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Imbedding a Schwarzschild mass into cosmology
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We develop a method for imbedding a Schwarzschild mass into a zero-curvature universe. We
work with curvature coordinates (R, T), in terms of which the metric has the form
ds (R, T)=A '(R, T)dR2 +R2dQ2 —B(R,T)dT, and coordinates (R,~), where ~ is measured by
radially moving geodesic clocks. We solve the field equations for a stress-energy tensor that corre-
sponds to a radially moving perfect geodesic fluid outside some boundary Rq. Inside Rb we take the
stress-energy tensor to be composed of a perfect-fluid part and a Schwarzschild matter part. Specif-
ic examples of imbedding a mass into a de Sitter universe and a pressure-free Einstein —de Sitter
universe are given, and we show how to extend our methods to general zero-curvature universes. A
consequence of our results is that there will be spiralling of planetary orbits when a mass such as
our Sun is imbedded in a universe. We relate our work to recent work done by Dirac with regard to
his Large Numbers hypothesis.

I. INTRGl3UCTIGN

Standard cosmological theory assumes that stars and
galaxies in the Universe are to be treated as a smoothed-
out perfect fluid, whose particles follow geodesic trajec-
tories. The cosmological Auid is taken to be isotropic and
homogeneous. It follows from the homogeneity require-
ment that at any given value of a cosmological time ~ the
density p and pressure p of the cosmological fluid will
have a constant value everywhere throughout the

-Universe. The stress-energy tensor corresponding to the
fluid then serves as the source in the Einstein field equa-
tions to determine the metric of the Universe.

This standard cosmological picture is not applicable for
dealing with the field in the vicinity of a star such as our
Sun. In this region, the Schwarzschild field will dom-
inate, with the cosmological field perhaps exerting some
small perturbative effects. It is thus worthwhile to
develop a formalism that will incorporate standard
cosmology at large distances and the Schwarzschild field
at small distances. At the outset, this is seen to be a basi-
cally inhomogeneous problem, because the region in the
immediate vicinity of the Schwarzschild mass imbedded
in the Universe will be inhomogeneous.

Various approaches to the problem can be found in the
literature. McVittie' starts with the Schwarzschild metric
expressed in isotropic coordinates (R',T '),

ds (R', T')=(1+M/2R') (dR' +R' dQ )

(1—M/2R' )

(1+M/2R' )'

which can be obtained from the Schwarzschild metric ex-
pressed in curvature coordinates (R, T),

dR
ds (R, T )= +R dQ —(1 2M/R)dT— , (1.2)

1 —2M/R

by means of the spatial transformation

R =R'(1+M/2R' )',
R'= —,[R —M+(R —2MR)'i ] .

McVittie then joins the Schwarzschild metric form (1.1)
smoothly onto the isotropic Robertson-Walker cosmologi-
cal metric form

ds (r, t)=[1+K(rl2b) ] e "'"(dr +r dQ ) dt—
(1.4a)

or equivalently

ds (r, t)=[1+K(r/2b) ] e "'"(dx +dy +dz ) dt—
(1.4b)

In (1.4), the specification of the function h (r) describes a
particular universe, whereupon K = + 1, 0, or —1 defines
the intrinsic curvature of the three-dimensional subspace
t =const, and the constant b is a measure of the radius of
curvature of this subspace.

The end result is a metric of the form

[1+(p/2r)[1+K(r/2b) ]' ) 2q(, ) d 2 2d~~ [1—(p/2r)[1+K(r/2b) ]' 'J'd 2

[1+K(rl2b) ] (, 1+(p!2r)[1+K(r/2b) ]'~ ]

in which p(t), identified with the mass of the imbedded
particle, varies with time according to
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For the case of zero curvature (K=O), which is what we
shall be interested in, (1.5) reduces to

ds (r, t) =(1+@/2r) e "~"~(dr +r dQ )

at(1—p/2r)
(1+@/2r)'

(1 7)

ln which p(t) is still given by (1.6).
Using a somewhat different approach from that of

McVittie, Dirac has obtained (1.7) for the special case of
an Einstein —de Sitter (ES) universe, where the cosmologi-
cal constant A=0 and which originally had zero pressure.
For an ES universe

h (t) = —,
' ln(t/a), a =const

and correspondingly, from (1.6), we obtain

p(t) =ppt ' ', pp ——const .

