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A fully relativistic bound-state equation is used to study the spectra (and leptonic widths) of char-
monium, b-quarkonium, D mesons, I" mesons, 8 mesons, and mesons composed of light quarks.
The short-distance behavior of the interaction is that of asymptotically free @CD, while the large-
distance interaction is a linear confining one whose Lorentz nature is either pure scalar or an equal
mixture of vector and scalar. Multiquark states are accounted for in an approximate manner. An
interesting dependence of the quark masses on the Lorentz nature of the long-distance interaction
and on the overall mass scale of the system is obtained.

I. INTRODUCTION

In the study of quark-antiquark systems it has come to
be recognized that even in the case of charmonium there is
a need for a relativistic treatment beyond the v /c terms
of the Darwin-Breit Hamiltonian which give the spin-
orbit and spin-spin couplings. In this paper we study the
quark-antiquark systems with a relativistic treatment us-
ing an expansion of the field equations in intermediate'
states and approximating the sum over intermediate states
in the antiquark channel by a single on-shell antiquark.
The resulting equation, after partial-wave analysis, is a
single-variable integral equation in the one off-shell
momentum as opposed to the Bethe-Salpeter equation
which is a double-variable integral equation in both off-
mass-shell momenta.

We apply this equation to quark-antiquark systems us-
ing a vector exchange at short distances with asymptotic-
freedom effects included and a combination of scalar and
vector exchanges which are the linear confining potentials
effective at large distances. The potentials we choose as
well as the range of parameters we explore are not corn-
pletely free but highly motivated by theoretical prejudices;
at short distances we use the full asymptotically free QCD
vector potential whose only parameter is A&cD, and the
large-distance linear confining potential is either an equal
combination of vector and scalar exchanges, as motivated
by the bag model, or a pure scalar linear potential. Other
works parametrized the QCD potential by an arbitrary
inultiplicative factor, and when, in a relativistic treat-
ment, a distinction between vector and scalar exchanges
for the linear part was made, this exchange was taken only
to be purely scalar in order to avoid problems with the
Klein paradox. We fit the parameters of the exchanges
(with the above-mentioned theoretical restrictions in
mind) and a cutoff representing inelastic channels to the
charmonium mass spectra and to the leptonic decay
widths which reflect the wave functions at short distances.
We fit the ratios of the leptonic widths as well as the mag-
nitudes modulo the unknown QCD corrections. The rela-

tivistic effects also show up in the p-g„ ll'-g,', and P
wave splittings. We fit the P-g„P wave splitt-ing, and
leptonic width successfully using a bag-model-motivated
linear potential with equal vector and scalar strengths.
The f' g,

'
spli-tting is too small, as in other fits, being

about 50 MeV instead of the 90 MeV indicated by the
newly discovered g,'.

The potential with its parameters fixed is then applied
to the b-quarkonium spectra with good results, including
the splitting of the newly discovered 2P levels. The ratio
of the leptonic decay widths reproduces the experimental
results and the magnitudes are closer to experiment than
in the charmonium case. This is to be expected since the
QCD corrections at higher mass are smaller. Predictions
are made of the location of the gt, and qb

The relativistic equation and potential are then applied
to the heavy-light-quark systems of the cu, cd, and cs
inesons. The D mass and D Dsplitting fav-or the use of
very-light-mass u and d quarks in the case of equal vector
and scalar linear potentials and masses of the order of
several hundred MeV in the case of a purely scalar linear
potential.

We then turn to the light-light-quark states. The
equal-vector-and-scalar linear long-range choice does not
give states below a GeV for any quark mass below 500
MeV and reasonable cutoff. We also tried a purely scalar
long-range linear part. This will give an approximate fit
to the light-meson states provided we take large u-, d-,
and s-quark masses at this larger-distance scale. This may
be motivated by QCD niass-renormalization effects. The
light-mass mesons m, E, and g are not given correctly due
to the lack of inclusion of chiral-symmetry effects in the
bound-state equation. Likewise the masses of the light
quarks differ from those in the fits to the heavy-light-
quark states. We shall discuss these effects through the
use of renormalization-group arguments.

The integral equation that we use has the following ap-
pealing properties:

(a) Upon performing a partial-wave analysis it becomes
a one-variable integral equation.
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(b) Since one leg is on shell it is current conserving and
even the one-gluon exchange is gauge invariant.

(c) In the nonrelativistic limit it reduces to the Darwin-
Breit Hamiltonian, which includes the v /c effects.

(d) It has the Dirac equation as a limit as the on-shell
quark becomes extremely heavy relative to the off-shell
quark (which should be helpful in the heavy-
quark —light-quark systems).

(e) It includes retardation effects which cannot be repro-
duced by spatial potentials.

(f) As it is a momentum-space equation it is straightfor-
ward to incorporate the renormalization-group momen-
tum dependence of the QCD coupling strength.

This equation was formulated by Greenberg' in the N
quantum approximation and applied to the deuteron prob-
lem by Gross. It has been applied to the problem of
deeply bound composites by Bander, Chiu, Shaw, and
Silverman.

In Sec. II the relativistic bound-state equation is formu-
lated and a partial-wave analysis is performed. An ex-
pression for the leptonic decay width is also derived. In
Sec. III the short- and long-range QCD potentials are for-
mulated. In Sec. IV the fit to the charmonium spectra is
presented. In Sec. V we discuss the b-quarkonium spectra
predictions and in Sec. VI the heavy-light-quark fits are
discussed. Section VII describes the light-light-quark fits,
and in Sec. VIII we present a summary of our results.

