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Analytic expressions for the cascade decay W = heavy fermion = light fermion,
and a signature study of the process W =heavy lepton =electron
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A covariant formalism for single-particle inclusive decay of the 8' and Z bosons is established. It
is then applied to the cascade decay of the 8' to a light fermion via an intermediate fermion with an
arbitrary mix of V and 2 coupling. Exact analytic expressions are presented for heavy-fermion pro-
duction in 8 decay, for heavy-fermion decay, and for the complete decay chain. As a particular il-
lustration of the cascade results, the electron signatures for 8' decay through the ~ and through a
new heavy lepton are studied in detail in the 8 rest frame and contrasted.

I. INTRODUCTION

With the recent discovery of the W and Z resonances'
of the standard electroweak theory, it becomes reasonable
to speculate on possible exotic decay modes of these reso-
nances. In this paper we present a general formalism for
the decay of the W or Z to a new heavy fermion, which
subsequently decays to a final state with one particle sin-
gled out for observation. The 8' decay is of special in-
terest since the nondiagonal nature of the W current al-
lows production of a new fermion with mass approaching
the W mass itself, if the new partner is light. Thus we
focus our attention on the decay of the charged W to a
new heavy fermion L accompanied by its weak-isospin
partner, whose mass we assume to be negligible. As a par-
ticular application of the formalism we obtain an analytic
expression for the cascade decay

W~v, I.~v, v, tv, ,

where L, and l independently represent quark, antiquark,
lepton, or antilepton, and vL and vI denote their respective
weak-isospin partners. Our analytic formulas neglect any
final-state masses, but contain the exact dependence on
the L inass, m. Particle spins and W-mass effects, in-
cluding W-propagation effects in the L decay, are proper-
ly included. The 8'Lvr coupling is allowed an arbitrary
mixture of V and A.

The ease of electron and muon identification in experi-
mental detectors suggests using a lepton from the heavy
fermion's weak decay as the event signature. We illustrate
the application of our formulas by showing results for
heavy-lepton production and leptonic decay " in the 8'
rest fraine. Our interest in a new lepton is twofold: if
discovered, its nature may offer insight into the mystery
of family replication, and its existence could challenge the
cosmological arguments which bound the number of light
( & 1 MeV) neutrino species.

In Sec. II, a formalism is defined offering an invariant
characterization of the single-particle spectrum from any
W decay, direct or sequential. The 8'decay tensor is fac-
torized into invariant functions containing the dynamics,
and simple four-vectors. Analytic expressions for the in-
variant functions describing the cascade W~ (heavy fer-

mion) —+ (light fermion) are presented in Sec. III. These
expressions are the heart of this work. The analytic ex-
pressions are applied to the particular decay of a W to an
electron via a heavy-lepton intermediate in Sec. IV. The
use of an electron signature in the W rest frame to isolate
a new heavy lepton is discussed in detail. A brief sum-
mary constitutes Sec. V. Technical details, which should
prove useful for any cascade-decay calculation, are col-
lected in two appendices.

II. SINGLE-PARTICLE SPECTRUM
FROM DECAY OF THE O'AND Z:

GENERAL FORMALISM

X (f(p) F
~

~g, (g)
~
O) . (2.1)

Jg is the current coupling to the W field in the weak
Lagrangian, F labels the final-state particles excluding f,
and

dPLi ——(2m. ) 5 Q"—p"—pe'4 4 d pF

F p (2~)'2pF
(2.2)

is the Lorentz-invariant phase space for the set F. If the
polarization of f is not measured, then covariance implies
the following tensor expansion:

W""=—g" W'i+p"p "W2+id'" ~p QttWi

+Qwg "W +p (vg") W +ip leg") W (2.3)

The notation a ~I'b "~=a "b —bI'a" and a II'b I =a"b
+b&a" is employed. The W; are Lorentz-invariant func-
tions of the invariants Q, p Q, and p . They are real as
a consequence of the manifest Hermiticity of W&" as de-
fined in Eq. (2.1). The W quantum may be real, with

We seek the momentum spectrum of a single particle
chosen from the W-decay products. Denote the W or Z
four-momentum by Q& and that of the observed final-
state particle, labeled f, by p". Define the covariant ten-
sor

v d PW& = P f dP„(O
~
Jg(g) ~f(p), F &

(2m. ) 2po
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Q =Mw, or virtual, with Q &Mw . If the W is on its
mass shell, or if the source of the 8' quantum is con-
served, then 8'4, 8'5, and 8'6 are unobservable. Ignoring
phases in the mass-matrix and strong-interaction phases,
T invariance of the weak interaction implies the vanishing
of W6. The tensor for W+ decay to f is obtained from
that for W decay to f by changing the signs of W3 and
S'6. The tensor Z" describing single-particle inclusive Z
decay is analogously defined. A simple example of the
formalism is W decay to a fermion f~ (observed) plus
antifermion fz, via the standard V—2 coupling:

W& ———,(Q —m~ —mz ),2 2 2

We are interested in signatures for new matter in W de-
cay. Thus we wish to calculate the W~ for sequential de-
cay of the 8' through a heavy particle, which we label L.
In particular, in the next section we calculate analytic ex-
pressions for the 8' describing the sequential decay
chain: real or virtual 8'~vL J ~vgvLlv(, with 1 ob-
served. L, and I may be que, rk, antiquark, lepton, or an-
tilepton, independently of the other. vL and v~ denote
their respective weak-isospin partners. Our choice of par-
ticle notation anticipates the particular application to
heavy-lepton production and subsequent decay to an elec-
tron or muon.

