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A coupled-channels model for antinucleon-nucleon (NN) scattering is presented. The NN chan-
nels are coupled to effective two-particle annihilation channels. The neutron-proton mass difference
and the Coulomb interaction are taken exactly into account. This model gives a detailed fit to a set
of 977 NN scattering data up to Ti,b ——482 MeV, with an overall g /data=1. 39. The potentials are
found to be long-ranged. A discussion of several experimental data sets and of the inAuence of the
Coulomb interaction is given.

INTRODUCTION

When the low-energy antiproton ring (LEAR) at
CERN comes into operation, the antinucleon-nucleon
(NN) system will be the subject of an extensive experi-
mental investigation. Meanwhile, at the end of this
"pre-I.EAR" era, one concludes that our knowledge of the
XX system is very incomplete. On the experimental side,
a large set of data points ' is available. However, these
are often of limited accuracy and sometimes not con-
sistent with each other. Measurements of observables
such as polarizations, spin correlations, etc. , are (almost)
completely absent. On the theoretical side, several rather
phenomenological models exist' which give a fair
description of the available scattering data. Notably lack-
ing here is a coupled-channels model of XN scattering.
We will present a phenomenological coupled-channe1s
model which gives a rather good description of the
currently available low-energy XN scattering data up to
Tlab =482 MeV.

In order to get a feeling for the complexity of the NN
system we compare it for a moment with the rather well-
known XX system. In a single-energy proton-proton
phase-shift analysis one needs for each total angular
momentum J, on the average, 2.5 real parameters (phase
shifts 5q and coupling parameters eJ). In np scattering
one needs 5 real parameters for each J&0 and 2 for J=O.
To keep an np phase-shift analysis feasible, one fixes in
practice almost all the isospin I=1 parameters from the
pp scattering data. However, in NN scattering (experi-
mentally mainly pp, i.e., I=O and I= 1) there is no gen-
eralized Pauli principle which excludes in XX for each
isospin certain partial waves. Moreover, the phase shifts
become complex due to the presence of the strong annihi-
lation. These two features each double the number of re-
quired parameters. In XX scattering, 20 real parameters
are necessary for each J&0 and 5 for J=0.

Another feature is that the potentials are much stronger
in NN than in 1VÃ. Therefore, more partial waves are
contributing significantly to the cross sections at low ener-
gies. For example, at T&,b

——50 MeV the percentage of the
total cross section due to the s, p, and d waves in np
scattering is 87, 7 and 6%, respectively, while in pp

scattering it is 50, 41, and 9%%uo, respectively. These total
cross sections are 164 and 235 mb for np and pp scatter-
ing, respectively.

The starting point of most theoretical descriptions of
NN scattering is a certain form of meson-theoretical NN
potential, which is 6-parity transformed to an NN poten-
tial. This 6-parity transformation reverses the signs of
the potential contribution of the odd-G-parity meson ex-
changes. In the XX potentials large cancellations occur
between the contributions of different mesons, e.g., be-
tween the repulsive co-meson contribution and the attrac-
tive e-meson contribution. In the XX potentials these
cancellations no longer occur and these potentials are, in
general, very attractive. This has led to speculations
about possible XX bound states and to experiments
designed to look for states below the pp threshold. '

The second ingredient in NN models is some kind of
annihilation mechanism. The annihilation cross section is
large (o.,„lo,~&2). The NN channels are coupled to very
many different annihilation channels, most of them mul-
tiparticle. The essential characteristic of the NN interac-
tion is that it is a many-coupled-channels problem.

Several different approaches for describing the annihi-
lation exist: One may apply a suitable boundary condi-
tion, ' ' use an optical potential, ' or do an actual
coupled-channel calculation. A fine example of a
boundary-condition model can be found in Ref. 17. This
simple model gives, even without including any XN po-
tential, a fair description of the total cross section ur and
of the elastic angular distribution do,~/dQ in the forward
hemisphere.

