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We extend the recent chiral model of Claudson, Wise, and Hall to include vector and axial-vector
mesons as gauge bosons of an SU(3)L, )&SU(3)z chiral symmetry. The resulting baryon-nurnber-
violating interaction Lagrangian contains an additional free parameter and modifies significantly the
two-body branching ratios of protons. Without some experimental input, it is not possible to predict
definite branching ratios even in the minimal SU(5) model of grand unification. Depending on the
values of the effective parameters of the chiral Lagrangian, several interesting possibilities for the
branching ratios arise, and they are discussed in some detail. We provide, within the framework of
the model, general formulas for two-body decays of the proton for an arbitrary grand unified theory
including both Higgs- and gauge-boson exchanges. We also discuss how the effective parameters in
our chiral model can be related to quark and bag models, and thereby show how various models can
be tested for their consistency with the chiral aspects of strong interactions.

I. INTRGDUCTION

One of the most striking consequences of unifying
strong and electroweak interactions is the instability of
the proton' through baryon- and lepton-number-violating
interactions. Over the past few years, a great deal of
theoretical and experimental effort has been devoted to
the study of this phenomenon. Recently a lower bound of
2X10 ' yr for the proton lifetime into m. e+ channel has
been quoted by the Irvine-Michigan-Brookhaven (IMB)
collaboration experiment. This bound seems to be in
conflict with the theoretical expectations based on the
minimal SU(5) theory. In this paper, we discuss some of
the basic assumptions underlying the theoretical estimates
of the proton lifetime and its branching ratios into various
two-body decay modes, in order to have a better under-
standing of the experimental situation.

At the present time, there is no unique grand unifica-
tion scheme. There are several possible schemes. The
properties of baryon-number- and lepton-number-
violating interactions, such as their strengths and selection
rules, obviously depend upon the choice of the model. In

.a given model, the extrapolation of these interactions
from the grand unification mass of 10' —10' GeV down
to 1 GeV depends crucially upon the use of renor-
malization-group equations" and the symmetry-breaking
patterns. There are all the nagging questions concerning
the choice of Higgs representations, the form of the Higgs
potential, the relative dominance of Higgs-boson ex-
changes over the relevant gauge-boson exchanges, and so
on. The conclusion in a nutshell is that there are too
many ambiguities unless one drastically restricts the
models. This is the main reason why a great deal of at-
tention has been focused upon the minimal SU(5) scheme
which has a natural one-stage symmetry breaking from
SU(5)~SU(3) X SU(2) XU(1) and consequently one high
mass scale M&. Even so the determination of Mz is by
no means unambiguous. At present, its determination is
dependent upon the @CD parameter A in the

renormalization-group equations. The current world-
average AMs ——0. 16 0'08 GeV (Ref. 5) (MS denotes the
modified minimal-subtraction scheme) leads to a value of
M& ——(1—3) X 10' GeV and an uncertainty in the proton
lifetime by a factor of 10 can easily arise. In the future,
this situation may be improved by the precise determin-
taion of the mass M~ of the recently discovered 8'bo-
son. The latter can then be used in the renormalization-
group equations instead of AocD.

Our paper is concerned mainly with another important
source of ambiguity, namely, the evaluation of the low-
energy hadronic matrix elements. For this purpose,
several approximation schemes are available and they
have all been utilized. Thus the nonrelativistic-quark-
rnodel and bag-model wave functions have been em-
ployed to calculate the overlap of quarks inside the nu-
cleon. The matrix elements can also be estimated using
current algebra and PCAC (partial conservation of axial-
vector current). The various approaches have between
them a variation of approximately a factor 30 in the pro-
ton lifetime.

In view of this situation, it is both important and desir-
able to continue to study the various methods and their
refinements to estimate the hadronic matrix elements and
see how they affect the quantities of interest. In this pa-
per, we use the method of phenomenological Lagrangians
based on the chiral SU(3)L XSU(3)~ symmetry, which has
been used quite successfully in the past to describe low-
energy hadronic physics. Recently, Claudson, Wise, and
Hall' have constructed an effective Lagrangian for pro-
ton decay and used it to estimate the various two-body
branching ratios into pseudoscalar mesonic channels.
Their approach includes automatically the three-quark-
fusion diagrams in the form of the baryon-pole dia-
grams. " Further, Isgur and Wise' have shown that the
inclusion of such diagrams in quark-model calculations
removes the discrepancy that existed between quark-
model and chiral-model calculations. We generalize the
chiral Lagrangian of Ref. 10 to include the vector and
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axial-vector mesons. In the past such generalizations have
provided more accurate predictions of low-energy hadron-
ic scattering parameters by providing specific extrapola-
tions of current-algebra results to nonzero momenta. In
the context of proton decay, as there are some sizable
vector-meson decay modes in models that use SU(6) or
bag-model wave functions, we deem it important to con-
sider such a generalization. As we shall show, the gen-
eralization has indeed important effects on the branching
ratios into both the pseudoscalar mesons and vector
mesons.

The organization of this paper is as follows. In Sec. II
we give an outline of the chiral Lagrangian for the strong
interactions of baryons and pseudoscalar, vector, and
axial-vector mesons. Various aspects of the chiral-
symrnetry breaking will be displayed in some detail. In
Sec. III, we present the baryon-number-changing effective
Lagrangian as well as its selection rules.

In Sec. IV, we compute the two-body decay rates for
the case of minimal SU(5). A comparison with other ap-
proaches to the problem of proton decay will be presented
in Sec. V. Section VI will summarize our conclusions. In
an appendix, we present the general expressions for the
two-body decay rates which are applicable to any grand
unified theory for which the ~=1 interactions are
described by an effective four-fermion Lagrangian.