3= ——,
' ~2=as (2.4)

III. ANALYTIC FORMULAS
FOR HEAVY-FERMION PRODUCTION AND DECAY

8'4 ——W6 ——O,

all times the factor

G~Mw 3
z 5(Q +m~ —mz —2Q.p)

2 1T2 Po
with Gz the usual Fermi constant and c =0 (1) if the fer-
mion is a lepton (quark); 3' is a color-averaging factor.
For fz observed, or for W+~f& plus fz (observed), or
for a V+A coupling, the sign of 8'3 should be changed.

In general, the covariant 8' decay tensor 8'" is to be
contracted with a W production tensor Pz„(which we
take to inlcude the numerator factors from the W' propa-
gators) and multiplied by the square of the W propagator,
whose functional dependence is often parametrized by a
Breit-Wigner resonance function. P& is determined by
the particular process producing the 8' boson, indepen-
dent of the subsequent W decay mode. Qn the other
hand, the W~ are independent of the production process,
but depend upon the particular decay mode of the 8'.
The contraction between 8 production and S' decay may
be carried out immediately using our formulation. As a
useful example, we present the tensor describing W pro-
duction through unpolarized fermion-antifermion annihi-
lation. From the usual V —A current

2 1/2
GpMw

Ly&(v+ay5)vr .
2

(3.1)

The angular dependence for the decay of a polarized, on-
shell 8'into the new fermion is then calculated to be

dr (W~LvL )
d cosO

GsMw'3', v'+a'
1 —p16 ~2 P 2

A virtue of looking for new matter in W decay is that
the nondiagonal nature of the charged current allows pro-
duction of new particles with mass m right up to the
phase-space limit M~. Near the 8' mass terms of all or-
ders in (m/Mw) and the effects of the W propagator be-
come important and must be included in rigorous calcula-
tions. We begin this section by generalizing well known
formulas of V —A theory to include these effects, and to
include the possibility of an arbitrary V and A mixture.

The coupling of a new fermion to the W is defined by
its current

1/2
GF~W

Ap(1 1's)4'— 1+ coso+ cos L9+p sin 04va 2 2

U +a
(3.2)

there results

v 2GFMwPz„(q„——q„+q„q„g„qq+t—e„„pq q~) .

GFMg 1

v 23' (Q —Mw ) +(Mwt w)

&& W, + ~ qP qW, +p. (q q)W, —2 (2.6)

(2.5)

q (q) is the fermion (antifermion) momentum, and c =0
(1) if the annihilating fermion is a lepton (quark). (We
have neglected the fermion masses relative to Mw. ) The
cross section results from contracting P„„and W"', and

multiplying by the Breit-Wigner function and standard
flux factor. One easily finds

We have taken vL to be massless. The color weighting is
c= 1 (0) if L is a quark (lepton). 8 is the angle between
the I momentum and the 8'spin, and

p=(m/Mw)

If L is an antifermion, we must reverse the sign of a. The
p~0 distribution of V —A theory, (1+cosg), is
recovered by setting v= —a=1. But notice the signifi-
cance of the "wrong-helicity" amplitude for L produc-
tion, responsible for the sin 8 term. For V+2 coupling
the fraction of wrong-handed L's produced is p/(2+p).
As p approaches unity, one in three L, 's is wrong handed,
and the angular distribution, shown in Fig. 1, shifts to-
ward the linear dependence 1+cos(9. The fraction of
wrong-helicity L s as a function of m is shown in Fig. 2.
Also shown in Fig. 2 is the partial width, obtained by in-
tegrating Eq. (3.2):
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with

=12 2A(p,y)= [y —y(2+p)+(2y —p —2)ln(1 —y)],p',
B(p,y)=, y —y(2+p)+4pp" .

IW

lA

3

1

—.6 —.2 0 .2

COS

I.0

+ —[2y ~ —(2+3p)y + 4p]ln(1 —y)
3'

12 2C(p,y)=, (p —y)y /(1 —y) .
p'

Final-state masses are ignored, 8 is the angle between the
L spin and the l momentum, and

y =2mE, /Mii, ' .

FIG. 1. Single-differential width for W decay to V—A L
as a function of the angle between the W spin and the lepton
momentum, for lepton masses of 0, 20, 40, and 60 GeV. For a
V+ A L, or for W+ ~L+, we must reverse the sign of cos8.

GF~W 3 U +ClI ( W~Lv}= (1—p)'(1+ —,
'
p) .

6 2m

(3.3)

The weak decay of a heavy fermion is more complicated.
Defining gL&R ———,

' (u+a), we find for arbitrary V and A

coupling 7

This time the color weighting is c =1 (0) if l is a quark
(lepton}. For an incompletely polarized L, cos8 is re-
placed by p w, where w is the polarization vector of the
I..

Equation (3.4) describes the angle and energy distribu-
tion of a fermion resulting from weak decay of a fermion,
e.g., L ~vL, l vt with l observed. If an antifermion is
observed, e.g., l+ in L +—+VL, l+vI, we take cos8—+ —cos8
as dictated by the CI' invariance of the weak interaction.
If the fermion number of L and the observed particle
differ, as in t~bl+vt or t~bl vt with l+—observed, we
must interchange gL and g~ as well.