If the full coupled-channel problem is understood, one
can, in principle, derive an optical potential. ' However,
due to our limited knowledge large simplifications have to
be made. In practice, the optical potential is introduced
purely "ad hoc" or "derived" from some simplified an-
nihilation mechanism like nucleon-exchange. ' ' A suc-
cessful optical model was given by Bryan and Phillips. '

They added to the 6-parity-transformed Bryan-Scott NN
potential, a very strong imaginary potential. With only
two parameters a reasonable description of the scattering
data was obtained. The range R,~f to which their ima-
ginary potential is effective, is of the order of 1 fm. One
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of the more recent optical models is that of Cote et al. ,
2

who use a G-parity-transformed Paris potential, modified
in the inner region by a real potential and supplemented
by a short-range imaginary potential (R ff &0.7 fm). In
this model about 20 free parameters are used and a de-
tailed fit to the low-energy data is obtained
(X /data=2. 80). The third way to describe annihilation is
to use some kind of coupled-channels model. Because
multiparticle annihilation channels may, in principle, be
replaced by a weighted set of two-particle channels, we
will couple the NN channels only to "effective" two-
particle annihilation channels. Ultimately one would ex-
pect a coupled-channels description of the IVX system to
be closest to reality. From the coupled-channels equations
an optical potential can be derived ' which describes the
1VK sector. This optical potential is generally nonlocal
and, in a very specific way, energy- and L-dependent.
However, the coupled-channels method provides more in-
formation than the optical potential. For example, one
can calculate the annihilation cross section for scattering
to a specific decay channel. So the inverse process is im-
possible: one cannot uniquely deduce from an optical po-
tential the coupled-channels equations. Moreover, the re-
quired analytic properties and unitarity of the 5 matrix
are automatically guaranteed in a coupled-channels
scheme. One has to realize that the problem is far too
complicated to take rigorously into account all coupled
channels and it remains uncertain whether or not a "trun-
cated" coupled-channels approach is good enough as an
approximation. This also applies to the model presented
here. However, we show that already two effective decay
channels can give a good description of NX scattering.

THE MODEL

We will use separate pp and nn channels. In this way
we can take the Coulomb interaction and the np mass
difference exactly into account.

As diagonal potential in these XX channels we use the
G-parity-transformed Nijmegen-model-D potential, to
which we added a phenomenological shorter-range poten-
tial. This Nijmegen-model-D potential is a hard-core
baryon-baryon potential, which gives a good fit to the
nucleon-nucleon as well as the hyperon-nucleon data. Be-
cause of this hard core we must modify the model-D po-
tential in the inner region. We decided to apply a linear
cutoff to the model-D NN potential, such that

V„„,(r)=—VD(r, ) for 0&r &r,
lc

=VD(r) for r, &r .

Here VD is the 6-parity-transformed Nijmegen-model-D
potential and r, is a cutoff radius of the order of the dif-
ferent hard-core radii used in the BB potentials. Our
choice was r, =0.63 fm. The exchanged mesons with
their respective G parity are m. ( —), g (+), g' (+),
p(+), ~(—), P( —), e(+).

Next to this model-D potential V„„, we introduce a
phenomenological potential of the form

Vph( ) VC+ Vss~ 1 ~2+ VT 12m

with

+ VsoL. S Vws(r)
e 7 d~

J

1
Vws(r) =

1+exp(m, r)

(2)

(3)

V~' '(r)= V(i,I) 1+exp(m, r)
(4)

In order to minimize the number of parameters we use the
same parameters V(i,I) for all NN partial waves (L,S,J)
and the same range parameter m, for all annihilation po-

As in the case of the linear cutoff applied to VD (1), here
too the choice for the tensor potential was motivated by
the requirement that the tensor potential should be zero at
the origin.

We have introduced in V~h for each isospin four pa-
rameters Vc, Vss, Vz, and Vso, which are fitted to the
data. The Woods-Saxon form Vws(r) for the phenomeno-
logical potential turned out to be preferred above rapidly
falling potentials. The range is determined by the mass
m„which we choose the same for isospin I=O and I=1.
The diagonal %X potential is thus parametrized by nine
real parameters.

The XX system is coupled to effective two-particle an-
nihilation channels. The effective particles in the annihi-
lation channel (i,I) are taken to have equal mass M; and
spin zero. The orbital angular momentum l in these ef-
fective two-particle channels we take therefore to be l =J.
For reasons of simplicity we do not assume any interac-
tion between these effective particles in the annihilation
channels. For each isospin I only two of these effective
annihilation channels are introduced, so i =1 and 2. The
threshold values of these two channels are not very criti-
cal, as long as one is low and the other high, but still
below the pp threshold. We have chosen these thresholds
at Ep' ——2MI ——1700 MeV and Ez-' ——2M2 ——420 MeV
( —3m ). It would, physically, not be reasonable if only
very specific values of Ez-" and Ez-' would allow a fit to
the data, since the two annihilation channels have to
represent in some average way the very many channels
that are actually present. More channels can be included,
but while introducing more free parameters, they give no
essential improvement of the fit.