II. CHIRAL LAGRANGIAN
FOR STRONG INTERACTIONS

Phenomenological Lagrangians based on chiral symrne-
try have been used extensively in the past to represent the
current-algebra results in the zero-rnomenturn limit and
they have provided an extrapolation of these results for
nonzero momenta. The interested reader can find this
subject discussed in a review by Gasiorowicz and Gef-
fen. ' In what follows, we present a brief description of
the chiral Lagrangian we will be using for the strong ver-
tices of our problem. The Lagrangian utilizes a nonlinear
realization of the chiral group SU(3)r, XSU(3)z within the
general framework formulated by Coleman, Wess, and Zu-
mino. ' Claudson, Wise, and Hall' have used such a La-
grangian for the strong interactions of pseudoscalar-
meson and baryon octets. We extend their model by in-
cluding vector and axial-vector gauge fields of a local
SU(3)i XSU(3)ii. For convenience, we have chosen our
notation to coincide with theirs in the pseudoscalar
meson, baryon sector.

The pseudoscalar-meson octet is introduced as the
parametrization of the coset space

SU(3)r XSU(3)g
SU(3)y

and, as such, the pseudoscalar mesons are the pseudo-
Goldstone bosons of the chiral symmetry. Consider the
special unitary matrix g,

/=exp(iM/f~),
where f~ is the pion decay constant (f =128 MeV), and
M is the familiar meson octet

"+n
vZ v6

(2.2)

2
7f

Given an element (L,R) of SU(3)r, XSU(3)~,
transforms as

g~g'=L g Ut= UgRt . (2.3)

In the above transformation law, U is a unitary matrix de-
fined by (2.3) and it depends nonlinearly on (L,R). How-
ever, the transformation becomes linear for the diagonal
subgroup SU(3)i with L =R = U. The transformation
law for the baryon octet B is

8—+8'= UB Uf . (2.4)

For the local group SU(3)r, XSU(3)R, we can introduce
the vector and axial-vector gauge fields v„and a„with
the usual transformation properties, namely,

r

~~+@„~(v„+a„)'=R v&+a&+ —
8& R

—Q~ ~(vp —Qp ) =L v~ —Qp +—
Bp L

g

where &2g is the pn. m. coupling constant with

=2.84+0.5 .
4m

(2.5)

(2 6)

In order to couple the vector-meson octets to baryons
and pseudoscalar mesons, it is convenient to introduce the
fields P& and V& which have siinple transformation prop-
erties under the nonlinear realization of the group. They
are given by

P~ ——,' /[i'~+—g(v~+ap)]g

,
' /a[i B„+g(v„—a„)—]g, (2.7a)

Vp
——,' )[i dp+g —(vp+ap)]gt

+ —,
' g't[i B„+g(v„—a„)]g . (2.7b)

Using (2.3) and (2.5), we can easily prove

Pp~Pp ——U Pp U~,

Vp ~Vp ——U[ V~ +i Bq]Ut,

(2.8a)

(2.8b)

DpB =d~B i [Vp, B]—,

with the transformation property,

(2.9)

D~B~(DpB)'=U(DpB)Ut . (2.10)

The field-strength tensors F&„' are defined in—the usual

and in view of the last equation, a chiral covariant deriva-
tive D&B for the baryon octet B can be defined,
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way, namely,

F„'+„'=—Bq(u „+a„) d—(u„+a„)
i—g[u&+a&, u „+a„] . (2.11)

A minimal Lagrangian Wo involving baryons, pseudosca-
lar mesons, and vector and axial-vector gauge fields can
now be written as

Wo ——,' fo —Tr(P&PI')+Tr[B(iy&D" Mz—)8]+DOTr(By"y5IP&, B I +)+FOTr(Byl'ys[P&, B])

, Tr(—F&+'F'+'I'"+F&„'F' '&")+ ,
'

mo —Tr(v&u4+a&al') . (2.12)

The above Lagrangian is invariant under the local
SU(3)L, X SU(3)R, except for the last term which is invari-
ant only under the global group. We include this term,
because otherwise the pseudoscalar mesons can be gauged
away from Wo, leaving massive axial-vector mesons
through the familiar Higgs mechanism.

The quadratic part of Wo is diagonalized by the substi-
tution

composite field P„can now be expanded as

Pp ——— BpM —gAp+ .Z
(2.17)

D =ZDo, F=ZFo . (2.18)

which implies that the coefficients Do and Fo will be re-
normalized to D and Fgiven by

a~ ——Ap — BpM
mo

(2.13)
From the axial-vector-current matrix elements, one ob-
tains'

and A& describes the physical axial-vector mesons. The
standard normalization for the kinetic-energy term of the
pseudoscalar mesons is ensured by

2

(2.14)
mp

After these substitutions, the masses of vz and A& can be
read off to be

D =0.813, F=0.4395 . (2.19)

m

We now turn our attention to the SU(3)~ breaking
terms to be added to Wo. Since the quark mass terms
transform according to (3,3 )e(3', 3) under SU(3)L
)&SU(3)z, one can write down an SU(3)v-breaking La-
grangian with the same transformation properties. With
the quark mass matrix,

m2= 2=mU =mp =mp, Z
(2.15)

ms

(2.20)

From the value of the p-meson mass and (2.14), we find

Z=——,
' and mg -—2m' (2.16) (2.21)

which is a well-known relation due to Weinberg. ' The an SU(3) z-breaking Lagrangian is

W = u Tr(~X+Xt~)+a Tr[8(ft~gt+g~g)8]+a Tr[88(gt~gt+g~g)]
+b~Tr[By5(g ~g —g~g)8]+bzTr[By58(g ~g —g~g)]

Tr[F' 'F' 'I'"(M Xt+XM)+F'+'F'+)'"(M X+XtM)]— Tr(F' 'XF'+)'"M+F'+'XtF' 'I'"M) .