A and 8 have the Taylor-series expansions

12
A = g [p —2y/(n +1)]y"/n,

P n=2
dI (L —+IvtvL )

d cos8dy

3'GF m
3 [gL, (A+B cos8)+gR C(1—cos8)] (3.4)

2 X 192m.3

B= g [2y + (n 3)p]y "/—n (n + 1) .
P n=2

Integration over the electron energy gives

A—:f dyA

12
[p——,p ——,p +(1—p)ln(1 —p)] .,

p
B—: dyB

(3.5)

(3.6)

Cl p'

+ (1+2p)(1—p)ln(1 —p) —4pLiz(p)],

'0 I,O

C—= f dy C=A .

The function

Liz(p) = —f ln(1 —x)
~ dx

x
is the dilogarithm, or Spence function. A and 8 have the
Taylor-series expansions

m/M~

FIG. 2. Partial width for W decay into heavy lepton and
neutrino vs lepton mass (as a fraction of W mass). Also, frac-
tion of L's produced with right-handed helicity from a V—A
production vertex.

A =12
0 (m +3)(m +4)

p (m +5m+2}
o (m +4)(m +3) (m +2)

(3.7)
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Interestingly, the p~1 limit is nonvanishing,

EDV
CX)+

II

C4

cno

(A,B) ~4(1,19—2m ) .

The front-back asymmetry of a V —A lepton, B/A, as
well as A and B, are shown in Fig. 3. For a V+A fer-
mion, the asymmetry has its maximal value of —1 for all
values of the ferrnion mass; angular momentum conserva-
tion forbids electron emission in the direction of the L
spin. The partial width for L ~lvrvt is

0 I

.2

Mw

T.O Ggm 3'
I (L IVtvt )= (gl +g~ )A .

192~
(3.g)

FIG. 3. Parameters A, 8, and BjA vs heavy-lepton mass.
These parameters determine the angular distribution of electrons
produced from the decay of a polarized I..

As p approaches zero, one finds the well known low-mass
limits

(A,B)~ (1,——,
'

) .
@~0

Notice that a V+3 fermion has the same width as a
V —A fermion. Notice also the effect of including the W
propagator in the heavy-fermion decay. As p approaches
unity, the L width exceeds the naive m extrapolation by
a factor of 4 (Fig. 3).

The complete process, real or virtual W~vL (L
~lvtvL), is described by the six W;. For the arbitrary
V, A mixture defined in Eq. (3.1), we find, using the tech-
niques in Appendices A and 8,

(GF~p' /~&) 3 d p 1 min(u, m2/2)8'- = dr ~)
M~ m m I Po» m'iQ'

with the integrands given by

~&——gL [aX&+(r — )Xu]+2gz [2ra+m (r —u)]X3+gL gg [ (r —u)X4+a—X5],

2 [gL (&Xi+yX2)+g~'(2r&+m'y»3+gL gR ( yX4+13X5)]—,

~3———
{gL, [y/uX&+(r —u)X2]+gz [ 2ry/u —m (r ——u)]X3

1 4 4 2

+gL g/ [ y/uX5+(r —u)(Xp——m X3)]),

2r (u r) 4—2 2~4 —— (gL Xl+gR rX3+gL gR X5) i
»

(3.9)

M5 ———
{gL, [5Xi+(r —u)X2]+gz [2r5+m (r —u)]X3+gI g+ [(u r)Xg+5X—g]I,

m6 ——0,

where c is the number of quarks (O, l, or 2) in {L,/I, and
I L is the total width of L. New definitions are

a = t 2rt /u + Q r /u—
P= t + (6—tr/u —3Q r /u —m )

2

y—:tu —Q r,2

5=t+m (Q +4t)r/u+3Q r /u—

where

r =k.p,
t=Q.k= —,'(m +Q ),

y =2r/Mp
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and

m.Mg
X& —— (p —y) [2—y +2(1/y —1)ln(1 —y) ],

4y

+MAL p
y (2+P)y'+4P

4y 2

+ —[2y —(2+.3p)y+4p]ln(1 —y)

Wi/Wo ——Q /2,
W2/Wo ———2/x

W3 /Wo —W5 /Wp = 1 /X

W4 ——W6 ——0

with

GF m 3 Mir (1 x3)
8'p ——

144v 2~'I, Q'

and

(3.10)

x =2u/Q

In the Q rest frame, x =pa/(po), „. This approximate re-
sult can also be derived by convoluting the squared ampli-
tude for W decay to I with the squared helicity ampli-
tude for left-handed L decay. Equation (3.10) is valid to
lowest order in m /Mii, and can be used to quantitative-
ly describe the W~(r, c,b)~l chains. Equation (3.10)
characterizes the W—+fermion~fermion sequence. If the

mMir (p —y)
4(1 —y)

r4 ——r,+m'r3,

X5——Xg ——X2 .3'

P
It may be seen in this equation that a V+A fermion is
obtained from a V —A fermion by the substitution

W3 ~ W3 X]~2r X3, 22~m X3

These formulas, as written, describe the chain
W~L ~l when L and l are fermions (quarks or leptons).
If the observed particle / is an antifermion, Eq. (3.9) still
holds when the sign of W3 is reversed. If, in addition, L
and I have opposite fermion number, as may happen if L
or l or both are quarks, an interchange of gii and gL is re-
quired. Examples of this latter case include
W+~b(t~bvee+) and W ~b(t~bV, e ) with e +—

observed.
Finally, the r integration may be performed to give ana-

lytic results for the invariant W~( Q, u ). These are
presented in Appendix 8 for the V —A heavy fermion.