The spin-singlet and spin-triplet SN channels with
L =J are each coupled to four annihilation channels (i,I).
For these L =J waves this leads to a 6-coupled-channels
problem. These channels are pp, nn, and (i,I) with i = 1,2
and I=0,1. The spin-triplet XX channels with L =J+1
are for each L coupled to four effective annihilation chan-
nels. This gives then a 12-coupled-channels system with
the channels pp (L =J—1), pp (L =J+ 1), nn
(L =J—1), nn (L =J+ 1), and (i,I L) with i=1,2,
I=0,1, and L =J+1.

The off-diagonal annihilation potential, which couples
the NN channels with the effective annihilation channels,
is parametrized as
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tentials. The total annihilation potential is thus
parametrized by only 5 parameters: m, and V(i,I). The
total number of parameters used in the fit is thus 14.

We calculate the scattering parameters by solving the
relativistic coupled-channels Schrodinger equation

do, )
j mblsr]

30

(4+p —2m V)/=0 . (5)
0.8—

The diagonal matrix p represents the center-of-mass rela-
tive momentum and has matrix elements 06—

20

2 S 2
Zij — —~i &iJ4 (6)

10

where Ms is the total c.m. energy. The diagonal reduced
mass matrix m has matrix elements

1
m,q —,M)5;J .

0.2

The potential matrix V has the form

~NN
V=

Vg 0
(8)

-0.5 0.0 0.5 1.0
cos e c.m.

FIG. 1. pp elastic differential cross section at T~,b ——335
MeV. Experimental points from Ref. 7 (95 points). Solid curve:
model fit (g /data=0. 95).

where V&& ——Vnue+ Vph+ Vcoul The Coulomb potential

Vcoui = 2pg'/Mp —r

has g'=a/ui, b, where ui,b is the relative velocity in the
laboratory system. ' This accounts for the main part of
the relativistic correction to the ordinary Coulomb poten-
tial.

RESULTS

The parameters were adjusted to fit the pp integrated
total and charge-exchange cross sections [crr ——cr(pp
—+any) and crcE ——cr(pp~nn)] as well as the pp differen-
tial elastic and charge-exchange cross sections (dcr, i/dQ
and dcrcE/dQ). The pp integrated elastic cross sections
o,~ were not included in the fit since these are redundant
when do, i/dQ is given. The values of the 14 parameters
are given in Table I.

The bulk of the experimental data included in the fit
consist of differential elastic cross sections (846 points),
covering the energy range 20 & T~» & 426 MeV or momen-
tum range 195 &pi,b &990 MeV/c. "' ' This set of data is
fitted by our model with X /data=1. 31. An example of
the quality of this fit is shown in Fig. 1. These measure-
ments of dcr, i/dQ, together with some other groups are
discussed in more detail in the next section. We would
like to mention here explicitly one subset of the elastic
cross section. This is the backward elastic cross section
d o,i/d Q measured at cos8, = —0.994 by Alston-

do, (
[ rnb /sr]

0.6

I t)i

~&7[

/.
i. I

~r

I

Icos e = -0.994)

Garnjost et al. They measured at 30 momenta in the
range 406&pi, b &922 MeV/c. This set is fitted with
X /data=0. 98. This fit is shown in Fig. 2.

The total cross sections o.z. were taken from Hamilton
et al. ' They covered the energy range 65& T~,b&482
MeV or 355 &pi, b & 1066 MeV/c. In our fit we included
only the data up to 426 MeV. These cross sections are
corrected for the pure Coulomb and the Coulomb-nuclear
interference contributions. The whole set (including the
data with Ti,b & 426 MeV) has, with respect to our model,
7 /data= 1.21. However, some care should be taken with
this P . We could not take the systematic errors (which
are larger than the statistical errors) exactly into account,
since their origin and momentum dependence were not

Vss Vz. Vso V(1,I) V(2, I)
I=O —6799 608.9 —992.2 8824 —2021 —5294
I= 1 —468.5 —433.7 131.1 10468 —1049 —5193

TABLE I. Potential parameters. The 12 potential strengths
are given in MeV and the masses in MeV/c . V(1,I) refers to
the channels with threshold E~"——1700 MeV. rn, =682.53,
m =425.90.
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FICz. 2. pp backward elastic cross section vs p~,b. Experi-
mental points from Ref. 9. Solid curve: model fit.
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TABLE II. Experiments on do,~/dQ.

