interplay of the valence quarks
with other degrees of freedom, such as the qq core.

Al/2 47 A1 2= 2~ ~

In spite of the large error bars in the data, a fit is not pos-
sible unless the mixing between

i SM } and
i Ss } is in-

creased. In fact, if we take a wave function for
N(1710)—,', which is orthogonal to the state N (1440)—,

'

given by Eq. (8), with the coefficients of
i Ss } and

i SM } interchanged in magnitude, the experimental
values given by (9) are obtained.
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