The resulting metric form (1.7) describes a combined field
where the pressure is not zero. The main motivation for
Dirac's work is that he claims that the ES universe is in
agreement with his Large Numbers hypothesis. '

There are questions that can be raised about the above
approach. The spatial transformation (1.3) relating R' to
R is double-valued. For each value of R there correspond
two values of R', as shown in Fig. 1. The value R = oo

corresponds to both R'= oo as well as R'=0. Also, the
region R & 2M does not appear in the range 0 (R' & oo. It
is generally accepted that the range of space is given by
0&R & oo. This follows, for example, from the curvature
invariants varying as R, where n is a positive integer,
and the invariant area of a sphere varying as 4mR . Also,

R" ~ vanishes at R'=0, which corresponds to R= oo,
showing that spacetime there is flat. This indicates that
R'=0 corresponds to spatial infinity. One can thus ques-
tion McVitties s approach, which involves a power series
in 1/R' to match (1.1) with (1.4), as this tacitly assumes
the existence of a mass point at R' =0, which we now see
corresponds to spatial infinity.

In addition to the spatial coordinate, the time coordi-
nate in (1.1) or (1.2) is fundamentally different in origin
from the time coordinate used in (1.4). In (1.1) and (1.2),
T is a curvature time coordinate, which is related to times
measured by clocks located at fixed values of R' or R. As
such, these clocks do not follow geodesic trajectories. Qn
the other hand, t in (1.4) is measured by clocks that are
moving along geodesic trajectories, and thus are moving
relative to fixed R' or R points.

Also, the above approach does not give results that
would be expected when a Schwarzschild mass is imbed-
ded in a de Sitter universe. For a de Sitter universe, K =0,
and h (t) in (1A) is given by

h (t) =t/Rp, Rp ——(3/A)'i (1.10)

ds (R, T ) = — +R d(Q)
1 —(R/Rp) —2M/R

One then finds from (1.6) that the mass p(t) to be used in
(1.7) is

—t/Ro
p(t) =ppe, pp ——const .

It is well known, however, that the most general solution
to the Einstein vacuum field equations with cosmological
constant has the curvature form

R))
—[ 1 —(R /R p ) 2M /R]d T— (1.12)

2M

OO

FIG. 1. The relationship between the isotropic radial coordi-
nate R' used in the metric form (1 ~ 1) and the curvature radial
coordinate R used in the metric form (1.2), as given by the
transformation (1.3). It is seen that for each value R & 2M there
are two values of R', and that the region R & 2M is not included
in the range 0&R'& oo. In particular, the value R'=0 corre-
sponds to R = oo, where R" 1' =0, so that there spacetime is flat.
This indicates that a point R =0 corresponds to spatial infinity.

in which M is a constant. For A =0, (1.12) is
Schwarzschild metric, while for M=O, (1.12) is the de
Sitter metric. It therefore seems reasonable to regard
(1.12) as representing the field of a Schwarzschild mass M
imbedded in a de Sitter universe. This interpretation of
(1.12), though, results in a field different from (1.7) with
(1.10) and (1.11).

Einstein and Straus have taken a different approach to
the imbedding problem. ' Inside a cosmological fluid
with zero pressure and zero cosmological constant, they
cut out a spherical vacuum region, in which they place a
Schwarzschild mass M, as shown in Fig. 2. They then
work out the rejjationships for the vacuum Schwarzschild
metric to join on smoothly to the cosmological metric
form (1.4) at some radius R„(T). %'orking with the
metric form (1.4b), Einstein and Straus showed that a
solution exists for the problem they posed, but were not
able to give an explicit expression for the corresponding
metric form. Subsequently, Schucking obtained an expli-
cit form for the metric of Einstein and Straus by working
in curvature coordinates.

In this paper, we develop an approach to the problem of
imbedding a Schwarzschild mass into a given cosmology
that is different from the ones described above. In our ap-
proach, we extend the methods of our paper immediately
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ZERO PRESSURE FLUID

FIG. 2. The imbedding model used by Einstein and Straus,
and Schiicking. Inside the expanding radius A„(T ) there is a
vacuum region with the imbedded (constant) Schwarzschild
mass M. Outside R„(T ) there is a pressure-free cosmological
fluid. The metrics in each of the two regions are matched on
smoothly at A„(T ).

preceding this one, in which we have developed cosmo-
logical theory in terms of curvature coordinates (R, T ) and
coordinates (R,r), where r is measured by geodesic clocks
fixed in the cosmological fluid that serves as the source of
the universe.

In Sec. II, we develop the Einstein field equations corre-
sponding to a stress-energy tensor where the matter of the
imbedded Schwarzschild mass is located within some
bounding curvature radius Rb (see Fig. 3). Outside R&,
there is a radially moving perfect fluid with stress-energy
tensor I"",whose particles follow geodesic trajectories. In-

side Rb, we assume that the stress-energy density com-
ponent 74 can be written as

4 4 4 4
74 ——M4+I'4 ——M4 —P .