Group Ref. Range T~,b {MeV) Points g2/data

20—70
63—175

230
226—426

369

118
329

21
374

19

2.48
1.05
0.89
1.2a
5.60

Group 1 is made up of 118 data points measured by
Spencer and Edwards at six energies (20, 30, 40, 50, 60,
and 70 MeV). For this group we used a 4%%uo normaliza-
tion error. This set of data was fitted with X /data=2. 48.
In general, our fit to this group tends to be somewhat flat
compared to experiment. This effect is strongest at the
lowest energy. The points at 20 MeV have X /data=4. 93.
Inspection of the S-matrix elements seems to indicate that
the waves with I & 0 are too weak at these energies. Also,
at 60 MeV, a comparably high P is found:
X /data =2.74. Here the backward points contribute
most. However, these data are quite far (-3o) off from
those of the second group.

Group 2 consists of 329 data points measured by Con-
forto et a/. in the energy range 62.7 & T~,b (175 MeV. A
normalization error of 4%%uo was assumed for these data
too. A problem with these data is that for small values of
the cross section the authors quote as the error on
do,~/dQ the value of this cross section. This even leads
to the extreme case der, ~/dQ=O. O+0.0. The simplest way
to deal with these points would be to leave them out alto-
gether. However, we did take them into account after re-
placing the errors of these points by the more reasonable
errors quoted for neighboring points. In this way 50 out
of 329 data points are corrected. Another difficulty, in
the cases where only a small number of events is counted,
is that the use of a Gaussian probability distribution is not
quite appropriate. However, for the sake of simplicity we
stick to it in the determination of X . We obtain for this
set X /data=1. 05. In determining this X, two points at
99.8 MeV were removed (at cose = —0.075 and
cos8=0.175). These two isolated points have a high X,
while their surrounding points have typically 7 &1.0.
We only rejected points if the total set of points where
they stem from is fitted with X /d =,1 if the points are
isolated, and if their individual X contribution is at least
12. The latter criterion is modeled after Chauvenet's cri-
terion, that the total probability of occurrence of all devia-
tions equally large or larger does not exceed 1/2n, where
n =977 is the total number of points included in the fit.

Group 3 consists of 21 data points measured by Kohno
et al. at T~,b ——230 MeV. This set has 7 /data=0. 89. In
our fitting procedure we did not include this group, be-
cause the better quality data from group 4 were available
at this energy.

Group 4 consists of accurate data by Eisenhandler
et al. In our fit we included the data at T~,b ——226, 288,
335, and 426 MeV. In this set, too, a few points are found
which were rejected on the critera stated above (one point
at 226 MeV, cos8=0.37 and two points at 426 MeV with
cose = —0.69 and 0.25, respectively). Our fit to the

remaining 371 data points yields P /data=1. 20.
Well within the extremes of energy of group 4 is an old-

er set of der, ~/dQ data at Ti,b
——369 MeV (group 5). This

older group gives a high g /data=5. 60. We conclude
that this group is in conflict with group 4 and we there-
fore omitted this group from our data set.

Data on dcrcE/dQ are scarce. The experiment by
Bizarri et al. ' at T~,b ——93 and 149 MeV is fitted with
X /data=1. 75. The experiment from Kohno et al. ' at
Ti,b

——230 MeV has somewhat better statistics. Our fit
here has X /data=0. 70.

Our model gives on the 43 data points of Hamilton
et al. ' on err a X /data=1. 21. A measurement of oz
was also done by Chaloupka et al. " This set of 18 data
points with energies between 49 and 150 MeV has, with
respect to our model, 7 /data=8. 23. This group, howev-
er, shows a resonant structure around 125 MeV which is
clearly not present in our model. Besides, at the low-
energy side these data also deviate about 2o from those of
Hamilton et al.