II. FORMULATION OF RELATIVISTIC EQUATIONS
FOR QUARK-ANTIQUARK SYSTEMS

A. Derivation of the bound-state equation

The relativistic bound-state equation we shall use is
based on the equation for a quark field f(x) coupled to a
gauge potential A„:

I

(i9—m, )g(x)=gA(x)f(x) . (2.l)

(i9 m—&)( p, A,
~
P(x)

~
8)

=g g ( p, A,
~

Q(x)
(
n ) (n

~

@(x)
(
B) . (2.2)

A complete set of states has been inserted into the right-
hand side of (2.2). Up to this point the equations are ex-
act. The approximation we have in mind consists of keep-
ing only the antiquark state in the sum. The justification
for this approximation is that, at least at large distances,
the valence quark model appears to work quite well; in
this model the mesons are made up of only a quark and an
antiquark. The effect of the inclusion of multiquark
states or states composed of quarks and gluons will be dis-
cussed at the end of this and in subsequent sections. In
this approximation (2.2) becomes a linear equation for the
matrix element of the quark field between the bound state
and an antiquark state. We define

1/2
2cog co(p )4 (p, A, )=(2')

PZ2
(p, A,

i f (0)
i
B), (2.3)

where co~ ——(B +M )'~, co(p)=(p +mz )', m2 is the
antiquark mass, and M is the unknown bound-state mass.
The potential for this problem is obtained from the matrix
element of the gauge potential or its current in the anti-
quark state. The simplest form of the bound-state equa-
tion is obtained by taking the perturbative result for this
matrix element:

m] is the mass of the quark. The bound-state equation is
obtained from the matrix element of (2.1) between the
bound state of momentum B and an antiquark state of
mass m2, momentum p, and spin A, (for the moment we
do not indicate the spin quantum numbers of the bound
state):

(8 —p —mi)%'(p, k) = g f 3, &y%'(p', A.')u(p', A, ') "y(vpA, ) .
8 p 2 g

(2~)'~(p') (p' —p)'
(2.4)

We wish to extend this result to more general interactions in order to be able to include the effects of asymptotic free-
dom and linear confinement which involve both vector and scalar exchangesi Detailed forms for these exchanges will be
discussed in Sec. III. The generalization of (2.4) that we shall use is

d 'm
(8—p —m&)%(p, A)= g f 3 [ Vz((p' —p) )y&'l(p', A, ')u(p', A, ')y&u(p, A)

(2m) co(p')

+ &&((p' —p)')+(p', &')u(p', &')u(p, &)] . (2.S)

Equation (2.5) is a linear eigenvalue problem for the bound-state mass M. The interaction is given by the as yet unspeci-
fied V~ and V~. In the limit m2 —+ oo this equation reduces to the Dirac equation

[i9 m) —yoV~(r) ——Vg(r)]f(x) =0,
where V~ and Vq are the corresponding potentials in position space.

(2.6)

B. Angular-momentum decomposition

As usual, Eq. (2.S) is solved by first performing an angular-momentum decomposition. It is useful to introduce a
4&4-component wave function +:
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@ gp) = g%' (p, A, )up(p, A, ) . (2.7)

The wave equation for N is

d3 '
(8—p™~)@(p)=I, , [&~((p' p)—')y„@y"(p m—2)+ &g((p' —p)')~'(p —m2)]

(2~) 2'(p')
In terms of the a and P matrices this equation takes the form

3 I

[M —co(p) —a p —Pm']@(p) =f, {V~((p' —p)')[@(p')+a.@(p')a]
(2~) 2'(p')

+&g((p' p) )W— (p')PI[~(p) ~ P ™].

(2.8)

(2.9)

As in the case of the spinor Dirac equation we introduce the analogs of large and small components; in this situation we
have four 2X2 submatrices:

6„ Gd

F F (2.10)

In the nonrelativistic limit, Gd is the large component, G„and Fd are of order u/c, and F„ is of order (u/c) . From the
definition of N, Eq. (2.7), it follows that

@(p)(p+m2) =0 (2.11)

and all the components of (2.10) are not independent. Equation (2.11) expresses the fact that the antiquark is on the
mass shell. As independent components we shall choose Gd and Fd. The other ones are then given by

Gd~ P
co(p)+m2

Fe pF
a)(p)+m2

(2.12)

The equations for the two independent components are

[M co(p) m'—]Gd+o—"pFd

[M —~(p)+m&]Fd+ cr.pGd

d p
(2")'2~(p')

[co(p)+m2](Gd+~F ~) G ~ P ~'PFd+'P (~~Fdcr)
y((p' —p) )

[~(p')+m2](Fd+ o G„cr) F„o"p —o"pGd+—&p (~ XGd cr)

—[co(p)+m2]Gd —G„o"p
+ v, ((p' —p)')

[co(p)+mq]Fd+F„cr p
(2.13)

It will be easier to perform the angular-momentum decomposition by going to the direct-product representation for the
quark and antiquark spinors which results in moving all the Pauli matrices to the left (remembering that those presently
on the right-hand side of the G and Fmatrices refer to the antiquark). Defining

F

F„
Gu

Qy (2.14)

and noting that 0 cTy cToy we obtain
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[M —co(p) —m ~ ]G~ + cr
& pFd

[M —co(p)+m $]Fd+ cr] pgd

d p
(2~)'2co(p')

[co(p')+mq](gd —cr~. aqF„)+cr2 pG„(—p a &+ip (cr~&C cr2))F~
Vv((p' —p)')

[co(p')+m2](F„—cr,
. crg„)+ cr, pF„—(p a)+ip (cr)Xcr2))gg

a"pg —[co(p)+m2]gg
+ Vs((p' —p)') —a .pF„+[co(p)+my]F„

(2.15)

We may note in passing that the nonrelativistic limit of Eq. (2.15) for G (after substituting for F), to order (v/c), coin-
cides with the Darwin-Breit Hamiltonian.