Here M is associated with the density of the imbedded4

Schwarzschild matter, and p= —I'4 is the density of the
fluid, which is taken to extend from inside Rb to outside

As specific examples, we show in Sec. III that when our
approach is applied to imbedding in a de Sitter universe,
we obtain the expected metric form (1.12). In Sec. IV, we
describe how to imbed a Schwarzschild mass into an
Einstein-de Sitter universe to obtain a field where the
cosmological fluid has zero pressure outside the boundary
R~ of the Schwarzschild mass. In Sec. V, we show how to
generalize the procedures of Secs. III and IV to imbed a
Schwarzschild mass into a general zero-curvature cosmol-
ogy.

In Sec. VI, we show that if g«depends on time, there
will be a spiralling of planetary orbits around a
Schwarzschild mass imbedded in a universe. Relation-
ships between the work presented here and Dirac's work
on his Large Numbers hypothesis are discussed in Sec.
VII.

II. THE FIELD EQUATIONS
FOR AN IMBEDDED MASS

For convenience, we will restate relevant expressions
from our previous paper. A completely general curvature
metric form for a spherically symmetric field is

dR»'(R, T ) = — —+R'de' A(R, T )f'(R, T—)dT 2 .A(R, T )

(2. 1)
The time coordinate T in (2.1) is associated with times
recorded by clocks located at fixed R =const points.
These clocks do not move along geodesics. If we change
the time coordinate from T to a new time coordinate 7
measured by a congruence of radially moving geodesic
clocks, the metric form (2.1) takes the nondiagonal form

ds (R,r) =k [dR m(k A)'i d—r]—
+R dA —dr (2.2)

CONSTANT
MASS M

where k is a parameter related to the energy per unit mass
of the geodesic clocks measuring 7, and m = + 1 or —1 if,
respectively, the clocks are moving in the sense of increas-
ing or decreasing R. The transformation between the two
time coordinates is defined by

= —mA '(k —A)' (2.3a)
COSMOGICAL FLUID

7, T= (2.3b)

The trajectories of the geodesic clocks measuring 7 are
given in (R, T) coordinates by

dR/dr=m (k —A)'~, dT/dr=k/fA (2.4a)
FIG. 3. The imbedding model used in this paper. A constant

Schwarzschild mass of radius Rb is immersed in a perfect fluid
whose particles follow radial geodesics. Outside Rb, the stress-
energy tensor corresponds to that of a perfect fluid: +=I"". In-
side Rb, we take 74 ——E4+ M4, where M4 ——const corresponds to
the imbedded Schwarzschild matter.

and in (R, r) coordinates by

dR/dr=m (k —A)'~, dr/dr= 1 . (2.4b)

From the field equations, with cosmological constant A,
we obtain
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R
[R(1—A)]= —8~R r4+R A,

[R(l —A)]=8~R r4,
O'T

a 2 —1/2
BR

[R (1 —A)]+m (k A)—' [R (1—A)]+2m(RA/k)(k —A) 'i [Bk/Br+m (k A)'—i dk/dR]a~

(2.5)

(2.6)

8mR—~rI+R A, (2.7)

where v"„ is the stress-energy tensor in (R,r) coordinates.
The above expressions hold for arbitrary v . We now

look at the form we would expect for the stress-energy
tensor describing a Schwarzschild mass imbedded in a
given cosmology.

It seems reasonable to break the spacetime region into
two parts. We will take the matter of the imbedded
Schwarschild mass to lie within the sphere R=Rb. Out-
side Rb, we will take the stress-energy tensor to corre-
spond to a cosmological perfect fluid with stress-energy
tensor F" related to the fluid density p and pressure p by

F"„=(p+p)V"V, +po"„, V"=dx"/dr, (2.8)

whose particles move along radial geodesics. Further, the
time r used in the metric form (2.2) will be taken as the
time recorded by clocks that remain coincident with the
fluid particles. Substitution of (2.4b) into (2.8) gives, for
R ~Rb,

4 4 4 4
z4 ——I 4+M4 ———p+M4 . (2.14)

We now make a further assumption that M4 is indepen-
dent of the time r (or time T), so that BM4/Br =0. (It is a
straightforward matter to generalize the following equa-
tions if the assumption of time independence of M4, is
dropped. ) We define the (constant) Schwarzschild mass M
inside Rb by

I

where the integrals are taken over a ~=const surface
(which is different from a T=const surface).