DISCUSSION

A characteristic of this coupled-channel model for NN
scattering is that the potentials have a long "range. " We
determined this range by making the annihilation poten-
tial V~ zero outside a certain radius. For example, when
we set Vz(r)=0 for r ) 1.0, 1.5, and 2.0 fm we find at
p&,b ——600 MeV/c a total cross section of oz ——142.9,
146.3, and 159.3 mb, respectively, whereas the complete
potential gives o z ——152.7 mb. The "effective range" R,ff,
i.e., the value of the radius r outside which the potential
Vz will change the cross sections by about 5—10 /o, is in
the order of 1.5 fm for the annihilation potential. The
same range is found for V~h. This potential seems to
represent more than only the inner part of the nuclear po-
tential V„„,. This long range is contrary to the findings
of Ref. 22. We feel that the data also indicate a long
range of the interaction. This can be seen, e.g., in the for-
ward peak of the differential cross sections (which are fit-
ted very well in our model). The peak can be
parametrized with a one-pole term: der/dt cc(t+p )
The higher the mass p, the broader the peak will be. Typ-
ically, one estimates p, =270 MeV/c . From the low-t
behavior of the annihilation potential in our model one
obtains

p, ~ ——(426/~2) MeV/c =301 MeV/c

One would then expect that models which have a larger
mass determining the annihilation will show a forward
differential cross section which is too flat. Accurate mea-
surements of these forward cross sections might then give
a tool to discriminate between various models.

The contributions of the partial waves to oz., o',~, and
o.cE at five momenta are given in Table III. Note the
dominant contribution to o.z and cr,~ of the NN triplet-
coupled waves. We define here o,t as the elastic cross sec-
tion for pp scattering, without the pure Coulomb contri-
bution and with the Coulomb-nuclear interference term
integrated up to cos0=0.975. The total cross section o~
is taken to be the "nuclear" contribution to o.z, i.e., no
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TABLE III. Partial-wave cross sections. crz' is the annihilation cross section to the channels with
threshold E~"——1700 MeV.

p~,b (MeV/c)

so
3S +3D

Po
1p
3p

'p2+'F2
'D
3D

'D3+'6,
1F
F3
Fg+ H4
1g
3g
3g +3/
rest

7.33
91.31
0.79
0.09
1.85
6.44
0.04
0.10
0.02
0.01
0.00
0.00
0.00
0.00
0.00
0.00

5.60
43.13
0.63
1.65
4.76

17.84
0.35
0.40
1.61
0.06
0.05
0.06
0.01
0.02
0.01
0.00

3.60
19.79
1.45
3.52
5.10

16.81
1.02
1.26
6.20
0.19
0.07
0.51
0.04
0.03
0.05
0.04

2.28
9.72
1.68
3.96
4.40

12.15
1.57
1.85
8.01
0.45
0.31
1.65
0.09
0.02
0.20
0.10

1000

1.54
5.77
1.56
3.51
3.44
8.35
1.72
1.89
7.23
0.71
0.69
3.17
0.18
0.07
0.82
0.23

o.,) (xnb) 76.18 59.70 48.45

'so
'Sr+'Dr

1p
3p
3P +3F
'D
Dp
D3+ G3
'F
F3
F4+ H4
1g
3g
3g +3/
rest

4.99
4.18
4.19
0.82
4.38
0.84
0.11
0.30
0.03
0.01
0.02
0.00
0.00
0.00
0.00
0.00

1.27
2.84
2.59
0.19
3.57
1.57
0.41
1.60
0.69
0.13
0.36
0.12
0.03
0.08
0.02
0.04

0.59
1.72
1.41
0.12
1.58
0.99
0.37
1.39
1.14
0.27
0.55
0.33
0.08
0.23
0.12
0.20

0.43
1.38
0.95
0.24
0.83
0.67
0.31
0.87
1.21
0.37
0.41
0.34
0.13
0.26
0.21
0.39

0.38
1.31
0.68
0.33
0.49
0.58
0.23
0.50
1.22
0.38
0.31
0.13
0.19
0.19
0.39
0.51

cz (mb) 19.86 15.51 11.10 9.00 7.82

'so
'S, +'D&
3p
1p
3p

p2+ F2
1D
3D

D3+ 63
'F
3F
3F4+ H4
1g
3g
g5+ I

rest

23.31
146.46

5.53
5.76

16.04
59.38

1.84
1.50
2.67
0.05
0.04
0.05
0.00
0.00
0.00
0.00

10.41
63.87

3.76
6.98

17.13
51.25
7.09
6.82

15.70
0.90
0.93
1.16
0.08
0.13
0.11
0.04

6.13
30.92
3.46
7.98

13.11
35.53
8.57
9.47

24.83
2.94
2.59
5.24
0.44
0.52
0.56
0.39

3.94
16.86
3.27
7.82

10.03
24.07
7.93
8.96

22.55
4.76
4.29
9.65
1.15
1.07
1.87
1.14

2.76
10.90
2.80
6.88
7.65

16.77
6.84
7.48

17.99
5.38
5.24

11.66
1.99
1.73
5.13
2.44

262.64 186.40 152.68 129.34 113.63

108.46 73.10 60.79 50.73 43.78
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pure Coulomb or Coulomb-nuclear interference terms are
included in o.T. However, the nuclear amplitude is deter-
mined by taking the Coulomb interaction exactly into ac-
count. This means that the (relativistic) Coulomb poten-
tial was included and that the wave functions were adjust-
ed to Coulomb wave functions in the asymptotic region.