(2.22)

Considering the isospin-invariance limit m„=md ——m,
the parameters a&, az, and m, /m can be obtained from
the masses of pseudoscalar mesons and baryons. We find

ms
a

&
——0.4S, a2-0.88, =24 .

m
(2.23)

With m, =150 MeV, one has m=6. 2 MeV and U =186
MeV. The parameters bi and b2 do not contribute to the
baryon masses and they can presumably be obtained from
the meson-nucleon scattering lengths.

As for the vector masses, we have chosen to induce

symmetry breaking in the kinetic terms rather than the
mass term. There are good arguments in favor of this
procedure. ' This leads to renormalization of the vector-
meson fields,

pz =Zp p
1/2

(2.24)

4'8R Z8 4'8 ~
1/2

and similarly for the axial-vector-meson fields. Here, we
have,
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Z jff 1 + m+m,
(K(+K2),

Zs ——1+
m+2m,

(K(+K2)

Zz ——1+m ( K(+K2),

(2.25)

neglect the quark-mixing angles and take them as mass
eigenstates. In this case, the only operators relevant for a
proton or bound neutron decay, are those containing at
most one strange quark. For a given lepton generation d,
the expressions in (3.1) contain ten such operators, four of
which represent ~=0, and the remaining six, ~=1
transitions. Thus,

From the masses of p and E*,
2mo

mp
Zp

2mo

Z,
one finds that, m(K(+K2) = —0.021, and

3 2
Zp 1 p Zg 4 p Z8 3 ~

(2.26)

(2.27)

hS =0: Qd"=e py(dRuR )(uLedL —dLvdL),

Qd eapy——(dLuL)(uRedR ),(2) a P y

Qd epy——(dL, uL )(uLedL dL vd—r. ),(3) a p y y

Qd eapy(dR uR )( R edR )

(3.2)

p()R sing) co——+cos8( $, 8) ——40.3' . (2.28)

These values will be used in the vector-meson vertices of
the proton decay matrix elements.

Finally, we treat the co-P mixing' by simply expressing

AS = 1: Q d =eapy(SRuR )(uLedL dLvdL ) ~

(1) a

=e py( LuL )(uRedR )
—(2) a P y

Q d eapy(SL—uL)(uLedL dLjjdL) ~

p y y

(3.3)

III. CHIRAL LAGRANGIAN
FOR hB = 1 INTERACTIONS

For a grand unified theory with a unification mass as
high as 10' GeV and with a low-energy spectrum consist-
ing only of ordinary quarks and leptons, the leading effec-
tive operators contributing to the baryon-number-
changing processes are the four-fermion operators con-
structed out of the quark and lepton fields. There are
only four families of such operators consistent with the
low-energy SU(3)c X SU(2)L X U(1) symmetry. In a
two-component notation for the spinor fields, these are

+abed eaPye j(ddR ub'R )('VcL idL )
(1) a P yi j
(2) ai 8' y

Oabcd =eaPy&ij(iiaLVb2 )(ucR 4R ) ~

(3.1)
(3) ai 8 yk m

Oabcd eaPyeimejk( VaL'Ad )('CcL dL ) ~

Oabcd &aPy(daR ubR )(ucR idR ) ~

(4) a 8 y

where a, p, y are the color indices, i,j,k, m the SU(2)L in-
dices, while a, b, c,d denote the quark-lepton generations.
The fields appearing in these expressions are in the
gauge-group representation basis. We will, however,

I

i=1 d i=1 d

(3.4)

The coefficients Cd' and C d' in (3.4) are determined from
the corresponding coefficients at the unification mass
through a renormalization-group analysis ' down to ordi-
nary energies.

Chiral Lagrangians for &B=1 processes can now be
constructed in terms of hadron fields, by analyzing parity
and SU(3)L X SU(3)R transformation properties of the
operators in (3.2) and (3.3). Such an analysis has been car-
ried out in Ref. 10 and for the case involving no vector-
meson fields, Claudson, Wise, and Hall obtained the fol-
lowing chiral Lagrangian, which we express in four-
component notation:

Q d e py( RuR )(uR dR )
(4) a p y

Q d eapy(dR——uR)(SLVdL) ~

Q d eapy( dL uL )(SL VdL ) .(6) a p y

The effective four-fermion Lagrangian for &=1 de-

cays is then
4 6~dB=i y y C(i)Q(i)+ y y C (g)Q (g)+ H

Y())
=' ——a g[edR Tr(Cd"gB g) —edL Tr(Cd 'g B g ) vdRTr(Fd'~f—Bg)]+H.c.

d

+pg [edR Tr(Cd 'g Bg ) edL Tr(Cd ~f~B—g) vdRTr(Fd 'gBg—)]+H.c. '

d

The matrices

(3.5)

0 0 0 0 0 0 0 0
C(i)

d —Cd(i)

C(i)
d 0 0 0 C'"

d

0 0, i=1234, I'd" ——0 —Cd' 0

—Cd(5)

Fd ——0 —Cd(3) (3)

0 C(3) (6)

summarize the projections corresponding to the operators in (3.2) and (3.3) and the coefficients a and p play the role of
reduced matrix elements of a VA'gner-Eckart-type analysis.

It is now straightforward to write a chiral Lagrangian involving vector and axial-vector mesons by simply replacing
the baryon octet B in (3.5) by iy&D"B where D"B is the chiral covariant derivative of the baryon octet introduced in
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(2.9). We recall from (2.4) and (2.10) that B and D"B transform in the same way under SU(3)I )& SU(3)z, and therefore
the Lagrangian

g [e~~i y&Tr[Cd"g(D"B)g] ed—Li y&Tr[Cg 'g (D"B)g ] vd—pi yqTr[Fd"g(D&B)g] I +H.c.
p d

+ g I e~ziy„Trf Cd 'g(D"B)g "]edl iy&Trf Cd 'g (D"B)g] vs—iy&Tr[Fd 'PD4B)g ]I+H.c.
P p

(3.7)

shares with W~&~
=' the same transformation properties

under the chiral group. We thus take

~hB =1 ~M =1+~KB=1
(1) (2) (3.8)

as the chiral Lagrangian for ~= 1 decays.
Before presenting our results in the next section, it is

useful to recall some of the selection rules governing the
nucleon decay.