In order to proceed with the angular-momentum decomposition we expand the functions G and F in terms of total-
angular-momentum eigenstates. Let us do the natural-parity case first. For a bound state of total angular momentum J
and z component M we have

Gd(p) =g (p)
~

J M;L =J—1,S =1)+g+(p) I
JM'L =J+1 S =1)

Fd(p)=fo(p)
~

JM;L =J;S=0)+f&(p)
I
J M'L =JS =1) .

(2.16)

With cc=[J/(2J+ I)]'~ and P=[(J+I)/(2J+ I)]'~ and with the angular-momentum decompositions of the poten-
tials

Vv, s((P P) )= g —Pi(P P )Vv, s(PP )
2l+1

4m

& 2

Kvs(PP )= 3, Vvs(PP ) ~

(2m) 2co(p')

(2.17)

we obtain the desired integral equations for the angular-momentum components of the wave functions

8+
T(p) f (p)= J dp'K(p, p') f (p') . (2.18)

Using k =p/[co(p)+m2] and k'=p'/[co(p')+mq] the kinetic- and potential-energy matrices are given by

T(p) =

M —co(p) —m )

apPp—
M —co(p) —m ]

CXPPp-
M —co(p)+m ~

0 M —co(p)+m,

(2.195)
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+

QQ

+
CQ.

+

I

+

I

I

+
1

+

4+++
I

+

I

These form a set of four coupled integral equations in
four unknown functions. The J=0 case simplifies in that
there are only two unknown functions. The unnatural-
parity equations are obtained by interchanging f and g
and letting mr~ —mi and Es~ —Es.

It may at first seem surprising that we obtain (in the
natural-parity case) an f, contribution as it appears to
violate charge-conjugation in variance for the case in
which quark and antiquark are mutual antiparticles. We
are, however, treating the particle and antiparticle on dif-
ferent footings in that the antiparticle is kept on shell. We
are not dealing with a wave function but rather with the
matrix element of a quark field between a bound state and
an antiquark. Charge conjugation relates this matrix ele-
ment to one of the charge-conjugate fields between the
bound state and a quark state.

C. Normalization

+
hcl

+
I

+

Normalization is provided by ensuring that the charge
operator f g+gdx has the correct value, namely one,
when evaluated in the bound state. We again insert a
complete set of states between the two field operators and,
consistent with the approximation above, keep only the
antiquark state. This results in

2

Tr Gdgd+FdI'd
(2~)'M ~ p ~ p +m2

(2.20)

which in terms of the partial-wave amplitudes becomes

I

CD +
+

+
+

+
+

QQ.

I

m2 p dp 1
2

(2') M co(p) co(p)+m2

&« lg- I'+ lg+ I'+ Ifo I'+ Ifi I')=1.

(2.21)

Equation (2.19) is Hermitian with respect to the mea-
sure of (2.21). The transformation

I

+
I

+

a
II

+
I

m(p)+m,
(f,g) 2' p

brings it to an explicitly symmetric form since Vi s(p,p')
in (2.1) is symmetric.

D. Leptonic widths

In addition to the energy levels we shall also be interest-
ed in the leptonic decay widths of the 1 states. This is
governed by the matrix element of the electromagnetic
current between the bound state and the vacuum. With
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the leptonic width is

(2.22)
In order to evaluate F we again insert a complete set of

states and keep only the usual antiquark contribution. We
obtain

(2.24)
4+a QFI =

M
(2.23)

which, in terms of the partial-wave amplitudes, becomes

F=,m2 f g (p)+ [(—,
' )' fo(p)+( —,

' )' fi(p)]
(2m. )' ~(p) ~(p)+ m z

(2.25)

In the nonrelativistic limit this is proportional to the position-space wave function at the origin.

E. Momentum cutoff

The leptonic widths involve the wave functions at the origin. In the case of the Dirac equation we know that these
( ( ~2)1/2

behave as r" ~ ' ' making Eq. (2.23) unusable. Due to asymptotic freedom we expect milder behavior; our numerical
studies indicate, however, that these functions are still very large, possibly infinite, at the origin and would lead to unac-
ceptably large (by orders of magnitude) widths. This problem could be cured by taking into account pair creation. How-
ever, we expect other multiparticle states to become important before this pair creation does. For example, in the case of
bound c-c states a Dirac-type equation would become unstable when the potential became strong enough to produce an
extra c-c pair; however, the inelasticity starts as soon as a pair of light quarks can be produced. Properly, this problem
should be treated in a multichannel formalism. We shall approximate these effects by introducing a large-momentum,
or equivalently a small-distance, cutoff. We shall introduce into the kernel of Eq. (2.18) a cutoff function S(A,p) which
approaches zero for p »A and approaches one as A~ oo.