What remains now is the description of the stress-
energy tensor component ~4 in the region R &Rb. One
possible approach is to assume that ~4 for R (R& is com-
posed of two parts. One part is F4———p of the cosmologi-
cal fluid given in (2.9a). The other part will be a stress-
energy tensor component M4 associated with the matter of
the imbedded Schwarzschild mass. Thus, we assume we
can write ~4 in the region R & Rb as

4 4
V4 —F4 — p (2.9a) Rb

M= —4m f MgR dR . (2.15)
1 1
1 1 P ~

r~=F~= —m(k —A)'i (p+p),
(2.9b)

(2.9c)
Equations (2.11), (2.12), and (2.13) then become, respec-
tively,

2 3 2 3
~2 —~3=+2 —+3 —S

We then obtain from (2.7) (Ref. 8)

(2 9d) A (R, r)= 1 2M/R (8—~/R) f—pR dR (A/3)R—
(2.16)

dk/dr=0, (2.10)

Rb
A(R, r)=1+(8n./R) f r4R dR —(8n./R) f pR dR

—(A/3)R (2.11)

Rb
r = —(1/R ) f (dr /dr)R dR

+(1/R ) f (dp/dr)R dR,
b

(2.12)

Rb

p+p (m/R )(k A) '—i f (Br&/—Br)R2dR

—f, (ap/ar)R'dR =0,
(2.13)

which shows that the energy parameter k will be a con-
stant along each streamline of the cosmological fluid
where R )Rb.

Following the procedure developed in our previous pa-
per, we obtain in the region R )Rb from (2.5), (2.6), and
(2.7), respectively,

=(1/R') f (ap/ar)R'dR
R

p+p+(m/R )(k A) ' f (d—p/dr)R dR =0 .

(2.17)

(2.18a)

In our previous paper, we found that the condition of
homogeneity relative to the cosmological time ~ required
that the cosmological fluid density p depend only on ~ and
not on the spatial coordinate R. Now, however, with an
imbedded Schwarzschild mass M, we do not have a homo-
geneous field. Thus, we are not justified in assuming p
and Bp/B~ are independent of R so that they may be
brought outside the spatial integrals in the above expres-
sions.

In our previous paper, we also found that the homo-
geneity condition required setting the energy parameter
k =1. Even though we here are not dealing with a homo-
geneous situation, the following reasoning shows that we
should still set k=1 for the fluid particles. It seems
reasonable to assume that as R tends toward zero inside
the imbedded mass, spacetime should become flat (condi-
tion of elementary flatness). This is equivalent to requir-
ing A~1 as R~O. If we had k (1, (2.4) shows that at
some sufficiently small value of R, we would have a turn-
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ing radius where dR/8~=0, indicating a hole in the
cosmolgical fluid, which hardly seems like a good descrip-
tion of a cosmological fluid. On the other hand, if k & 1,
(2.9c) shows that r4 would tend toward a nonzero value as
R —+0, indicating that R=O is a source or sink of cosmo-
logical fluid, depending on the sign of m. This also seems
like an unsatisfactory description of a cosmological fluid.
Thus we are led to the value k =1 for the energy parame-
ter of the cosmological fluid particles, giving ~4~0 as
R ~0. (The following equations can easily be generalized
if k&1.)

Setting k = 1 in (2.18a), we get
R

p+p+(m/R )(1—2) '~ I (Bp/Br)R dR =0 (2.18b)

and the metric form (2.2) becomes

ds (R,r)=[dR —m(1 —A)'~ dr]2

+R dQ —dr

In the subspace ~=const, (2.19) becomes

ds (R,r=const)=dR2+R2dQ2,

(2.19)

(2.20)

which is seen to be flat. Thus, just as in our previous pa-
per, R is the spatial coordinate that explicitly exhibits the
flatness of the r=const subspace. Also, R has the physi-
cal significance that it measures proper distance between
v.-simultaneous events.

III. A SCHWARZSCHILD MASS IMBEDDED IN A DE SITTER UNIVERSE

A de Sitter universe corresponds to a vacuum cosmology, i.e., a universe in which there is no cosmological fluid. Set-
ting p=O in (2.18a) and (2.17) we find p =0 and r4 ——0, which are to be expected. Setting Rp ——(3/A)'~, we find from
(2.16)

2 (R,w) =1 2M/R —(R—/Rg) (3.1)

so that the metric form (2.2) is

ds (R,~)=k [dR —m[(R/RD) +2M/R+k —1]'~ d~I +R dQ —dr (3.2)

As we have discussed in our- previous paper, we are not justified in setting k= 1 in a universe where there is no cosmo-
logical fluid. The equations (2.3) defining the transformation that relates the times r and T become

[2M/R +(R/R()) +k —1]'~

1 —2M/R —(R /RD)
(3.3a)

(3.3b)

resulting in the metric form (3.2) taking the curvature form

dRds2(R, T)= +R dQ —[1 2M/R —(R/—R()) ]dT
1 —2M/R —(R /RD)

(3.4)