(1) For ~=0 transitions, the four-fermion operators
in (3.2) or the hadronic operators in (3.5) and (3.7) all
satisfy M= —,

' rule. This leads immediately to the rela-

tions

I'(n ~X e+ ) =21 (p~X e+),
I (p~X+v, )=21(n~X v, ),

(3.9)

X=m. or p . (3.10)

I (p —+Xeg ) =I (n Xv, ), X =n. ,p, g, co . (3.11)

(3) If the baryon decay is due to the exchange of a
gauge boson, then the effective four-fermion Lagrangian
contains only the operators of the type 0,'~,'d and 0,'b,'~ in
(3.1). In this case, the coefficients Cd ', Cd ', C d ', C d ',
and C d all vanish. For 4S =0 transitions, one then ob-(6)

tains

C(2} 2

I (N~Xeg+) =, I (N~Xeg+),
( (1) (3.12)

where X is any nonstrange hadron. Neglecting the lepton
mass, (3.11) and (3.12) give in this case

C(2)
I (p~Xe+) = 1+ (, )

I (n ~Xv, ),1

1

(2) Furthermore, the hadronic operators multiplying the
antineutrino and the right-hand positron fields in W
together form the components of an irreducible tensor
with I = —,, which leads to

where the factor 3 is the SU(3) result, Zs is the renormali-
zation factor for Ps (2.27), and sin 8~ comes from the co-P
mixing (2.28).

IV. TWO-BODY DECAY RATES

l)=exp M =1+ M+f f (4.2)

D"B=P'B [VI',B]—
=d"B ig [v~,B]+— (4 3)

where in the last equation, the expression (2.7b) for V&
has been expanded. For the vector-meson octet v~, one
then carries out the renormalization prescription (2.24).

The Lagrangian W~~~
=' (3.7), contains baryon-vector

meson —antilepton vertices. We note however that, as a
consequence of the inclusion of the vector mesons into the

The evaluation of the two-body decay rates is based on
tree diagrams of the Lagrangian,

(4.1)

where Wo W~ and W =' are given by (2.12), (2.22),
and (3.8), respectively. There are two types of diagrams
that contribute to two-body decay amplitudes. The first
type is the direct conversion diagram (Fig. 1) which is
given by the three-body vertices of W ='. The second
type is the baryon pole diagram (Fig. 2), where the
nucleon-meson-baryon vertex is taken from the strong in-
teraction Lagrangian Wo+ W& and the conversion of the
intermediate virtual baryon into the final antilepton is
given by the two-body vertices of W ='. These pole di-
agrams correspond to three-quark fusion diagrams of
quark model analysis. " The relevant vertices in each case
can be read off from the Lagrangian by expanding g and
a~a,

0 0X=& ~p ~'/~co

r(p X+v, ),

X=+ orp.
(4) Finally, we obtain

3 s1D Ovr(N ~i)= I (N p'i)
Z8

By combining (3.13) and (3.10), one also gets

C(2)
I (p~X e+)= —' 1+2 C(1)

1

(3.13)

(3.14)

0

=1.9I (N p l), (3.15) FICx. 1. Direct-conversion diagram for p —+m e+ amplitude.



29 CHIRAL LAGRANGIAN FOR PROTON DECAY 1967

0 terms of dimensionless constants. To this end, we define

2
(i) g GUT —(i}

2
X

(4.4)

llB:1

FIG. 2. Pole diagram for p~a. e+ amplitude.

where g&UT is the coupling constant of the grand unified
theory at the unification mass Mx. The constants
a,p, y, 5 appearing in W(i)

=' and W(2)
=' all have the di-

mension of (inass) . It is convenient to express them in
units of 1 GeV and define the dimensionless constants
a,P, y, 6 as

chiral Lagrangian in a chirally covariant way, this La-
grangian, through the terms involving B&8, also contri-
butes to the baryon —pseudoscalar-meson —antilepton dia-
grams as well as the pole diagrams. These amplitudes
should be added to the amplitudes coming from W(()

='
(3.5) for the evaluation of decay rates into the pseudosca-
lar channels. As we will see in Sec. V, the amplitudes

(pseudoscalar meson; l
~ W(i)

='
~

nucleon)

P 3 P'=(1 GeV)
y
5 5

(4.5)

The decay rates then contain an overall multiplicative fac-
tor ro

and I 0=ir(aoUT) q 2
GeV

M„ f (4.6)

(pseudoscalar meson; l
~ W(2)

= '
~

nucleon)

become equal to each other in the limit of flavor-SU(3)
symmetry and it does not matter whether one uses

W(i)
=' or W(2)

=' for the pseudoscalar channels in that
limit. However, without flavor-SU(3) symmetry, these
amplitudes will have different contributions to the decay
rates. In fact, in Sec. V, we will exploit the breaking of
flavor-SU(3) symmetry to determine the relative contribu-
tions of W(i)

=' and W(2)
=' to the pseudoscalar channel

decay rates.
We find it useful to express the two-body decay rates in

c) =A, , c] =7k, c2 =A, , c 2 = A, ,
(1) (2) -(1) -(2) T

(4.7)

where A, is the renormalization-group enhancement fac-
tor, '4

where 4rraoUT ——goUT . Using the tree diagrams of the
Lagrangian (4.1), we have computed the two-body decay
rates in an arbitrary grand unified theory. The results are
presented in the Appendix. In this section, we will spe-
cialize to the case of minimal SU(5), in which case, the
only nonvanishing coefficients are

and

(M )
' 6/(33 —2N/)