The cumbersome factors in Eq. (3.9) are exact for all
values of the intermediate mass m. For small mass, m
and r are small compared to t, u, and Q, so an expansion
of Eq. (3.9) in powers of p and y is appropriate. Subse-
quent to the expansion, y may be simply integrated. The
following small-mass formulas result for V —A theory:

intermediate particle is an antifermion, we reverse the sign
of W3. If the two particles in the decay chain have oppo-
site fermion number, we replace the factor (1—x ) with
3(l —x) . Approximate formulas for the r chain have
been presented previously in Refs. 8 and 9.

The analytic expressions presented in Eq. (3.9) for the
W; are the main contribution of this paper. These W; are
an essential input into any calculation of the l spectrum
resulting from W~VLL~VLvL lv~, regardless of the 8"s
source. To illustrate the physics content of the invariant
W; we now proceed to analyze the momentum spectrum
of l in the rest frame of a polarized W. For some process-
es, e.g., e+e ~W+ W, the W rest frame is obtainable
event by event, and the W polarization is completely cal-
culable. For other processes, e.g., pp —+ WX, the W rest
frame is in general not obtainable, as final-state momen-
tum is lost down the beam axis, and the 8' polarization,
determined in part by uncalculable initial-state strong-
interaction corrections, must be modeled. The final-
particle spectrum for pp —+W—+L~l in the laboratory,
showing the model-dependent smearing effects of an in-
complete W polarization and integration over the W labo-
ratory momentum, will be discussed in a separate paper. '

IV. THE SINGLE-ELECTRON SIGNATURE
FOR A HEAVY-LEPTON CASCADE

This section presents the electron signature, in the W
rest frame, for the decay chain W~L~e having a
heavy-lepton intermediate. The direct decay W~ev, is
not a background since the direct electron energy is
kinematically fixed to be x =1, where x—:2po/+Q
is the scaled electron energy. In contrast, the decay-chain
electron is part of a four-body final state and has a scaled
energy lying in the interval [0,1]. For the remainder of
this section we make the simplifying assumption that the
Wis on-shell, Q =Mir .

If the spin correlations among theW L, and e are
neglected, a simple phase-space model for the cascade de-
cay can be developed. The resulting electron-energy spec-
trum, derived in Appendix A, is

dI ps
~BL, [x (1—p)/p8(p —x)+(1—x)O(x —p)],dx

(4.1)

where BL is the branching ratio for L ~eV, vL. Since the
branching ratio to a particular final state is less for the
heavier of two given leptons, Eq. (4.1) embodies a
theorem: neglecting spin correlations, the contribution to
the electron energy spectrum from the production and de-
cay of a lighter lepton will exceed the contribution from a
heavier lepton at al/ values of electron energy. The
relevant processes for this paper are the W~~—+e back-
ground to an electron signature originating from a heavier
lepton L. The r inay decay to v, plus (ev, ), (p, v&),
(ud))&3 colors, so one expects B,= , . A heavier lepton-
may also decay to (r, v, ) and (c,s)X3 colors, yielding
BL ——,', or BL —+, if (tb) is kinematically allowed Ex-.
perimentally B,=17%, but for internal consistency we
show all our results assuming 8=—,', BL ———,. A correct
rescaling of the curves in Figs. 4—9 is obtained by multi-
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I.O signature for a heavy lepton is at best an enhancement
factor of B(L~ev, vt )lB (r~ev, v, ) -55% in the
chain spectrum at x &p.

One may hope to improve the electron signature by
properly including the particle spins. For definiteness, we
fix the W mass to be 80 GeV and let the W spin point
along the z axis, i.e., 0'=0+ ——1 jv 2 (0;1,i,0) is the polar-
ization vector. Then, from Eq. (2.3),

1 |~i+ 2PT ~2+~wpz~3 j
1

0. ,2 A .6 .8 i.0
x =—2Pp /Mg

FICx. 4. Energy spectrum of electrons produced by the cas-
cade decay of W through a heavy lepton (mass = 1.78, 20, 40,
and 60 GeV) according to the phase-space model.

plying by 5B, and 98L for the ~ and heavy lepton, respec-
tively. The electron spectrum from the ~ chain is com-
pared with the spectrum from the heavier-lepton cascade
in Fig. 4. It is clear that ignoring spin effects, the electron

(4.2)

in the 8' rest frame. The 8; are given in complete gen-
erality in Eq. (3.9), and in the small intermediate mass
limit, applicable to the r chain, in Eq. (3.11). Distribu-
tions in the single variables x and

xT =—2pg, /Mg

are shown in Figs. 5 and 6 for V+A lepton couplings.
Gne sees that inclusion of spin correlations affects the
spectra considerably. Yet still the ~ chain dominates any
heavier V —A lepton at all values of x and xz.. However,

(o) {b)

x=2Pp /Mw

1.0 'o .4 .6

x=2Pp /My

FICx. 5. (a) Energy spectrum of electrons produced by the decay of W through a V—A heavy lepton for the same lepton masses as
in Fig. 4. The spectrum is normalized relative to the direct 8'~ev decay width. (b) Same as (a) but for a V+ 3 heavy lepton.



29 ANALYTIC EXPRESSIONS FOR THE CASCADE DECAY W~. . . 2011

2

=e
~= &e

(a)

I'(8} - [(i-cos8} + p sin 8]

p
and ~= PL

(b)
ps) - ( I+8/A cos8),

B/A &0 ~ (b) preferred

I.O

V+A:
I

PL=~

I'(8} - [(I+cos8} + psin 8]

Qnd
e = =V=

e

~ 2

(b)
I'(8) - (i-cosa)

FICi. 7. Helicity diagram for W decay into L and VL, and
subsequent three-body decay of L . 0 denotes the angle be-
tween W spin and L momentum, and between L spin and elec-
tron momentum. The cases of V—A and V+A interactions for
L are contrasted. For a W+ decay chain, reverse the sign of
cos8.