If A=O, (3.4) is the Schwarzschild metric, while if
M=O, (3.4) is the metric for a de Sitter universe. Hence
the diagonal metric form (3.4) can be regarded as describ-
ing a Schwarzschild mass imbedded in a de Sitter
universe, i.e., a de Sitter/Schwarzschild (S/S) field
described in (R, T ) coordinates, where T is related to times
measured by clocks located at fixed R =const points. The
nondiagonal metric form (3.2) describes the same dS/S
field in (R,r) coordinates, where r is measured by clocks
moving along radial geodesics in the S/S field. Since
there is no cosmological fluid to tie the geodesic clocks to,
the energy parameter k is not determined by the field
equations, and depends upon the type of geodesic-clock
reference system we choose to use to measure ~. The
choice of reference system will determine the form that
the transformation defined by (3.3) will take. Examples of
different types of geodesic-clock reference systems for the
de Sitter universe are given in Ref. 4.

+R dQ —dr
or by curvature coordinates (R, T ) as

dRds~(R, T )= +R dQ
1 —(2R /37 )

dT2

[1—(2R/3r) ][1+—,(2R/3r) ]

(4.1)

(4.2)

IV. A SCHWARZSCHILD MASS
IMBEDDED IN AN EINSTEIN —DE SITTER

UNIVERSE
An Einstein-de Sitter (ES) universe is characterized by a

zero cosmological constant (A=O) and a cosmological
fluid that has zero pressure. As we have shown in our
previous paper, an ES universe can be described either in
(R,~) coordinates by the metric form

ds (R,r) = [dR —m (2R /3r)dr]
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in which r(R, T ) is given as an implicit function of the
coordinates (R, T ) by the transformation

Z(R, r)=Sm. f pR dR, (4.9)

T=r[1+—,(2R /3~)']'i' (4 3) Eq (4 8) becomes

that relates the two time coordinates ~ and T. The density

p of the cosmological fluid of the ES universe varies with
the time ~ according to

R' aZ/a~+m (Z+2M)' aZ/aR =0 .

From (2.16) we can then write

A = 1 —(2M+ Z)/R

and the metric form (2.19) becomes

(4.10)

(4.11)

Dirac claims that the ES universe is in agreement with
his Large Numbers hypothesis. ' As described in the In-
troduction, Dirac and McVittie have developed an ap-
proach, different from ours, for imbedding a
Schwarzschild mass into the ES universe to produce an
Einstein —de Sitter/Schwarzschild (ES/S) field.

One way of proceeding from our constitutive equations
(2.16), (2.17), and (2.18b) to describe a Schwarzschild mass
imbedded in an ES/S field is to assume that the imbedded
mass has no effect on the cosmological fluid. In this case,
we would assume a density given by (4.4) independent of
R, so that from (2.16) we obtain

A (R,~) =1—(2R/3r) 2M/R .— (4 5)

R
p+(m/R )(1—W) 'i f (ap/ar)R2dR=0.

Substitution of A (R,r) from (2.16) then gives
2

( —m/R p) f (ap/ar)R'dR

(4.7)

R
=(Sm/R) f pR dR+2M/R, (4.8)

which is an integral-differential equation that determines
the density p(R, r) that generates the ES/S field with zero
pressure. If we set

Thus, this assumption results in simply adding a —2M/R
term to the A (R,r) term in the original ES metric form
(4.1) to produce an ES/S field. The pressure now will not
be zero. We find from (2.18b).

p = —(6m' ) 'I 1 —[1+(2M/R)(3r/2R) ] 'i2I (4.6)

so that the pressure is negative, going over to zero at large
distances away from the Schwarzschild mass centered at
R =0.

Objections can be raised about the approach just
described. In essence, what has been done is to make a
guess as to the form that the metric coefficients should
have when a Schwarzschild mass is imbedded into an ES
universe. The expression for the pressure is then taken to
be whatever follows from the field equations. This ap-
proach seems contradictory to the spirit of the field equa-
tions, which imply that we should be the ones who specify
the structure of the source, with the field equations deter-
mining the form of the metric coefficients.

Therefore, we approach a combined ES/S field in the
following manner. The primary characteristic of an ES
universe is that the cosmological fluid has zero pressure.
We will assume that this feature holds also in a combined
ES/S field where R )Rb. Correspondingly, we set p=0
in (2.18b) to get

ds (R,r) = I dR —m [(2M+.Z)/R]'i dr I

+R dQ dr— (4.12)

Changing the time coordinate from the geodesic time v

to the curvature time T requires solving (2.3a), which is

[(2M +Z)/R]'"
1 —(2M +Z)/R

(4.13)

under the conditions that for small R we should have
r z.—+I, while for large R the relationship (4.3) should
hold. The metric form for an ES/S universe in curvature
coordinates is then

dR
1 —(2M +Z)/R

—[1—(2M+Z)/R](~ r ) dT (4.14)

where r r is determined from the solution r(R, T ) to
(4.13).