Equation (2.18) is Hermitian. In order to maintain this Hermiticity after the introduction of the momentum cutoff we
must modify the normalization condition. The expression for F, Eq. (2.25), will likewise be modified. These modifica-
tions are straightforward. The normalization condition becomes

P ~P (AP)
(

2 2 2 2)
3 ( ) ( )

g — +g+ +fo +fi

while the modification of (2.15) is

2d
mz f S«u) g + [(—')'"fo+( —')'"fi]

(2~)' '
m(p)

' ~(p)+m,

(2.26)

(2.27)

III. POTENTIAL FOR RELATIVISTIC
CALCULATIONS AND CUTOFFS

The QCD nonrelativistic potential is generally con-
sidered to have a short-range Coulomb part modified by
an asymptotically free coupling strength and a linear
long-distance part. These have been combined by
Richardson'o in the three-momentum-transfer form:

4m( —, )(4m/9)

q ln(1+q /A~ )
(3.1)

In converting this potential to a relativistic form of an
exchange propagator, its Lorentz-transformation proper-
ties must be specified. While the large-q 2 modified
Coulomb part is due to a vector exchange, the long-range
infinitely rising part cannot be pure vector since it would
lead to a Klein paradox. In order to avoid this paradox,
the scalar linear part must equal or exceed the vector
linear part. Thus, we are led to subtract off from the
Richardson potential its long-range or low-q part and
add in separate linear vector and scalar parts. The bag

model favors an equal mixture of vector and scalar linear
confining potentials. We explored this case as well as the
situation where the confining potential is purely scalar.
As mentioned in the Introduction, our parameters were
highly motivated by theory, and as a result we did not at-
tempt to find the best arbitrary combination of vector and
scalar exchange potentials. The overall slope or string
tension was determined by a fit to the spectra.

For two reasons we cut off the linearly rising potential
beyond a large distance. First, we do not expect the con-
fining linear potential to rise forever. At some point it be-
comes favorable to create a pair of light quarks out of the
vacuum resulting in a leveling off of the potential. In a
nonrelativistic treatment the eigenvalues of levels well
below this leveling off are very insensitive to the exact po-
sition of this ramp. Had we been dealing with a pure vec-
tor linear potential, such a leveling off would have been
crucial for the avoidance of the Klein paradox. With
equal vector and scalar exchanges there would be no Klein
paradox in the Dirac case. The second reason is computa-
tional. In order to regulate the Fourier transform of the
linearly rising potential a cutoff is likewise needed. We
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leveled off the potential at a distance b or equivalently at a
height zb. In the limit b~ 00, the potential and the solu-
tions to our equations are independent of b. In practice,
we chose ramps at values of around 3 GeV and the results
were very insensitive to the precise value of this height.
We did not treat this ramp height as a parameter. The
spatial form and Fourier transform of the linear ramp
which rises linearly to r =b with slope ~ and levels off at
a height vb is

Vt. (r) =zr9(b r)+—xb6(r 'b), —

v, (~,q =
l q l

) = (2~)'~b5'( q )

(3.2)

+ & [bq sin(bq)+2cos(bq) —2] . (3.3)
4m+

The 6 function arises from the part of the potential that is
constant out to large distances. The apparent divergence
of this term as b~ ~ is exactly canceled when integrated
over q by the same divergence of opposite sign present in
the non-5-function terms of (3.3).

To convert these potentials to relativistic functions of
four-momentum transfer q we replace q by —q and in-
clude them in the relativistic equations as vector or scalar

l

exchanges. Since the antiquark is always on its mass
shell, q is always negative. We can thus take over the
Richardson form, which avoids pseudopoles at q posi-
tive, directly into a relativistic form with q ~—q . This
form includes the effects of asymptotic freedom in the
high-q limit. The relativistic form of the linear part is
not known. However, since it is important only at smaller

q, where the retardation in converting to q is only a
U /c correction, the difference does not have a significant
effect on the calculations, i.e., for p,p' «m2 we have

q'= q'+(p— p')'(p—+p')'/4m 2' (3.4)

In extending the large-distance-cutoff procedure, ex-
plained below (3.3), from q to —q, we note that as

l q l
~0 so does —q, giving

—q2~q 2[1—(p /co )cos 8~] . (3.5)

We consider a potential V(q ) which has a long-range-
constant part Vo giving a (2n. ) VO5( q) term as in (3.3). In
an integral equation over the potential V( —q ), in the
large-b or small-

l q l
limit we have

f d q V( —q )=2~ f ( q)d( q—)' f d—cosO[1 (p /co —)cos 8] V( q)—
4m f ( q)d( —q—)'~ V( —q ) . (3.6)

If the VO5(q) term canceled for the nonrelativistic potential [substituting ( —q )' =
l q l

above] then the cancellations
of the Vo-dependent terms as Vo~ oo will now only occur in the relativistic form if we include a factor of co/m in front
of the 5 function. This gives for the relativistic form of (3.3)

VL, (a.,q =( q)' ) =(2m—) ~b(co/m)5 (q) +(4m' /q )[bq sin(bq)+2cos(bq) —2] . (3.7)

X —q ln(1 —q /Az )
2 2

Ag

(q2)2
(3.8)

The limit of Vc(q ) as q ~0 is now the same as a long-
range Coulomb potential, behaving as 1/q . This avoids
any infrared singularities in the partial-wave analysis and
in the integral equation.

We now put the short- and long-range parts of the po-
tentials together (in their relativistic forms). For the vec-
tor part we have the QCD short-range exchange and a
linear potential with slope a& as given in Eq. (3.7):

Vy(q )= Vc(q )+ Vt (ay, q) .