'

(M )
' 27/(86 —8Nf )

'

( )
' —33/(40N/+6)

+s p +2 8' 5A)

CX5 CX5 3cx5

(M )
' —18/(20N/+3)

T=2
3cx5

(4.8)

(4.9)

Nf is the number of flavors; a(, a2, and a3 are the U(1), SU(2), and SU(3), running coupling strengths at the indicated
mass scales. a8 ——aoUT. Using the formulas in the Appendix and evaluating the kinematic factors, we find the following
expressions for the various two-body decay rates as functions of I 0, k, ,r and a, y:

I (p~n0e+)=I 0A, (1+r )(1.22)(a+y)
I (page )=I 0/(, (1+r )(0.0088)(a+y) (1+2.6b2)

I (p~K p+) = I'0A, (0. 166) 1+— [1.24a(1+0. 19b2)+ 1.3y(1+0.23b2)]
2

(4.10)

(4.11)

+ (0.088) 1 —— [1.36a(1+0.21b2)+ 1.46y(1+0.25b2)]2

I'(p %+V„)=I 0A. (0.065) I0.89a(1+0.21b &+0.19b2)+ 1.084y[1+0.2(b) +b2)] j

(4.12)

(4.13)
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I (n K v„)=I A, (0.26)I0.85a[1+0 2.1b —0. 11b,]+0.83y[1+0. 13(2b —b )]]
I (p~p e+)=I OA, (1+r )(0.0288)(a+2y)

I (p K*+V„)=1 OiP(4. 7)& 10 )a

I (n —+X* v„)=I OA, (0.0016)(1.63a+4y)

(4.14)

(4.15)

(4.16)

(4.17)

The decay rates for the remaining channels can be ob-
tained from these by the use of the symmetry relations
(3.9)—(3.15). We note that the widths for the I) channel
and some of the b,S =1 channels depend on the SU(3)-
symmetry-breaking parameters b& and b2. These strong
interaction parameters can, in principle, be related to and
hence estimated from an analysis of baryon-meson
scattering lengths. We have not carried out such an
analysis at the present time. We shall assume that their
effects are small and set b~ ——b2 ——0. This will not intro-
duce any series uncertainty in decay rates except for the
ye+ channel.

From the expressions (4.10), (4.11), and (4.15), we have
the following useful results:

=0.0072,
I (p~Ir e+)

r 2)" =0.0236
"+ ~

I (p~Ir e+) a+y

(4.18)

(4.19)

These results are in fact valid for any grand unified
theory, for which the leading AB =1 interactions are
mediated by a gauge-boson exchange. Equation (4.18) was
already obtained in Ref. 10 based on W(I)

=' (3.5) and it
remains valid in the more general case (3.8) that we are
considering. This ratio is sensitive to the SU(3)-
symmetry-breaking parameter b2 which we set equal to
zero and, as already noted, a further analysis is needed to
estimate the value of b2 which will give a more reliable
result for the ratio in (4.18). As for (4.19), we observe that
the relative importance of m e+ and p e+ modes is solely
determined by the value of y/o, . While this ratio can be
estimated by considering a constituent picture of hadrons,
as will be done in the next section, at the level of effective
Lagrangian (3.8), it is completely arbitrary. Thus, y/a
parametrizes a genuine ambiguity in the problem of pro-
ton decay, which is we11 reAected in the literature since
various approaches lead to totally different results for the

a3(M~) = =0.507,
4m.

71n(M~ )/AMS )

e5 ——a|-UT ——0.0242 .

(4.20)

A, =3.36, r =2.11, M~=2. 1X10' GeV . (4.21)

As noted earlier, the results for the total decay rate de-
pend sensitively on Mz which in turn depends crucially
011 tl1c QCD pal'a111ctc1 AMS. To display this scIlsltlv1ty
explicitly so that our results can be reevaluated easily if
warranted in the future, we shall write the multiplicative
factor I o (4.6) in the form

14 4

P =(3.85 1026 )
I 2. 1X10 GeV

M~
(4.22)

With (4.21) and (4.22), the two-body decay modes are
functions of two arbitrary parameters o. and y. Within
the strict framework of chiral symmetry and the
phenomenological Lagrangian, o. and y are arbitrary pa-
rameters. Some experimental information is necessary to
determine them. While in the next section, we shall derive
expressions for them in terms of the quark- and bag-
model parameters, we shall close this section by giving re-
sults in Tables I and II, for the various branching ratios in
three different cases: (i) @=0. This case corresponds to
the one treated in Ref. 10, but including the vector mesons
in the strong-interaction Lagrangian. (ii) a=0. This is an
extreme case which includes both pseudoscalar and vector

relative importance of ~ e+ and p e+ modes.
To proceed further, we shall use, for the various cou-

pling constants appearing in (4.6), (4.8), and (4.9), typical
values from Marciano, namely,

M~ ——83.0 GeV, AMs
——Q. 16 GeV

aI(M~) =0.0166, a1(MII ) =0.0365,

TABLE I. Proton decay rate in minimal SU{5).

Decay rates
(in units of I ok )

Two-body branching ratios
6=0 a ~/'=0

I (@~woe+)=(6.62)(a+@)
I (p —+m+v, ) =(0.367)I (p —+m e+)
I (p —+ye+) =(0.0072)I (p —+w e+)
I"(p —+K p+) =(0.7)(1.24a+1.3$)
I (p ~K+v„)= (0.065)(0.89a+ 1.08$)
I (p ~poe +

) = (0. 157)(a+2/ )

I (p p+V )=(0 367)(p poe+)
I (p ~e+) (1 9)I (p p e+)
I {p~E*+vz)=4.7X 10

61.7
22.6
0.4

10
0.5
1.5
0.5
2.8

-0

53.3
19.6
04
9.5
0.6
5.1

1.9
9.6
0

0
0
0
0.5
0.5

30.3
11.1
57.6
-0
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TABLE II. Neutron decay rates in minimal SU(5).