.4 .6

xq=2PqlMg

I.O

FKx. 6. (a) Electron distribution in x~, the fraction of max-
imum momentum perpendicular to W spin, for V—A L in-
teraction. (b) Same as (a) but for V+A L interaction.

of a &30 GeV V+A intermediate, even peaked in the W
spin direction. (For a positive W+ decay chain,
cosO~ —cosO in accord with CP invariance, and the
peaks reverse direction. ) Referring again to Fig. 7, one
easily understands this behavior. The electron's angular
distribution results from a convolution of the angular fac-
tor from the W ~L vt decay with the angular factor
from L ~e v, v~ decay boosted to the W rest frame.
The boost is parametrized by

a V+A lepton of mass &40 GeV contributes an amount
comparable to the r at low values ( &0.2) of x and xr.
The origin of the difference between the V —A and V+ A

spectra is qualitatively explained by the helicity diagrams
of Fig. 7. In the heavy-lepton rest frame the favored
direction of electron emission from a V —A ( V+A) L is
in (against) the direction of the boost to the W rest frame.
Moreover, for the decay of a V —A L the emitted electron
tends to emerge alone, balanced by v, and vL. For the
V+A case, the electron and one of the neutrinos tend to
balance the second neutrino. These two effects conspire
to give a much harder electron spectrum from a V —A in-
termediate as compared to a V+ A intermediate.

It is clear from Eq. (4.2) that the angular distribution is
at most quadratic in cosO. The cosO distribution is shown
in Fig. 8. A marked difference between the r chain and
the heavier-lepton contributions is revealed. The ~-chain
electron is very sharply peaked in the direction opposite
the W spin. The angular distribution for electrons from
heavier intermediates is considerably flatter, or in the case

i8=[(1—p)/(1+p)]k .

For the V —A case, [(1—cos8) +psin 8] is convoluted
with a boosted [1+(B/A)cos8]. B/A is negative, and
furthermore the mean direction of the boost, (k ), is op-
posite to the W spin. For small m, all of these effects
contribute to a distinct backward peaking. As m in-
creases, the "wrong-helicity" sin O term becomes signifi-
cant and the boost diminishes. Consequently, the back-
ward peaking from a V —A intermediate diminishes. As

p approaches unity, the I. rest frame approaches the 8'
rest frame and the electron*s angular distribution is given
by

dr
lim (L ~e v vL),
p—+1 d COSO

i.e., (1—0.74 cos8) (Ref. 11). For the V+ A case,
[(1+cos8) +p sin 8] is convoluted with a boosted
(1—cos8). The two angular factors are in competition;
which factor dominates depends on p through the boost.
For V+A, the mean boost direction is along the 8'
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ceO

-I,O

I

—.6

(

0 .2

COS

V+A

—.2 0 ,2

COS

(b)

I.Q

hemisphere for a heavy-lepton signal. Figure 9 shows the
electron energy spectrum for a fixed value of forward an-
gle, 8= 30. It is clear that a restriction to forward angles
enhances the L,-signal-to-~-noise ratio. The price paid is a
reduction in event rate. Figure 10 shows the ratio of elec-
tron events from the heavy-lepton chain to those from the
7 chain, in the interval 0(0(60', with po cut away below
8 CseV to further reduce the r contribution [cf. Fig. 5(a)j.
The V —A lepton arising from the decay of a completely
polarized 8' contributes up to twice as much as the z,
while a 40-GeV V+A lepton contributes five times as
much as the ~. However, the extreme dominance of the ~
chain in the backward direction, evident in Fig. 8(a), por-
tends a loss of signal if the W polarization is less than
complete. In Fig. 10 we also show the event ratio when
the 8' vector polarization

X(s =z)—X(s = —z)
X(s =z)+N(s =z)

is 80%. The event ratio is considerably reduced. For a
50%%uo polarization, the event ratio decreases monotonically
as m increases, from 0.55 at m =4 GeV for V —A and
from 0.86 at m =4 GeV for V+A. It seems that unless
the 8' is highly polarized, extraction of a heavy-lepton
signal from the r-chain background will be difficult. Our
exact analytic formulas for the invariant 8'. will help
reduce uncertainty in the lepton search.

One may remove the ~ background altogether by con-
sidering particular final states whose invariant mass
exceeds the r mass, e.g., L +vt es, o—r L ~vl. tb if
I,+mb & Ml . Multiplying our results by 3 for color
gives the strange-quark spectrum from L~vl cs. To
describe the b spectrum of the second reaction, our for-
mulas need the modifications available in Appendix 8, as
the t mass may not be neglected. We do not consider
these modes in this paper. The signature, jet plus missing
energy, has its own background: any channel producing
8"s will also pair produce b quarks at a considerable rate.
The semileptonic decay of the b then offers a significant
background to this signature.

We have also not considered the trickledown electrons
from the chain W~L~r~e. These increase the L con-
tribution by a factor of 8 (r~e), and distort the spectrum
we have calculated. We expect, however, that the contri-
bution from this double cascade chain is mainly at soft
electron energies which may be cut away.