For the scalar-exchange potential we have only a linear
part with slope az in the form of Eq. (3.7):

In the relativistic form of the short-range vector
Coulomb potential modified by the asymptotic-freedom
coupling strength we use the Richardson form with

q ~—q . We subtract out the q —+0 part that would
give the linear rise and replace it later with both vector
and scalar parts as in Eq. (3.7). The resulting short-range
vector potential is then

vc(q ) = —41T(1677/27)

Vs(q ) Vt. (+s q) (3.10)

As was discussed in Sec. IIE, our equations without a
momentum cutoff would lead to wave functions with very
large values at the origin and in turn to unacceptably large
widths. This problem may be traced to the neglect of oth-
er states, beyond the on-shell antiquark state in the ap-
proximation to Eq. (2.2). A proper treatment of these ef-
fects would require the solution of a full field theory; we
approximate it by introducing a large-momentum or
equivalently a small-distance cutoff.

We use two forms of the cutoff (one being the square of
the other) to test whether the results of the fits are sensi-
tive to the form of the cutoff:

Si(A,p)=A /(A +p ),
Sg(A,p)=A /(A +p )

(3.11)

These have been chosen quadratic in p so that in the non-
relativistic limit the correction is explicitly of order p /A
which is much smaller than the usual v /c correction of
p /m . The parameter A is determined by the
phenomenology and depends on which quark system we
study.
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IV. CHARMONIUM SPECTRA AND PARAMETERS
OF THE POTENTIALS AND CUTOFFS

In this section we will present fits to the charmonium
spectra using the parameters of the potential or exchanges
and the integral-equation cutoff. We will present fits us-
ing both the bag ~~——~z ansatz and the pure scalar linear
ansatz. For each of these cases we will test both the
single-power and double-power cutoffs of the high mo-
menta in the integral equation. In the following sections
we will apply the parameters of the potential to fit the b
quarkonium spectra and the spectra of lighter mesons.

First we should discuss the limitations of the validity of
fitting the charmonium spectra using only the integral-
equation results. From the study of mixing and shifting
of levels by coupling to D D, D D-, and-D' Dcha-nnels
by Eichten, Gottfried, Kinoshita, Lane, and Yan, " it is
known that different L levels can shift on the order of 100
to 200 MeV from the "bare" masses given by the short-
range and confining potentials. These mixings to the D D-
set of states will occur in the N-quantum equations in the
higher-mass intermediate state in Eq. (2.2) consisting of
more q-q pairs. The scattering in the resulting state will
be dominated by the D-D set of bound states or reso-
nances. That significant mixing of S-wave and D-wave
states occur through these states is known by the potential
model's inability to account for the size of the leptonic
width of the D wave f" state. -

Another problem is the ratio of splittings of the P wave-
states. In contrast to the atomic case where a single-
power-law potential leads to a unique ratio of the split-
tings ( Pz Pi )I( Pi —Po), ind—ependent of radial matrix
elements, in the quarkonia case the ratio depends on the
relative sizes of the expectation values of (r ) for the
Coulomb part versus (r ') for the linear part 'In

q.
uar-

konia then, the ratio is not unique and does not test the
power law of the potential. Phenomenologically, the P
waves may be moved on the order of 100 MeV by mixing.
If the relative movement of the Pi state differs as little as
25 MeV relative to the other P states, the splitting ratio
could move from 0.5 to 1.0.

Another phenomenological problem is the complicated
structure of the 4100-MeV region. In addition, the QCD
corrections to the leptonic decay widths are not complete-
ly determined as higher orders seem as important as lower
ones and the correct mass scale or scheme in which to
evaluate the coupling strength is still an open question. '

The ratio of the decay widths is considered to be a more
firm criteria for fitting. In general we have constrained
the widths, where possible, to be within a factor of 2 of
the experimental ones and constrained the fits only to the
ratios of the widths.

For momenta p &&mc the equation reduces to the
Schrodinger equation and if for charmonium this is a fair
approximation, we expect that the values of Az and total
K =Ky +Ks will be close to those found by Richardson
(whose fits, however, did not include the splitting of levels
of a given L). This is indeed the case.

The short-distance or U /c effects of the g-g„g'-iI,',
and P-wave splittings as well as the leptonic decay widths
are roughly proportional to the cutoff A, whereas the

spacings of the centers of gravity of the levels are roughly
independent of A, . Since we will be comparing our char-
monium results to 15 experimental quantities while fitting
only 4 parameters we cannot expect to fit all of them.
Thus, there are many presentable fits depending on one' s
preferences. The single fit which we present for each case
is thus not uniquely best but only illustrative and con-
sistent with the points discussed above.

The fits to the charinonium spectra are presented in
Table I. First we present in Table I the fitted parameters
for the potential, A~, and ~q+~z, and then the parame-
ters for charmonium, A„and m, . The columns VS1 and
VS2 contain parameters and results of fits with ai ——xs
and with single and double powers of the cutoff, respec-
tively. The columns Sl and S2 are fits with a purely sca-
lar linear confining potential and with single or double
powers of the cutoff. Below the parameters are the data
and the results of the four fits.

The fits to the S-, P-, and D-wave states are comparable
to those of others' which use only a minimal number of
parameters. In comparing fits Sl and S2 we see that the
power of the cutoff is not crucial in the spectra and can be
accommodated by the adjustment of A, . The crucial
difference is in the leptonic widths which are reduced by
about a factor of 2 in going from a double- to a single-
power cutoff for the scalar linear case. The range of 8 to
9 keV for I ~ is the same as that obtained by Schrodinger-
equation fits. For the equal-scalar-and-vector linear fits
VS1 and VS2, a change in A, and also Az gives about the
same fits for the single- or double-cutoff cases.