V. IMBEDDING A SCHWARZSCHILD MASS
INTO A GENERAL UNIVERSE

The above descriptions of combined S/S and ES/S
fields suggest the following approach for imbedding a
Schwarzschild mass into a general zero-curvature universe
to obtain a combined general universe/Schwarzschild
(GU/S) field. Substitute (2.16) into (2.18b) to get

R '2
( —m/R )(p+p) ' f (ap/ar)R dR

=(Sm/R) f pR dR+2M/R+(A/3)R, (5.1)

which gives a relationship between p and P. Assume that
for R & Rb, p and p satisfy the same equation of state as in
the original universe before the Schwarzschild mass was
imbedded. With this equation of state p=p ( p), solve (5.1)
to get p(R, r) With Z(R, ~. ) defined by (4.9), the metric
form is then determined from (2.19) as

ds (R,r)= tdR —m [(2M+Z)/R +(A/3)R ]'i drI

+R dQ —dr (5 2)

with the flow of energy across an R =const surface being
given from (2.17) as

Sm r' = (1/R )aZ /ar . (5.3)

To convert from (R,r) to (R, T) coordinates, we use the
time-coordinate transformation obtained by solving (2.3a):

[(2M+Z)/R +(A/3)R ]'i2
1 —(2M +Z)/R —(A/3)R
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subject to the conditions that for small R we should have
~ z- —+1, while for large R the relationship between ~ and T
should be what it was before the Schwarzschild mass was
imbedded into the Universe. The nondiagonal metric
form (5.2) will then assume the diagonal-curvature form

dR
ds (R, T )= +R dA

1 —(2M +Z) /R —(A/3)R '

—[1—(2M+Z)/R —(A/3)R2](r r)2dT2

(5.5)

in which r z is determined from the solution r(R, T) to
(5.4).

R =constant, V'=0

and find that a contradiction arises, showing that spiral-
ling must occur.

With dR/dT=O, a partial derivative with respect to T
is the same as a total derivative with respect to T. Using

dV /dS=(dV /dT)(dT/ds)= V (dV /dT),

we can then rewrite (6.3) as

2BV (dV /dT)+B r(V ) =(d/dT)[B(V ) ]=0
(6.9)

so that

B ( V ) =constant . (6.10)
VI. THE SPIRALLING OF PLANETARY ORBITS

Now that we have developed a formalism for imbed-
ding a Schwarzschild field into a general zero-curvature
universe, we here investigate how planetary orbits around
a Schwarzschild gravitating mass M are affected by the
inclusion of a surrounding universe. We will work in cur-
vature coordinates (R, T ). In the metric form (5.5) we set

A (R, T ) = 1 (2M+ Z) /—R —(A/3)R (6.1a)

are

dV"/ds+I" VPV =0, gp VPV = —1Pc7 (6.2)

dV /ds —[A r/(2A B)](V') +[Bz/B]V'V

+[B r/2B](V ) =0, (6.3)

d V'/ds —[ A z /2A] ( V') —[ A z /A ]V' V

+[AB g/2](V ) —AR(V ) =0,
dV /ds+(2/R)V'V =0, (6.5a)

(1/A )( V')'+R '( V')' —B ( V )' = —1 . (6.6)

Since V'=dR/ds, we can write (6.5a) in the alternate
form

R (dV /ds)+V 2R(dR/ds)= (R V )=0 (6.5b)
GS

B(R,T)=[1—(2M+Z)/R —(A/3)R2](r r)2. (6.1b)

Let V&=dx"/ds, where s is the proper time along a
particle's trajectory. Without loss of generality we take
0=90 and V =dO/ds=0. The geodesic equations given
by

The value of this constant is obtained by combining (6.7)
with (6.6) to get

B(V')'= 1+( L /R )' . (6.11)

Using (6.11) in the remaining geodesic equation (6.4), we
obtain

ln(B)] g —— 2/R
1+(R/L)'

(6.12)

Bv =g~b(dx'/dT)(dx /dT) (a,b =1,2, 3) . (6.13)

Following Dirac, we assume nearly circular orbits, and
neglect dR/dT in the geodesic equations where appropri-
ate. The results of the calculations, which are shown in
the Appendix, are that for nearly circular orbits the fol-
lowing three relations follow from the geodesic equations:

(dR/dT)[ln(B)] z+2u(dv/dT)(1 —u ) '=0, (6.14)

(L/R) =u (1 —u ) (6.15)

If R =const, the right-hand side of (6.12) will be a con-
stant, while if B=—g44 depends upon T, the left-hand
side of (6.12) will not be a constant. Since we get a con-
tradiction, the starting assumption (6.8), that R=const,
can not hold. Therefore, with the exception of the static
S/S field for which B is independent of T, there will be
spiralling of planetary orbits for GU/S fields.

