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Analysis of the antineutrino capture on protons
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Corrections to the zeroth-approximation cross-section formula for antineutrino capture on pro-
tons at nuclear reactors are evaluated. They include recoil corrections 1/M of three kinds. The true
recoil correction to the cross section is negligible. The weak-magnetism —axial-vector interference is
sizable, decreasing the cross section by -2% for 5-MeV positrons. One also has to include the
recoil-neutron energy in relating the positron and antineutrino energies in order to evaluate the an-
tineutrino flux. That effect decreases the positron yield by as much as 6% for 5-MeV positrons.
The radiative corrections of order a have been also evaluated; they increase the cross section by
—1.5% near threshold and by -0.7% at 5 MeV. Formulas and a table of numerical values of all
corrections are presented.

Study of the electron-antineutrino capture on protons,
V+p~n+e+, is at the present time the most sensitive
terrestrial test of neutrino oscillations. The accuracy,
both absolute and relative, with which the positron yield
is determined is fast increasing. For example, in the
Caltech-SIN-TUM measurement' at 38 m from the
Gosgen reactor core the total statistical accuracy reached
2% and the systematic uncertainty was 5%. (Besides,
1.2% uncertainty in the energy scale allows for shape dis-
tortion. )

At this level of accuracy, higher-order corrections to
the zeroth approximation relating the antineutrino cross
section to the neutron lifetime are becoming non-
negligible. Furthermore, they will gain in importance
with the advent of future more accurate experiments. No
treatment of all corrections to the cross-section formula
have been made so far.

The goal of the present paper is evaluation of the accu-
rate cross-section and positron-yield formulas, including
all corrections of the order of 1%, and applicable to ener-
gies encountered at nuclear reactors. In this respect, the
present paper is similar, although somewhat less ambi-
tious, to the analysis of the neutron decay by Wilkinson.

The lowest-order cross section is obtained when one as-
sumes that the nucleons are infinitely heavy and that the
only radiative effect is the Coulomb interaction of the fi-
nal proton and electron in the neutron decay. One obtains
then

mends as an adjusted average ~„=900+9 sec. However,
not all experimental data on ~„are mutually consistent.

At the nuclear reactor one actually measures the posi-
tron yield which is in the same approximation given by

Yp(E, )=op(E, )n(E,=E,+-(M„—M~)c ),
where n (E) is the reactor antineutrino flux per unit ener-

gy
There are several corrections to the formulas (1)—(3).

The E/M corrections are related either to the neglect of
the neutron recoil when evaluating the cross section and
antineutrino flux or to the neglect of explicit 1/M terms
in the weak Hamiltonian, such as weak magnetism. The
other corrections, numerically of a similar magnitude, are
the radiative corrections of the order a beyond the
Coulomb effect in the statistical function f.

To evaluate the terms of the order E/M one begins
with the general matrix element of the form~

6 l
ttn 'Vpf Xp/sg 2M ~pvCvv2 2M

x [U:„y"(1—)'5)U. ]

where the form factors, taken as constants for our pur-
pose, are equal to

2m. A
op(E, )= p, E, ,

me c fTn

f=1, g =1 260+0 0.08, f2. IJ,p
—p„=3.7 . ——

The momentum transfer is

(5)

E~=E,+(M„—M~)c2 . (2)

Note that Wilkinson calculates f=1.6857 and recom-

where r„ is the neutron mean life, f is the usual statistical
function including the Coulomb correction for Z = 1, and
the outgoing positron and incoming antineutrino energies
are related by

(6)

and the y matrices and bispinors have their usual mean-
ing. Note that the induced pseudoscalar does not con-
tribute at our intended level of accuracy and that we
neglect the possible second-class-current terms.

Before evaluating the cross-section formula we note
that, when the recoil is included, the v and positron ener-
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E„-E,+b, + [E,(E,+5)+y') .

Because the antineutrino flux n (E) decreases quite rap-
idly with energy, Eq. (3) systematically overestimates the
flux and therefore also the positron yield. Correction for
this effect is represented by the quantity

n (E„) n(E, +-b,—)
5,p„(E, )

—= (0
n (E~)

(9)

which is listed in Table I for the case of U fission.
We now square the matrix element (4), perform the spin

summations, and retain the lowest-order terms in E/M.
The resulting cross section is written as (see also Ref. 6)

~( E, ) =oo(E, )[1+5„,(E, )+5wM(E, )),
where

(10)

5„,(E, )= 2, (g' f')—f'+3g'
E,(E,+6)+p,

MEe

gies are no longer related by Eq. (2). To obtain the posi-
tron yield one has to integrate over the recoil spectrum or,
equivalently, over the positron angular distribution. The
relation between the positron and antineutrino energies is

(we use now fi=c = 1)

M(E, +b, )+y
M —E, +p, cos8 '

where

b, —meA=M„—M~, y =
2

The kinematically allowed energy interval is quite narrow,
so the only modification required is the evaluation of the
antineutrino flux at a somewhat larger energy than Eq.
(2), taking into account the recoil kinetic energy.
Remembering that the positron angular distribution is
essentially isotropic ((cos8) ——0.04), it is sufficiently
accurate to use the point cos0= 0, that is,

is the "proper" recoil correction and

2—f2g E,+~+Ps.
5wM«. ) = f2+3 2 M

(12)

is the correction for the weak-magnetism —axial-vector in-
terference. (Note that there is no first-order term of the
f2f type. ) Above p, is the positron momentum and
P=p, /E, . The numerical values are again listed in the
table. The corrections 6p and 5„„which are relatively
large and strongly energy dependent, have been already in-
cluded in the most recent analysis of the Gosgen reactor
experiment.