Scalar linear fits with a lower A„of around 0.15 GeV
can give the general charmonium energy levels and a
better P-wave-splitting ratio of about 0.5 to 0.6, but the
leptonic widths of the 2S to 4S states then become close to
or greater than the g(1S) leptonic width. In view of the
comments at the start of this section, we have presented
the fits with the successful ratios of leptonic widths.

The main spectral discrepancies of the results of using
only the bound-state equation without taking into account
mixing with the D-D states as discussed above are in the
3S and 4S states in the fits VS1 and VS2, or in the 2D
state for the fits Sl and S2.

In all four fits the predicted 1b'-g,' splitting is about 40
MeV compared to the 94-MeV splitting' obtained for the
newly observed g,'.

V. b QUARKON-IUM SPECTRA
AND LEPTONIC DECAY WIDTHS

The parameters of the potential found in the charmoni-
um fits, namely xi, xs, and Az, in the four cases studied,
will now be applied to the b-quarkonium spectrum and
leptonic widths. The mass of the b quark and the cutoff
A, representing the effect of higher-quanta intermediate
states in the b bchannel must-be fitted. The two new pa-
rameters will be found by fitting five spectral values and
four leptonic decay widths.

The results of the fits and predictions of as-yet-unfound
spectral levels are presented in Table II. It is apparent
that the four cases all lead to the same spectral results, re-
flecting the nonrelativistic nature of b-quarkonium. The
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TABLE I. Charmonium results. Masses in MeV, I ~ (leptonic decay width) in keV.

Parameters
for cases:

A, (aev)
sc~+~y (aeV')
A, (Gev)
m, (Gev)

VS1

0.5
0.15
2.4
1.52

0.4
0.15
4.0
1.51

0.4
0.15
4.0
1.57

S2

0.4
0.15
6.0
1.58

Data

1((1S)
g'(2S)
1("(1D)
P(3S)
g(2D)
1((4S)
1 Pc.o.g

'P2-'Po

3 3pz- pi
Rp ——

3p 3p

Expt.

3097
3686
3768
4030+5
4160+20
4415+6
3523

113+4
94+5

141

0.48

3097
3699
3728
4125
4137
4487
3492

99
41

154

1.03

VS2

3097
3693
3726
4125
4140
4496
3488

99
42

155

1.04

S1

3097
3683
3747
4088
4113
4411
3492

102
38

136

0.74

S2

3097
3684
3748
4082
4115
4414
3493

102
36

133

0.77

r~
r~/r„
r(3s)/r~
r(4s)/r,

4.8+0.6
0.40
0.16
0.09

6.31
0.43
0.28
0.20

8.26
0.41
0.25
0.18

9.00
0.51
0.34
0.27

15.3
0.39
0.24
0.18

TABLE II. b-quarkonium results. Masses in MeV, I ~ in keV.

Parameter

A, (aev)
~s+&v (Gev2)
~, (Gev)
mb (GeV)

VS1

0.5
0.15
4.5
4.89

0.4
0.15
9
4.89

S1

0.4
0.15
7
4.90

S2

0.4
0.15

10
4.90

Data

Y(2S)-Y(1S)
Y(3S)-Y(1S)
Y(4S)-Y(1S)
1 P g Y(1S)
2 P„g -Y(1S)
l~
I ~/r~

reit /r~
2 P2-2 Po
3a, -Y(1s)
Y(1S)-~b
Y(2S)-qb
1'P2-1'Po
R2p

Expt.

561
890

1116
446
787

1.22
0.42
0.31
0.24

38

41
0.85+0. 1

0.93+0.1

VS1

568
887

1118
421
790

1.08
0.39
0.30
0.14

38
656
49
18
62
0.90
0.88

VS2

558
874

1119
424
785

1.55
0.41
0.28
0.11

45
661

57
21
69
0.96
0.86

S1

563
873

1118
431
788

1.63
0.41
0.28
0.11

40
673
60
22
62
0.82
0.77

S2

562
872

1116
429
786

1.77
0.40
0.27
0.10

39
670

58
21
61
0.86
0.74
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ratio of leptonic widths is also approximately the same,
but the magnitude of the widths has some differences.
The problem of the QCD corrections to the leptonic-width
magnitude does not yet make this a testable prediction.

VI. MESONS COMPOSED OF HEAVY
AND LIGHT QUARKS

The potentials and cutoff methods developed for char-
monium and b-quarkonium may now be applied with the
same relativistic equation to the case of mesons with one
heavy quark and one light quark. We now take the heavy
constituent as the one which is kept on the mass shell (as
an antiquark). The equation then approaches the Dirac
equation for the light quark, but still needs a cutoff for
reasons discussed earlier. The parameters of the poten-
tials, namely ~z, ~z, and A~, will remain the same as in
the charmonium and b-quarkonium eases, but the dif-
ferent nature of the higher-quanta states will necessitate a
resetting of the parameter A, which effectively takes these
into account. Fitting the D and D states will give us the
mass or mass limit for the light u and d quarks, and fit-
ting the F and F* states will give the mass of the s quark.
The fits give different results for the u-, d-, and s-quark
masses in the VS1 and VS2 cases from the masses in the
Sl and S2 cases.

A. D and D mesons

The results of calculations for the D(0 ) and D (1 ),
I. =0 mesons with charged masses 1869 and 2010 MeV,
respectively, are given in Table III. The results are in
terms of the center of gravity of the 0 and 1 system of
1975 MeV and of the D*-D splitting of 141 MeV.