V. SUMMARY

PIC)'. 8. (a) Angular distribution of electrons from cascade de-

cay of 8' through s and L for selected L masses. 0 is the angle
between the 8' spin and the electron momentum. (b) Same as
(a) but for V+A L interaction.

spin, thus enhancing a forward peaking. As p approaches
unity, the boost vanishes and the angular distribution ap-
proaches ( I —cose).

The near vanishing of the v-chain electron in the direc-
tion of the 8' spin suggests scrutiny of the forward

We have established a general covariant formalism for
the single-particle inclusive decay of a spin-one boson.
The formalism characterizes the decay with products of
simple, channel-independent covariant tensors and
channel-dependent invariant functions. We have applied
the formalism to the cascade decay of a 8'boson through
a new heavy fermion in order to provide a rigorous signa-
ture for the existence of any new fermion. An advantage
of 8'-decay physics is that the nondiagonal nature of the
charged current allows the possibility of 8' decay to a
new fermion nearly as heavy as the W itself. We have
chosen to concentrate on the single particle inclusive sig-
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Jz, mz

p, m=0

3,i, rnid

FIG. 11. Momenta of particles for the phase-space model of
the cascade decay W~L+vL, ~l+vi+vt. +vt. .

into the usual I.orentz-invariant phase space:

d li dl2 d l3 yPII p p(2~) 2l i (2m) 2l2 (2m. ) 2l3 (2m) 2p

X(2m') 5 (Q —li —l2 —13 —p) (Al)

and obtain a factorized phase space

13 4dPL, —— , 5 (Q —k —l3)
(2n. ) 213

0 20 40 60 80

d li d l2 4
p 5 (k —p —li —lz)

(2m ) 2l i (2m. ) 2l2

m (GeV)

FIG. 10. Electrons from cascade through L vs cascade
through v as a function of L mass. Cuts are (i) electron momen-
tum within 60' of W spin and (ii) electron energy above 8 GeV.
Solid curves are for V+3 interaction with completely polarized
W's. Dashed curves are for 80go W polarization.

by the Department of Energy, Contract DE-AT03-81ER-
40029.

APPENDIX A: PHASE-SPACE MODEL
OF THE DECAY CHAIN

The decay chain shown in Figs. 11 and 12 may be cal-
culated without great difficulty if one takes advantage of
covariant expansions. In this appendix we set up phase
space in the most convenient way. The covariant expan-
sions are presented in Appendix B.

The chain in Fig. 11 is a two-body decay, followed by a
three-body decay. Although the intermediate-particle
momentum k is determined to be Q —l3, it is better to
keep it as a variable. To this end we introduce

1=f d k5 (Q —k 13)—

d3
X(2m) d4k

(2m-)'2p
(A2)

O(Xp —mi —m2)O(X —(m]+m2) )2 1

(2m)

7r[A (IC m m ]'X, (A3)
2K

where A(a, b,c)=(a b c) 4bc, is —the —trian—gle func-
tion, and mi and m~ are the masses of the two unob-
served particles.

Next the first set of square brackets is easily integrated,
yielding (2m) 5(Q +k —2Q.k —m3 ). So our phase
space becomes

The first set of square brackets is a factor in the two-body
decay. The second is the part of the three-body decay cor-
responding to the unobserved particle momenta l&, l2
recoiling against momentum k —p.

Let us first consider the three-body decay. Since li and
12 are produced from the momentum k —p, k —p must be
timelike. The calculation is simplest in the l&, l2 rest
frame. Letting X=k —p, the second set of square brack-
ets becomes

d3
@~k,d k5(Q +k —2Q k —m3 ) O(kp —pp —mi m2)O(k +p 2—k.p —(m|+mq)—) .

(2m. ) 2' 2pp
(A4)
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The physical interpretation is clear. The first 5 func-
tion puts the unobserved final-state particle from the ini-
tial two-body decay on shell. From this 5 function one
sees that at fixed k, the only integration is over the an-
gles of k. The last 8 function restricts the energy of the
observed particle, of momentum p. In the k rest frame, p
is produced with two other particles, so it may come out
at any angle, with any energy below its maximum,

[k —(mi+m2) ]/(2V k2) .

In our phase-space model, and our other calculations,
we apply the narrow-width approximation (NWA) to the
intermediate particle, replacing g[(k —m ) +(mI ) ]
with

5(k —m ),

LI )NWA

d p 1 ~ [A(m —2l;mi, m2 )]
dr

pp 2 m mI m —2r

(A9)

In the limit m& ——O=m2 ——m3, the quantity in brackets
becomes unity, r+ ( r ) becomes u ( up), and one finds

d p/po
(dpLI )NWA [riiin I 1,m /2u I

—g], (A10)2"~'mI
where g=m /Q . Putting the intermediate particle on-
shell reduces the range of u from

0(u & —,
'

[Q —(mi+m2+m3) ]

to

with I the total width of the intermediate particle. Once
the intermediate particle is forced on shell, the magnitude
of its momentum is fixed in the Q rest frame, and the fi-
nal 6 function restricts its angular variables (if p is ap-
propriately chosen so both 6 functions are nonvanishing).
Since the final 6 function is written in a covariant way, it
has a convenient interpretation in both the k rest frame
and Q rest frame. It requires k to lie inside a paraboloid
axisymmetric about p, ' given by the formula

po
k

(I
~ kg +kmj11

CT
(A5)

with o =m (m, +—m2) and k;„=m po/u —o/4po.
The primes denote k coordinates with respect to the p
axis.