Decay rates
(in units of I OA, )

Two-body branching ratios
cz =0 a+(=0

I (n~m e+)=2I (p~m e+)
I (n —+m v, )=(0.183)I (p ~m e+ )

I (n qv, )=(0.183)I (p ye+ )

1(n K v„)=0.26(0.85a+0.83$)
F(n —+p e+)=21 (p —+p e+)
I (n p v, )=(0.183)I (p p e+)
r(n ~v, )=(0.349)I (p p e+)
1 (n ~IC+ v„)=(0.0016)(1.63a+4P)

87.8
8.1

0.1

1.3
2.1

0.2
0.4

-0

81.4
7.5
0.1

1.1
7.7
0.7
1.3
0.2

0
0
0

-0
77.2
7.1

13.5
2.2

mesons in baryon-number-violating interactions in the
chiral framework. (iii) a+y=0. The examination of this
case is prompted by the recent results of the IMB experi-
ment which does not see the p —+~ e+ mode.

V. COMPARISON WITH OTHER APPROACHES

My
By ——4 a+ yM~

Mg
Bp ——4 a+ yM~

(5.6)

(5.7)

In this section, we have obtained the nucleon two-body
decay rates as a function of the parameters a and y of the
chiral Lagrangian (3.8). In the spirit of an effective La-
grangian approach, such parameters are to be determined
from experimental data. In the absence of such a deter-
mination, we shall make use of the chiral Lagrangian to
correlate various other approaches. To this end, we fol-
low a method suggested by Donoghue and Golowich
and consider, for the case of minimal SU(5), the following
quantities:

& e+(p)
~
HoUT(0)

~
proton(p))

We note that in the limit of flavor-SU(3) symmetry, 8x
and B& equal B&. Thus the introduction of the Lagrang-
ian W~z~

=' (3.7), which was needed to account for the
three-body vector-meson —baryon —lepton vertices, has
also provided a splitting of these form factors from one
another in terms proportional to y, due to SU(3)-
symmetry breaking.

Given a constituent model computation of B~, Bz, and
8~, the strategy would then be to solve Eqs. (5.5)—(5.7)
for cx and y. Since we have three equations for o; and y,
the form factors B&, B~, and BA ought to satisfy the fol-
lowing consistency condition:

G„
&p U, (p)(3y5+1) &p(p), (5.1)

Bg —Bp Mg —M~

Bp —Bp MA —M~
(5.8)

&V+(p)
I
HoUT(0)

I
&+(p) ) = — 28x U'p(p)y5Ux(p)

2
(5.2)

&-„(p)
~
~,(0)

~

~'(p) )
G„8p

(p)(1 —y5) UA(p), (5.3)
2 6

where

2
Gu g cxUT

8M~
(5.4)

8~ =4(a+y), (5.5)

The form factors 8~, 8x, and 8~ thus introduced, can
be calculated from a constituent-quark picture for
baryons, when HAUT is expressed in terms of quark and
lepton fields. Donoghue and Golowich suggest that vari-
ous approaches to the problem of proton decay may be
compared with each other at the level of these form fac-
tors. Since the above amplitudes do not involve any
final-state mesons, such a comparison has the advantage
of being free from the ambiguities associated with intro-
ducing explicit quark wave functions for rnesons.

We have calculated these form factors using the chiral
Lagrangian (3.8) and our results are

We expect that, an evaluation of 8z, 8x, and 8A which
takes flavor-SU(3) breaking into account will lead to the
values of these form factors which will be consistent with
(5.8).

From the bag-model analysis of Donoghue and
Golowich, we have

B& ——0.0127 GeV, B~ ——0.014 GeV

Bg ——0.0137 GeV
(5.9)

These values are consistent with (5.8) and from Eqs. (5.5)
and (5.6) we obtain

&x=0.0019 GeV, y =0.001 27 GeV

From the ratio

~=0.67,

(5.10)

(5.11)

we have evaluated the two-body branching ratios of the
nucleon and our results are presented in Table III. Thus,
with the above determination of y/o. ', the dominant decay
mode of the proton is the m e+ channel. Among the vari-
ous estimations that appeared in the literature for the
two-body branching ratios of the nucleon, our results are
closer to those of Tomozawa. We feel that it will be in-
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TABLE III. Branching ratios for proton and neutron corre-
sponding to y/a=0. 67.

Channel

Proton
Branching

ratio

Neutron
Branching

ratioChannel

p~K e

p ~7T Ve

p ~'Qe
p ~K'p+
p ~K+v„
p —+p e

p p+v,
p —+~e+
p~K v~

58.7
21.5
0.4

10
0.5
2.7
1

5.2
-0

n~n- e+
n ~'r ve

+ g&e
n~K vp

n~p e+
n ~p'v,
n ~ct)ve
n ~X*'v„

85.6
7.9
0.1

1.2

0.4
0.7
0.1

structive to carry out in the future the analysis that has
been described in this section, for the case of the nonrela-
tivistic quark model and to obtain an independent deter-
mination of the ratio in (5.11). Since the branching ratios
depend only on y/a, this will constitute a check on our
results in Table III.