First we mention the results of the direct calculation of
the D and D mesons using the same A, from the char-

monium fit assuming a very-light-mass u or d quark of 50
MeV. (The calculation varies little for quarks lighter than
this. ) In all four cases we find a D D-splitting of about
200 MeV indicating that the cutoff A, must be lowered
for an accurate fit. Remarkably, in the cases VS1 and
VS2 the center of gravity comes out correct, indicating
that very light u- and d-quark masses are appropriate for
these cases. For the cases Sl and S2, the center of gravi-
ties are low, requiring heavier u and d quarks.

By varying A, and the u or d mass we obtain the accu-
rate fits given in Table III. These use a very light mass
for the VSl and VS2 cases and a mass of about 250 or 220
MeV for u or d quarks in the Sl and S2 eases.

In cases S1 and S2, setting the larger u and d masses al-
lows an exact fit to both the splitting and the center of
gravity. In the cases VS1 and VS2, however, when A, is
set to account for the D -D splitting, the centers of gravi-
ty come out high by about 30 MeV, even with very light
u- and d-quark masses. Extrapolating the light-quark
mass from 10 MeV to zero only lowers the D and D
states by 4 MeV and would not significantly reduce the
30-MeV difference.

This mismatch by 30 MeV may be an indication of the
approximation of dropping higher-quanta states and re-
placing them simply by a cutoff with parameter A, . We
note that the use of a single or double power of the cutoff
in the VS1 or VS2 case leads to the same results.

B. F and F mesons

In the case of the F and F* mesons there are only two
known states and two parameters to be fit, namely A, and
the mass of the strange quark m, . The results for these
parameters for the F and F states are given in Table III.
Having found m, we can make predictions of further
spin-parity states of e and s quarks.

Cases

TABLE III. Heavy-light-quark-meson results.

VS1 VS2
Parameters from eharmonium and b-quarkonium

S1

W, (GeV)
s &v) (GeV'}.'(G.V)

mb (GeV)

0.5
(0.075,0.075 )

1.52
4.89

0.4
(0.075,0.075)

1.51
4.89

0.4
(0.15,0)

1.57
4.90

0.4
(0.15,0)

1.58
4.90

A, (GeV)
~„, (Mev)
D -D (MeV) (expt:141)
(D,D ), , (MeV) (expt:1974)

D-meson fits

1.4
10

143
2008

2.3
10

141
2004

3.0
250
141

1979

4.5
220
139

1962

A, (GeV)-: (G.V)

F*(2140),F(2020) fit

1.2
210

2.0
210

2.7
410

4.1

410

A, (GeV)
(B -B) (MeV) predict

8(5274) fit

2.1

54
3.8

55
3.7

50
5.0

47
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C. S mesons

The recently discovered B meson' allows us to fit one
parameter in the b —light-quark system. This will be the
cutoff A, for this system since we already know the
light-quark masses to use for each case. This then allows
us to predict the 8* mass. The fitted cutoff and predicted
8 mass for each case are given at the bottom of Table
III.

While the few heavy-light-quark states have mainly al-
lowed us to set cutoff parameters and find u-, d-, and s-
quark masses without testing the complete spectra of the
system, at least no glaring inconsistencies have been
found.

VII. SPECTRA OF LIGHT-I. IOHT QUARKS

In this section we apply the field-theory-expansion
bound-state equation to the s-s meson sector, to the s-u or
s-d (to be called s-1 for a light-mass u or d quark) sector,
and to the I-I quark mesons. In the comparison of the
L, =0 and L, =1 levels of possible J's from the q-q equa-
tion versus experiment we take a perspective based on
many careful studies by theorists of multichannel hadron
dynamics in the light-meson sectors. '" First of all, almost
complete sets of L =0 and L =1 levels of J =0, 1

2+, 1+, and 0+ have been found including both I=0 and
I=1 in the u, d-quark sector (see Table IV). The J =0+
levels 5(980) and e(1300) are known to be lowered in ener-

gy by multichannel mixing and we will not try to fit them
here (see the minireviews' by the Particle Data Group
and references therein). With these shifts of hundreds of
MeV, we may expect other levels to be shifted by smaller
but still significant amounts. On the theoretical side, the
multichannel effects are contained in the qqq q intermedi-
ate states in the N-quantum expansion which we have not
included. Also, at these lower-mass scales, the q depen-
dence of the quark masses can increase the quark masses
from those found at the charmonium or b-quarkonium
scales and the q dependence of a&cD will be more impor-
tant and depend on a function more detailed than that in
the Richardson potential. It is useful, however, to study

these light-quark systems from the basis of a relativistic
equation since they are relativistic.

First we study the a~ ——x~ fits VS1 using the strange-
quark mass of 210 MeV of the E-meson fits. Using a
value of A, of 3.0 GeV, which is even larger than that
used for charmonium, only brings the P meson down to
1500 MeV. Freeing the strange-quark mass and using 500
MeV, and A, of 3.0 GeV, still only gives a P of 1320 MeV
and an f' of 2000 MeV. Similar results occur for the
equal-linear-vector-and-sector case VS2.

The excessive energies of order 500 MeV for the a.z ——vs
case can be seen by simply using the Klein-Gordon equa-
tion with a Coulomb-plus-linear vector potential and a
linear scalar potential. The quadratic term in the vector
potential gives a cross term of aa/(E+I). Using an ef-
fective a of about 2 for the Richardson form and E of or-
der half the P mass gives about 500 MeV excess energy
with a small quark mass m.