Now that we know a planetary orbit will spiral if g44
depends on T, let us analyze a planet's motion taking the
spiraling into account. To do this, I have followed a
method developed by Dirac, but using curvature coordi-
nates instead of the isotropic coordinates employed by
Dirac.

Define the velocity v of the planet by

so that [ln(B)] z ——2u /R, (6.16)

R V =R (dP/ds)=L,
I.=const =angular momentum per unit mass . (6.7)

Planetary orbits around a Schwarzschild mass in Uacuo
do not spiral inwards or outwards. However, in a cosmo-
logical situation where a Schwarzschild mass is surround-
ed by, or imbedded in, the cosmological fluid of a nonstat-
ic universe, spiralling of planetary orbits will occur. To
show this, we will assume circular motion, i.e.,

where only two of the three equations are independent.
Eliminating u between (6.15) and (6.16), we obtain

(6.12). Thus, once a particular universe is chosen, so that
B(R,T ) is specified, (6.12) gives R implicitly as a func-
tion of T. It is seen from (6.12) that R will be constant
only for a S/S field, where B is independent of T.

The magnitude of the orbital spiralling can be estimated
from a Newtonian calculation. A flow of cosmological
fluid across a sphere R=const means that the attractive
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mass inside the orbit of a planet will vary with time, caus-
ing the planet to spiral. From Newton's second law we
have

GM{t)/R =U /R, (6.17)

where M(t) is the mass inside the planet's orbit. From
Rv =const from conservation of angular momentum, we
obtain

v dR/dt+R dv/dt =0,
which, when combined with (6.17), yields

dR /dt = —(R /M) dM /dr .

(6.18)

(6.19)

The mass M(t) consists of the constant central mass M~
plus the mass of the cosmological fluid with density p(t):

M(r)=M&+ ', ~R'p(r) . (6.20)

Substituting this into (6.19) we obtain

dR/dt = —3'(R —/Mo)dp/dt, (6.21)

where we have used M (t.) =M~.
There are two equivalent ways we can proceed from this

point. The density variation inside a sphere is

dp/dt =(—,mR ) 'dM/dt,

which can be related to the flux pv by

dM/dr= —4+R pu

(6.22)

(6.23)

dp/dt = —3pu/R . (6.24)

dp/dt = —3Hp .

Substitution of (6.25) into (6.21) gives

dR/dt =(8rrR Hp)/(2M&) .

(6.25)

(6.26a)

Alternatively, we can substitute the density for an ES
universe

p=(6vrGt )

into (6.21) to get

(6.27)

From cosmological considerations we know v=HR, where
H is Hubble's constant, so that (6.24) can be written as

dR /dt
l s,)„„,„„——1 100 km/yr, (6.29)

which may possibly be measurable. Since dR /dt ~ r for
an ES universe, the spiralling effect may have been appre-
ciable at the formation of galaxies in the early universe.

VII. DISCUSSION

Einstein and Straus find with their approach that there
is no planetary spiralling. The planetary motion behaves
as if there is no influence by an expanding universe. This
is to be expected, since with their approach of treating a
hole cut out of the Universe, in which there is a
Schwarzschild mass M, they are dealing in the vacuum re-

gion around M with a usual Schwarzschild field, where we
know spiralling does not exist.

McVittie also finds that his approach does not result in
planetary spiralling. An observer using the metric form
(1.5) or (1.7) will find that the orbit of a planet remains
fixed.

Dirac, who works with McVitties s metric form (1.7)
specialized to an ES universe by means of (1.8) and (1.9),
also finds, just as in a Schwarzschild field, a planet will

move with a constant velocity at a constant distance from
the Sun. However, Dirac concludes that there will be
planetary spiralling by going outside the bounds of general
relativity to atomic theory. Proceeding from his Large
Numbers hypothesis (LNh), Dirac argues that there are
two times of consequence in nature:

(1) An ephemeris time which governs the motions of
planets and galaxies. Dirac has identified ephemeris time
with the time t used in the metric form (1.7).

(2) An atomic time t~ which governs atomic processes.
It is atomic time that Dirac refers to when he says that
the gravitational constant varies with time.

From his LNh, Dirac finds that atomic and ephemeris
time are related by

2 (7.1)

In turn, distances measured in atomic units are different
from distances measured in ephemeris units. In this
manner, Dirac concludes from his ES/S metric form (1.7)
with {1.8) and {1.9) t,iat, in terms of atomic units, the dis-
tance rz of a planet from the Sun will vary according to

(7.2)
dR/dr=(8~R4p)/(3Mor) . (6.26b)

Since H=2/3t for an ES universe, (6.26a) and (6.26b) are
equal to each other.