The 5 function constraint of Eq. (A4) is most simply
realized in the Q rest frame, where it fixes

~

k
~

to be

, [X(Q2,m2, m3')]'".
Q2

Thus the integration region for d k/k is that portion of
the sphere of radius

~
k

~

contained within the paraboloid
of Eq. (A5). For

(A6)

Q2

Q +m —m +[lt,(Q m m )]'

in the Q rest frame, the entire sphere is inside the para-
boloid. It is convenient to change variables, viz. ,

d k3

5(Q +m —m3 —2Q.k)= —dr,
kp Q

(A7)

where r= kp, u=Q p, and t—he azimuthal angle of k
with respect to p has been trivially integrated out. The fi-
nal O function of Eq. (A4) and the boundedness of
cos8& [—1,1] imply

0&u & IQ +m2 m3—2+[A(Q, m, m3)]'~ Io/4m

(A 1 1)

In the massless-final-state limit, a simple phase-space
model of the differential cross section may now be con-
structed: the coupling of the W to the intermediate parti-
cle and its partner is pointlike, contributing a constant
factor to the cross section. However, the decay of the in-
termediate particle contributes a squared amplitude equal
to 2mI8 divided by massless three-body phase space,
where 8 is the branching ratio to the particular final state.
Up to an overall constant, this factor is BI /m. Thus our
phase-space-model cross section is

do' 8
po 3

——constant)& —[minI l, m /2u I
—g] . (A12)

d p
The electron-energy spectrum in the Q rest frame is ob-
tained by integrating over the angle p.Q. Defining the
scaled energy x =2po/+Q, one finds

dt's

=constant XB[x O(g —x)(1—)

dx

+(1—x)O(x —g)] (A13)

with 0(x (1. The energy spectrum is the union of two
straight lines, with a peak at the intersection point x =g.
From this formula it is clear that the single-particle in-
clusive cross section from production and decay of a
lighter fermion will exceed the contribution of a heavier
fermion at all Ualues of the single particle energ-y, unless
the branching ratio of the heavier fermion or its coupling

r (r &minIr+, o/2I,

r+ u(k'+
~

k
~

—)/V'Q2
(AS)

with k,
~

k
~

fixed according to the invariant of Eq. (A6).
Thus one has

FKx. 12. Feynman diagram, with momentum and mass nota-
tion, for the process S'~VI. (I-~&I.lvI ).
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to the 8'exceeds that of the lighter.
The lighter decay chain will also dominate at all pT

values, since in this isotropic phase-space model the pT
I

distribution is just the projection of the energy distribu-
tion onto a plane. Defining xi =2pT/+Q, the explicit
expression is

PS
=constantXB10(g —xi) —in[a+(g —xi )' ]—in[1+(1—xi )' ]— inxi

dXg

1+ - arctan
Xy

x1[(1—xi )' —(g —xi)' ]
xi +[(1—x1 )(g —xi )]'

(A14)

Upon squaring the amplitude, the spinor product containing the vL and V~ spinors becomes a trace linear in l& and lz.
Accordingly, we define our first covariant expansion

d li d lz lzl )'("»)=f o o 2 2 2 5 (k —p —l, —l2)
2l', 2l', [(l, +p)' —M ']'+(M r )'

1 ( I 2)1/2
+ O~(xi —g) —aictali —ln

Xg Xg Xg

with 0&xi & 1. This expression for the tranverse-momentum spectrum is valid in any frame connected to the Q rest
frame by a boost along 2,'.

APPENDIX 8: CQVARIANT EXPANSIONS AND INVARIANT FUNCTIONS
FQR THE DECAY QF THE INTERMEDIATE PARTICLE

To go beyond the phase-space model, one must calculate the amplitude corresponding to the Feynman diagram in Fig.
12. If one directly calculates the absolute squared amplitude, there will be two traces, one from the product of eight y
matrices, one from four. The usual expansion for the trace of 8 y matrices has over 100 terms, so a direct attack is to be
avoided. As in the phase-space model, consider first the three-body decay of the intermediate particle. It is convenient
to Fierz transform the amplitude so that the final particles vL, and v~ are part of the same spinor product. The relevant
identity is

[y (u+ayz)] ~[y (1—y5)]rs ———,(a —u)[y (1—y5)] s[y (1—y5)] rp +( u+ a)[1—y5] s[1+y5]r~. (81)

C1g~~+C2—p p~+C3(p k~+p~k )+C4(p k~ p~k )+C5—k k~. (82)

If final-state mass m 1 may not be neglected, the scalar mode of the W propagator does not decouple. We have not cal-
culated the scalar-mode contribution to the cross section.

The invariant functions C; are functions of k, p, and p.k. They may be expanded in terms of the three invariant in-
tegrals

dil, d l2 (li p)"I„=J 54(k —p —l, —l2), n =0, 1,2 .
2l1 2l2 [(ll +p) ™w] +(MwPw)

(83)

W-propagator effects are included so as to correctly describe heavy-fermion decay. In the approximation p =0, setting
K =k —p, we find

1 2 1 2 2 2
2

Ci ———, —mi Ip+ (K +m1 ™—2 )I1 — I2r r

C2= ——,
' [K +2K (2m1 —m2 )+2r(K +3m, —rn2 )+(m, —m2 ) ]Ipr 2

+ (K +mi rn2 )+3K +2(—m1 —m2 )+r I1 — 1+ 1+z z z z 3E E
2r r 2r Iz

T(K +3m i —m2 )Io — (3K +2m1 —2m2 +2r)I1+ (3K +2r)I2
1 l 2 z z 1 z z z 1 2

2r r r 2 (84)

1 2 2 2 2K
C4 = (m2 —m1 —K )Ip+ Ii4r r

1 1
C5 ———Jj ——Izr
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and

7T
Io = arctan

4M' re
E(u+ —u )

2u+u +6
2 2u+ +e

Ii ———,(Mii —mi )Io — ln
u +

2 2'
Ip ——

~ [(Mg m i—) Mir—e )Io — (Mii ~ —m, )ln +~v g/8&i,
16r

where

e:—I g /Mir, u+ =[X (M~ —mi ) —r(J +mi —mi +vA, )]/X M@,

A, —:)((X,mi, mp ), r=k.p .