We now discuss the fits to the light-quark sectors. We
do not include the J =0 states as they are strongly af-
fected by chiral-symmetry breaking or large mixings. In
the rest of the states we neglect the small amount of mix-
ing away from the description of the states by the number
of strange-quark constituents. In Table IV are shown the
known 1,2++, 1++, 0+, and 1+ states for the s-s,
l-s, and I-l quark sectors and the leptonic decay widths for
the p and P mesons. A certain regularity is shown in the
2++ and 1 states of a decrease of 100—120 MeV for
each replacement of a strange quark by a u or d quark.
Also apparent is the lowering of the 0++ states relative to
the rest of the L = 1 multiplet as discussed above.

When we fit with the scalar-linear-potential cases and
use the s- and u- or d-quark masses determined in the fits
to the D and F mesons, we still have the parameter A, ad-
justable for each light-quark sector. For values of A, in
the range of 1.5 to 2.0 GeV, the states are in the correct
range but the splitting of the 2+ and 1 states is only
about 400—420 MeV in contrast to the experimental split-
ting of 500—550 MeV. Further increases in A, increase
this splitting but further drive down the states below the
1 and 2+ states. To achieve the larger splitting range

TABLE IV. Light-quark sector results (S1). Meson masses in MeV, quark masses in CieV.

States

ss Expt. :

A~ ——0.4 CxeV, ~s ——0. 15
1

1020 1520 1418

CxeV, a~ ——0.0 GeV
2++ 1++ 0++

975

m,
0.52 0.52

s I Expt. :

A,
3.0 1056 1524

1434

1390

1414

1314

—1350 1270

m,
0.55

Pl I
0.35

l l Expt. (I =1):
Expt. (I=0):

A,
3.5 1390

1318
1273

1215

1275
1283

1123 1257

1238
1190+60

Pl I
0.35

NZg

0.35
A,
2.0 832 1264 1167 1139 1186
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then requires not only larger A, but also larger quark
masses. The increase of the quark masses with decreasing
energy scale can be justified as due to QCD
renormalization-group effects. Since an accurate formula-
tion of their variation does not exist at this low an energy
scale, we will treat them as arbitrary parameters to be
determined phenomenologically. This then improves the
2 to 1 splitting, but an upper limit is still set on A, . A
representative set of fits is shown in Table IV with their
parameters. One problem with these fits is that the 2+ to
1+ splitting also increases with A, and is much larger
than the experimenta1 splitting in the I-s and I-l quark sec-
tors. We also mention that in the fits the leptonic widths
are rapidly varying functions of A, and therefore should
not be considered as crucial parameters to test bound. -state
calculations in the light-quark sectors.

VIII. SUMMARY

It has been recognized for a long time that meson states
are described adequately as composites of a quark and an
antiquark. Those made out of the heavy c or b quarks
have their general features accounted for by a nonrela-
tivistic treatment with first-order v /c corrections ac-
counting for some of the spin-orbit and spin-spin effects.
An extension to mesons made up of lighter quarks will
make relativistic effects play a more important role. In
this work we have used a relativistic bound-state formal-
ism, the %-quantum approximation, in order to make a
simultaneous study of all meson systems from those com-
posed of only heavy quarks to those made up of only light
quarks; as our treatment was fully relativistic, spin-orbit,
spin-spin, and retardation effects were taken into account
automatically without recourse to a U/c expansion. Mul-
tiquark states, especially at short distances, were treated in
an approximate manner.

We did not attempt a "best fit" to experiment but limit-
ed our choice of parameters by theoretical considerations.
The potential was described at short distances by a full
asymptotically free QCD exchange with its overall
strength fixed by AQCD The large-distance part is given
by a I/q exchange and no extra constant terms are add-
ed. The nature (vector or scalar) of the long-distance
linearly confining potential is not fixed by theory; the
MIT bag model predicts an equal amount of scalar and
vector exchanges and such a prescription fits the heavy-
quark systems reasonably well; however, this becomes un-
tenable for the description of mesons involving lighter
quarks where pure scalar linear exchange gives a much
better fit. Even for heavy-quark systems a scalar ex-

change is marginally more successful. Our results, sum-
marized below, may indicate that the ratio of scalar to
vector confinement increases as we go down in quark
mass.

The summary of what we have learned is as follows.
(a) The gross features of the quark-antiquark spectrum

can be reproduced by the use of a relativistic bound-state
formalism with theoretically reasonable exchanges. The
masses of mesons composed of light quarks can be repro-
duced to an accuracy of 200 MeV (except for the lightest
ones for which chiral-symmetry effects are expected to
play a significant role). The masses of the heavier mesons
are reproduced to a few MeV and good values are ob-
tained for ratios of leptonic decay widths.

(b) The inclusion of multiparticle effects is necessary for
the detailed understanding of the fine structure and of the
leptonic widths. Our crude treatment of these effects
through the use of a cutoff is crucial but not precise
enough.

(c) The properties of mesons made up only of heavy
quarks is not very sensitive to the vector or scalar nature
of the long-distance confining potential. For mesons con-
taining light quarks, a confining potential with equal vec-
tor and scalar parts seems to be excluded. When using
equal-vector-and-scalar confinement on the heavy-light-
quark mesons, the light-quark masses needed to fit the
data are close to their current-algebra values, whereas
when using a scalar linear confining potential the constit-
uent quark masses must then be used in order to obtain
reasonable fits. For mesons consisting of light quarks and
using pure scalar confinement the values of these masses
must be somewhat further increased. This suggests that a
fuller treatment will have to take into account the
renormalization-group-directed q variation of quark
masses analogous to the q variation of the gauge coupling
constant. An increase in quark masses may reflect itself
in an increase in the importance of the scalar exchange.
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