For the remainder of this section, we shall discuss the
decay width for the m e+ channel in various models.
From (5.5) and substituting minimal SU(5) values (4.21)
for A, and r into (4.10), we have

o + 0.82X10 yr
v p~m. e+ =

2

Mx

2. 1)& 10' GeV

(5.12)

3/2

31/4 3 (5.13)

where a& is the Gaussian parameter for the baryons. For
a& ——0.32 GeV, which is the value used by Isgur and
Wise, 8& ——21.9)& 10 GeV . As emphasized in Ref.
16, a more appropriate value a~ may be the one that
correctly reproduces the charge radius of the proton. In

where 8& is in GeV . For the bag-model calculation of
Donoghue and Golowich, Bz is given by (5.9). For the
nonrelativistic quark model with harmonic-oscillator po-
tential, we have calculated Bz, taking the static limit
of Dirac spinors throughout the calculation (a computa-
tion that is implicit in the work of Isgur and Wise' ), and
we find

our normalization, this corresponds to a~ ——0.2 GeV and
B~ =5.4X10 (GeV) . Table IV summarizes the corre-
sponding values of r(p~~ e+) for these various choices
of Bz and for three different values of M&. The values
for M„, 1.3&10', 2. 1&&10', and 3.5&10'" GeV corre-
spond to AMs ——0.10, 0.16, and 0.26 GeV, respectively. It
is also worth noting again that we have calculated the de-
cay amplitudes by using the tree diagrams of the effective
Lagrangian, and in so doing, we have implicitly neglected
the possible momentum dependence of the effective ver-
tices. This procedure is justified if the momentum carried
by the relevant meson is small, which is typically the case
for the problem of proton decay except for the pionic
modes. These off-shell effects could be estimated within
the present framework using chiral perturbation theory
which we have not done so far. Isgur and Wise, ' howev-
er, have evaluated such form factors in nonrelativistic
quark models, and from their work we can infer that the
off-shell effects will increase the lifetimes into piomc
modes by a factor of about 1.5.

As expected, the major uncertainty comes from the
value of Mx. If Mx can be as high as 3.5&&10' GeV,
corresponding to AMs

——0.26 GeV, then, at least for the
nonrelativistic quark model with az ——0.2 GeV, the pro-
ton lifetime into n e+ channel becomes compatible with
the experimental lower bound of 2 X 10 ' yr.

VI. CONCLUDING REMARKS

Baryon-number- and lepton-number-violating processes
in the low-energy region are perhaps the most dramatic
consequences of grand unified theories. Their terrestrial
observation would certainly confirm the correctness of the
basic ideas of grand unification. Hence, prompted by the
desire to have predictions amenable to immediate experi-
mental scrutiny, one has proceeded to calculate by making
perhaps too many simplifying assumptions. In this paper
we have attempted to show that this is the situation in the
case of proton decay.

There are at the onset the well-known difficulties in-
herent in the grand unification schemes: The choice of
the grand unification group 6, the symmetry-breaking
pattern, the appearance of arbitrary parameters if the
symmetry breaking involves more than one stage, the
choice of Higgs representation, and Higgs potential, and
so on. These difficulties aside, given the extrapolated, re-
normalized b,B&0 interaction Lagrangian in terms of
quark and lepton fields, the evaluation of the low-energy

TABLE IV. Estimates of ~(p~m e ) for various values of B~ and I„.The off-shell effects in vertices mentioned in the text in-
crease the liftetimes in the last three columns approximately by 1.5.

Constituent model

used for 8~

Nonrelativistic quark model
(ag ——0.32 GeV)
Bag model
(Donoghue and Golowich)
Nonrelativistic quark model

=0.2 Gev)

Bp
(GeV')

0.0219

0.0127

0.0054

A -=0.1 GeV
M =1.3X10'" GeV

2.5X10"

7 5X10"

4.1X 10

~(p~m e+) (yr)

AMs ——0. 16 GeV
Mx ——2. 1 X 10' GeV

1.7 X 1029

S.1X10"

2.8 X 10"

AMs=0. 26 GeV
Mx=3 SX10' GeV

1.3 X 10"

3.9X10"

2.2X 10"
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matrix elements of this interaction Lagrangian responsible
for proton decay is not unique. Although the overall total
lifetime is mainly governed by the grand unification mass
scale Mz, the various observable branching ratios are
sensitively dependent upon the method of evaluation of
the low-energy matrix elements.

In this paper, we have chosen to emphasize a
phenomenological approach based on broken chiral sym-
metry. Such approaches in the past have provided reason-
ably successful descriptions of several aspects of low-
energy strong-interaction physics and currently phe-
nomenological or effective Lagrangians incorporating ap-
propriate symmetries are proving to be valuable in bridg-
ing the gap between fundamental Lagrangian in terms of
confined quark fields (such as QCD Lagrangian) and a
calculable Lagrangian in terms of observable hadronic
fields. Until we have better, quantitatively rigorous
methods to deal with confinement (or for that matter
bound states with ordinary or nonconfined constituents),
effective Lagrangians with a few phenomenological pa-
rameters are best suited to correlate experimental data. In
the case of proton decay, alternate methods based on
quark and bag models are too sensitive to the details that
go into the calculations. We do not intend here to venture
into a detailed discussion of the implicit assumptions, the
uncertanties, and to the extent to which they have provid-
ed quantitative descriptions of the phenomena. The fact
that these models applied to proton decay give results
differing by orders of magnitude should be sufficient to
conclude that they are at best qualitatively successful and
not quantitatively.

On the other hand, phenomenological approaches suffer
from the appearance of arbitrary parameters the deter-
mination of which requires experimental information.
Our extension of the work in Ref. 10 to include the vector
and axial-vector mesons introduces an additional parame-
ter, so that even in minimal SU(5) with all the customary
simplifying assumptions, one is not able to make definite
predictions concerning the branching ratios of the various
two-body decay modes. It is somewhat disappointing that
unless some proton decay mode and its branching ratio is
observed with reasonable accuracy, one really cannot ar-
rive at any definite conclusion.