These exact formulas are applicable if heavy quark triggers are used as a signature for the intermediate particle s produc-
tion and decay.

The massless-final-state approximation, used in the text, is given by the m i,mz —+0 limit of Eq. (B4):

Ci ——(1—m /2r) Ii+ Ip— —2 1

r
r

Cz —— (1—m /Zr)Io+ —[1—(1—m /2r)3m /r] Ii — Iz-m 1 2 2 1

2r r r

C3 —— ( m —2r)Io + (4r —3m )(rIi —Ii )
1 2 2

4r r 2

Nl —2r2

C4 —— (2Ii rIo), —
4r

1
C5 —— (rI i

—Iq )
r

with

(BS)

7T

4 arctan
2M' ye 1 —y+@ ~~o 2Mir (1—y)

II ——
2 IOMg + ln

1 4

2Mw 4y

1 (1—y) +e
8 y 1+m'

( 1 y)2+ ~2

1+6'
1+ ——1 ln( 1 —y)

7T 1

o4Mii (1—y)
4

+ (1—e )Io ~-

Maw,

m. 1 —y/2 + —ln(1 —y)4 ~ 04 1 —y y

where y =2r/Mir .
With l i and lz integrated out of the covariant expansion in Eq. (B2), the contraction of this expansion with the rest of

the squared matrix element yields simple results. Use of pp=O and kk'=m reduces the trace of eight y matrices to
traces of just four. After a trivial integration over the unobserved particle from the initial two-body decay of the W, we
are left with an expression in terms of Q, p, and k. As above, we make use of covariant expansions and invariant in-
tegrals to proceed. The four-vector k" appears either linearly or quadratically in the integrand, multiplied by invariant
functions. After integration over d k/ko, k& must be replaced by the only available four-vectors, Q" and p", times in-
variant functions. Similarly, the second-rank tensor k&k has a covariant expansion. Explicitly, for V —A coupling,
and massless final state,

I d'k[Tr(1+y')yi'{Q —)g)y"kx, —Tr(1+y')yi'(Q —k)y p&zl2v2m'mr 2po

with the region of support Vk given by

6(Qo ko)5(k m—)6(m —2p k)6(ko —po)5(Q 2Q—k+m ) —.
The X& are combinations of invariants, and are given explicitly in the text, Eq. (3.9). Define

(B6)
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r*=f a'k z, (J .k)'
~k

for i =0, 1,2. We find the covariant replacements
r

2 I 1

f, d'kr, k„p„—'r' —,I' +Q„
k Q g Q

f

�/2
d4k Z,k„k„g„„ I'——' I'+ —', I' +Q„Q„",+J„J.

(87)

2u u 2 u
(8&)

with u =Q p, r =Q k, as in the text. Similarly, defining A' with X2 replacing X i in Eq. (87), we arrive at the expansion
for 8;.

GF Ms ~2 d3p—8;= 8'. ,
m mI 2po

with

0 +~ +O 2f +]
u~

2t p 2Q Ai Q m +2r &p 6Q t ~t 3Q

8;=—A +—A +—X' —,Ip 1 I t p Q
Q Q g

6'4 ———I
Q

W, =o.

2
Q

W = —A'+ —A'+ +'Ip — '+Q r'+ Q I'
Q u u2 u3

A', I" are defined as four-dimensional integrals over k. The narrow-width approximation applied to the intermediate
fermion and the mass-shell condition for the first emitted neutrino fix the magnitude of k. The function e(m —2p.k)

~ ~ ~ ~ ~ ~ ~

restricts the angle between k and p, while the azimuthal integration is trivial. Changing variables from k.p to
y =2k p/Mg,

r

~ Mp Mg b

f. dy ~i(y)y' (810)

with a =2up/Q, b =2u/Mii for 0& u & —,
' I, and b =p for —,

'
m & u & —,Q . A similar expression holds for A'. The

indefinite integrals are

I' = [—(4+p)y+y /2 —2(1—y)(1+p/y)ln(1 —y)+2(1+p)Li2(y)] ~, ,
HMg 2 ~ b

16Q

I = (4p+1)y — y +y /3+(1 —y)(1 —y+2p)ln(1 —y) —2pLi2(y)
HMp 3+P 2 3

32Q 2

M
I( 3

—p)y+ 6 (I+9p)y —( 9 +p/3)y +y /4+(1 —y) [—,(1+2y)—p]ln(1 —y)I ~64u

(811)
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A = +y+ (2+p —2p/y)ln(1 —y) —2Li~(y)
~ Mw p —2p (1—y)

16u y

A = [—(4+p)y +y /2 —2(1 —y)(1+2p/y)ln(1 —y)+(2+3p)Li&(y)]
~32Q

Equations (B9) and (811) comprise the exact analytic formulas for the invariant functions describing the chain
W~ V —A fermion~ massless final state (see Fig. 12). Analytic results for an arbitrary V and A mixture can be simi-
larly generated.
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