In optical models, sometimes another procedure is fol-
lowed (see, e.g., Ref. 19). One then calculates the nuclear
amplitude as if no Coulomb interaction at all was present.
The total cross section is determined from this amplitude
by means of the optical theorem. In Table IV we compare
at three energies the two methods for determining o.T.
One sees that large differences can occur, increasing when
the energy T1,b is lowered. In those optical models the
differential cross sections are determined by attaching
Coulomb phases to the above mentioned nuclear ampli-
tude and adding the Coulomb amplitude to it. A compar-
ison of this method with the exact method, used by us,
can be seen in Fig. 7 for T1,b ——62.7 MeV. Displayed here
is the differential elastic cross-section in which the pure
Coulomb contribution has been subtracted. This correct-
ed cross section can become negative due to the large neg-
ative Coulomb-nuclear interference term.

When we compare our results with those of Cote
et al. , taking about the same set of data, we have on
this set X /data=1. 49, whereas their optical model yield-
ed X /data=2. 80. In our fit we included more points, at
high energies, and excluded one set of data on d0.,1/dQ at
369 MeV, which gave our final g /data= 1.39.
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scattering. Experimental data from Ref. 5. Solid curve: with
Coulomb distortion. Dashed curve: without Coulomb distor-
tion.

)L'S'M'a', LSMa L (L + 1 +L'L ~S S~M'M'~a a''2

The above given particle channels are not the isospin
eigenstates for the NN sector. The transformation matrix
between particle basis and isospin basis is in this sector:

1 1

NN NN

On the isospin basis V looks like
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APPENDIX

The relativistic Schrodinger equation for total angular
momentum J is

2 ~ J J+p — —2m V X (r) =0,
r 2

TABLE IV. Total cross section in millibarns, exact and
without Coulomb distortion (see text).

T,.b (Mev) Exact No distortion

where p, I. , m, V, and 7 are matrices in channel
space. On the particle basis we label the channels by
(LSMa), where a indicates the type of particles (pp,
nn, . . . ). For example, the matrix elements of L2 are

V(2, 1)
A

with V~' ' given in Eq. (4), and VNN
——V„„,+ Vph+ Vc,„I,

where (in the NN Sector)

V(1, &)
A 0

J
VO, nuc

Vnuc =
0 VJ

1,nuc

and likewise Vph VI Qzc is the isospin=I, total angular
momentum= J part of the V„„,from Eq. (1).

On the particle basis, in the NN sector (pp, nn) the
Coulomb potential is

—2p7$ 0
Mpr

0 0

Also on the particle basis in the NN sector the reduced
mass matrix

20
50

100

269.35
212.01
177.17

251.96
205.33
174.00

0 ~nn

Mp 0
]

0 Mn

and the center-of-mass relative momentum
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2

2= &re
I 0

0
2 =

&nn

S
4 P

0

0

S
4 n

r~oo P

Here E and G are diagonal matrices on the particle basis:

The asymptotic form of the regular wave function X is

' 1/2

(F)LShta, LSMa +L (gaspar) t

(G)LSMa, LSMa —GL(gaspar) ~

where I'L and GL are, respectively, the standard regular
and irregular Coulomb wave functions.

The partial-wave S matrix S is

S =(1+iX )(1 iX—)

The matrix A is dependent upon the boundary conditions
chosen for g (r)

The scattering amplitude M =M +M, where the nu-
clear amplitude is

le
M (S'm'a'~Sma;p ~ )= g [4n(2L+1)]' Co C F (p ~ )e . e

JLL ' 2jn L'S'm'a', LSm a

with pa=paz and pa is a unit vector in the direction of pa.
The Coulomb amplitude is

M (S'm'a'~Sma;p ) =
t

ga
exp ig~ ln sin —+2io o &s's~m'm a'a

2p sjn2

(p "P =cose).
Observables are calculated from the amplitude M, e.g.,

dOgE

dQ dQ
(nn+ pp)= —,

' g— ~M(S'm', nn~Sm, pp)
~

(for unpolarized pp) .

s'm'
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