Nonetheless it is useful to have general results with a
few parameters as in our case. The results provided in the
Appendix are applicable to any grand unified theory in-
cluding both Higgs and gauge boson exchanges. They
also contain SU(3)-symmetry-breaking effects in terms of
the parameters b~ and b2 which, in principle, can be cal-
culated by appealing to information on low-energy
scattering lengths in meson-baryon scattering. Further-
more, the effective Lagrangian contains information
about uncorrelated multileptonic decays (p ~m m e+,

m+n e+, for instance). These and other refinements need
further investigation.

APPENDIX: GENERAL EXPRESSIONS
FOR TWO-BODY DECAY RATES

In this appendix, we present the two-body decay rates
for an arbitrary grand unified theory for which the lead-
ing baryon-number-violating interactions are described by
an effective four-fermion Lagrangian as in (3.4). We
denote the lepton mass by p and the (pseudoscalar or vec-
tor) meson by m. The index d denotes the lepton genera-
tion. In the evaluation of the pole diagrams, we encounter
the following expressions:

MN —P m
Si(p) = (D+F)+4bi

MN +P N+P

MN —P him —2b2m,
S,(p) = (3F D)+4-

MN +P MN +P
MN —P m+m,

S3(p) = (D F)+2b2-
M~+p My +p

MN m+m,
Sg —— (D+3F)+2(2bi b2)—

M~ MA

(Al)

(A3)

(A4)

where m and m, denote the quark masses, and the
strong-interaction constants D, I', b&, and b2 are defined
in Sec. II. The expressions for co modes as well as AS =0
decay modes of the neutron are not explicitly given due to
symmetry relations (3.9), (3.10), and (3.15).

The following expressions are useful for the kinematics
of the problem:

A, i(p, m) = 1+
MN

2
m

MN

'2

(A5)

A2(p, m) =A, i(p, m)+—4 lql'
3 m

(A6)

The center-of-mass momentum of the decay particles,

! q l, is given by

8'(M~, p, m )
(A7)

N

where

W(a, b,c)=[a +b +c 2(ah+ac+bc)]—'i . (Ag)
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The decay rates are given by

1. Nucleon~pseudoscalar meson + eq+

(A9)

8(pg, cd, cd,cd, cd )=A( —pd, —cd, —cd, —cd, —cd ) .(&) (3) -(1) -(3) (&) (3) -(j) -(3} (A10)
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(a) p~n. ed .

A = — [(a+y)(cd"+cd ')+(p+5)(cd '+cd"')][1+S)(pd)] .
2 2

(b) p —+ged+:

I(a+y)(cd +cd )[1 s2(Pd)] (P+5)(cd +cd )[3+s2(Pd)]I
2v6

(c) p~K ed+..

(Al 1)

(A12)

A= ,'[(a+—y)(cd"+cd") (P+—5)(cd"+cd')]+ —,
' a+ y (c„'"+cd")+ p+ 5 (cd"+cd') S3(I4d) .

M~ B

(A13)

The decay rates are given by

2. Nucleon~pseudosealar meson +Vq

I =2I() 2 IA IM&2

(a) p ~n +Vd ..

A =[(a+y)cd"+(P+»cd"][I+s)(0)] .

(b) p~K+vd.
r

A = —[(a+y)c d '+(p+5)c d ']+— a+ y c d" + p+ 5 c d
' S3(0)

2 M~ M~
r

+— a+ y (cd" 2cd—')+ p+ 5 (cd' —2cd') S4.
6 M~ M~

(C) n ~7/vd. .

A = [(a+ y)cd"(S2(0) —1)+(p+5)cd '(S2(0)+3)] .
6

(d) n~K vd.

(A14)

(A15)

(A16)

(A17)

A = [(a+—y)(c d"+c d")+(p+5)(c d(') c,"')]———
2

r

a+ 'y c,'"+ p+ '5 c„"' S,(0)
M~ M~

+ — a+ y (c„''—2c„'')+ p+ 5 (c' ' —2c' ') S
6 M~ M~

(A18)

3. Nucleon —+vector meso~ +gz+

The decay rates are given by2'
I 0 [~2(P m)

I
A

I
+~2{ )(4 m

M)v Z M)v

B(Pd&cd, cd,cd, cd )=A( Pd, —Cd, —Cd, ——Cd, —Cd ) .(&) (3) -(].) -(3) (&) (3) -(&) -(3)

(A19)

(A20)

In the expression for I, V'2g is the p-m-m coupling constant (2.6) and Z is the relevant renormalization constant (2.27).
(a) p~p'ed+:

y(cd" +cd")+5(cd"+cd")+[(a+y )(cd"+cd")+(P+5)(cd"+cd ')]
2 2 )@+ad

(b) p~K* ed+. From phase space, the final lepton can only be an electron and d = 1. We have
r

r
(
—(1)+—(2))+5(—(3)+—(4))+ ~+ & ~ (-(1)+-(2))+ p+ &

5 (-(3)+-(4))

(A21)

(A22)
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4. Nucleon~vector meson +Vd

The decay rates are given by
'2

(q~' 1 M~' 1 gf
2 m Z M~

(R) P~P Vd.'

2 =(&+2y)cd" +(p+25)cd ' .

(b) p~K'+V:

(A23)

(A24)

2 = —[Yc d"+5c „' ']+—
2

(c (&) 2-(5))+ & p+g (-(3) 2-(6))
Mp Mg

1

2

(C) n ~K' Vd

&+y Cd + P+5 Cd
X X

(A25)

(y~(c (&i c (&)+g(c (3) -(6)))+
2

&+y (c d"—2c d ')+ p+5 (c d
' —2c d

'

Mg Mg

+ 1

2
a+y cd + p+5 cd

X X
(A26)
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