Taking the age of the Universe as t=3X10' yr, the
cosmological density as p=10 g/cm, we find that in
our solar system (M~=2X10 kg) the orbit of Saturn
(R=1.4X10' m) will change by

dR /dt
l sanborn

=6 X 10 m/yr, (6.28)

which is much too small to be measured. If we assume
that the above analysis holds also for a galaxy, we have
for the spira11ing of a star at the edge of the Andromeda
galaxy M 31 (R=25 kpc, M =IX 10"Mo)

In contrast with the above results, we have showed that
planetary spiralling is predicted from the usual general re-
lativity theory. The reason for our result of planetary
spiralling is straightforward. The cosmological fluid,
which is the source of. a particular universe, will be mov-
ing across a sphere R=const. Hence the amount of
matter inside a sphere R=const will be changing with
time, either decreasing for an expanding universe, or in-
creasing for a contracting universe. Therefore, a planet at
the radius R wi11 experience a force that varies with time
T or w, resulting in the planet's curvature radial coordinate
R changing with time. As we see with (2.20), R measures
the proper distance in the subspace ~=const, so that, in
this sense, a variation of R indicates a variation of a



206 RONAI. D GAUTREAU 29

planet's proper distance from the Sun.
To close, I would like to offer a speculation. Dirac has

hypothesized the existence of two different times in na-
ture, an atomic time and an ephemeris time. In the
development of our work, we have seen the natural ex-
istence of two different times, a curvature time T and a
cosmological time ~. Perhaps the times T and ~ might be
related, in some fashion, with the two times hypothesized
by Dirac. This would have the effect of merging, in a
natural way, Dirac s LNh, with its associated atomic con-
stants, with Einstein's theory of general relativity.

1~z z =8 '( ,'8—4+B,z'+ ,'g—,b4z'z ) . (A7)

I p
zrz =8 '[ , 8 4—+8)z'+ —,g)) 4(z') ] . (A8)

Equating (AS) with (A6), we get

—,'B,z'+ —,'g» 4(z') +Buv/(1 —u )=0

or, with g]] =2
(A9)

But for the metric form (Al), only g» in the g,b depends
on z, and 8 is independent of z and z, so that (A7) be-
comes
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APPENDIX

For the case of an orbit that is nearly circular except for
cosmological effects on the radius coordinate z'=R, z' is
small, and we may neglect its square in (A10) to get

8 'B,z'+2vv/(1 —v )= z'[1 n(B)] )+2vvl(1 —v ) .

(Al 1)

I will here redo Dirac's calculations in the section titled
"Planetary orbits" in his paper of Ref. 2. For ease of
comparison, I will use his same notation of letting z"
denote the planet's coordinates as a function of z, with an
overdot denoting d/dz, so that z = 1. The difference be-
tween what Dirac has done and what is being done here is
that Dirac worked with an isotropic metric form, while I
will be using the curvature metric form

8 =R(z)
From (6.7) we have

V3=dz /ds =(dz /dT)(dT/ds)

=z (dT/ds)=z V =1./R

(A12)

(A13)

This is Eq. (6.14).
Similarly, (A3) reduces to (since z =0 for our case)

ds (R, T)= — +R dA B(R,T)dT—. (Al)
A(R, T)

Let s denote proper time measured along the world line
of the planet. The geodesic equations are

Since gz V~V = —1, we have from (A3)

8 ( V4)2=(1 —~)

Substituting (A14) and (A13) into (A12), we obtain

(A14)

(L/R) =u (1—u ) (A15)

Define the velocity U of the planet by

—g44u =Bu =g,bz'z (a,b=1,2, 3) .

Then

This is Eq. (6.15).
Applying (A2) with @= 1 and neglecting z, we obtain,

using (A13) and (A14),

s =gz zpz ——8(1—u )

from which

2ss =(8 4+B,z')(1 v) 28uu—. —

Apply (A2) with p =4 to get

=B,A/2 —(AR)[1. 8(1—u )R ]=0 .

(A16)

Rearranging (A16) and using (A15), we obtain
A5

I &~ z =s'/s [ln(8)]
&

——2u /R . (A17)

=(1/28)(8 4+B,z') —vu/(1 —u ), (A6)

where we have used (A4) and (A5). From the definition of
I p~ we have

This is Eq. (6.16).
Since (A2) with p =4, 1 and (A3) constitute only two in-

dependent equations, it follows that there will be only two
independent equations among (Al 1), (A15), and (A17).
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