Next we consider the radiative QED corrections of the
order a. For neutron P decay the problem of radiative
corrections has been discussed in detail by Kallen, and in
its more modern form by Sirlin. ' For our purpose we
need not worry about the complications caused by the
strong interactions and quark structure of the nucleon.
(See, however, Ref. 10 for a discussion of these problems. )
As in Refs. 2 and 11, we divide the radiative corrections
into the "inner" and "outer" ones. The inner correction
terms depend in our approach on the ultraviolet cutoff pa-
rameter A and contain the vector —axial-vector interfer-
ence term. They are, however, energy-independent con-
stants exactly the same for the neutron decay and the an-
tineutrino capture. Thus, we do not have to know their
value as long as we express the cross section in terms of
the experimental neutron lifetime. Qn the other hand, the
outer radiative corrections will contribute an energy-
dependent finite term to the cross-section formula and
they add 5f =0.0254 to the f function of the neutron de-
cay in Eq. (1).

In a recent paper, ' Dicus et al. discuss the role of radi-
ative corrections to processes changing neutrons into pro-
tons and vice versa in the context of primordial nu-
cleosynthesis. Our results, while generally in agreement.
with theirs, differ in some details, mainly in the treatment
of the integration over the bremsstrahlung spectrum.

The Feynman graphs contributing in order o, to the an-
tineutrino capture are shown in Fig. 1. In evaluating
them we neglect the recoil and weak-magnetism parts of
the matrix element (4). After some rather tedious algebra
(see, e.g., Ref. 9), the graphs 1(a)—l(c) together contribute
to the squared matrix element the quantity

5M =—~ 21n —tanh P —1 ——(tanh P) +—ln —— +Ptanh P+ L—a 2 A, 1 ) 1 ) p 3 M 11 1 2P
m, P 2 m, 8 P 1+@

+ ln (3f +12fg+9g )+3g(2f+g)
2(f2+3g~) M

(13)

Here ~ is the squared and spin-summed matrix element
(4), A, is the "photon mass" related to the infrared diver-
gence, and L(x) is the Spence function. ' The term in
square brackets represents the inner radiative corrections;
the A-independent constant part has been chosen as in
Ref. 11. These inner radiative corrections, as pointed out
above, are automatically included if experimental neutron
lifetime is used.

The bremsstrahlung graphs 1(d) and 1(e) give identical
squared matrix elements in the neutron decay and in the
antineutrino capture. In both processes they contribute
only to the outer radiative corrections. In the former case
one proceeds further as follows: First the integration over
the photon spectrum is performed, keeping the electron
energy fixed. The antineutrino energy is varied together
with E& according to the energy-conservation condition
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E„=M„—Mp —E, —Ey . (14)

Finally, one combines the contribution for all graphs to-
gether (the infrared divergent piece disappears) and in-

TABLE I. Corrections to the cross section and positron yie1d,
Eqs. (20) and (21), in units of 10 . T, is the positron kinetic
energy in MeV.

tegrates over the electron spectrum to obtain 5f =0.0254
mentioned above.

In the antineutrino capture the situation is somewhat
different. The energy-conservation condition is now

E =M„—Mp+E, +E

The usual detectors (such as the one in Ref. 1) will typi-
cally add the energy of the (usually soft) bremsstrahlung
photon to the positron energy and register their sum.
Thus, the proper procedure is to integrate over the brems-
strahlung photon spectrum keeping the antineutrino ener-
gy constant and varying the positron energy according to
Eq. (15). The resulting bremsstrahlung contribution is of
the form

2 ~ 2 2'~ I
& I, 2 2(8'+m, ) 3, 1 2p5~ b„———M 2ln —tanh 'p —1 ——(tanh 'p) +3—21n +—tanh 'p+ L-

P P m P P 1+P
1 I)2I

8 2

2Ip
8' (16)

Here

~M —E —(M„—Mp )—m, =—8' —m, ,V

m,
Io—8' In —( 8' —I, ) I —In2+ 48'

and

p=+8" —m, /8',

E nln E+P
1 me

(28' +m, ) ln
g'

me

+ (8' —m, )[(8'—m, )21n2 —38']

p+ dE E+p
8' —Z "8'(1+P)

The integrals I; can be rewritten in an approximate and
rather accurate form (better than 5% for 8' & 1 MeV):

The Spence function can be evaluated using the expansion

oo k
L(x)= g, ~x I

&1.

I I —I. 1—
r

me 8'8' —m, +m, ln
$g me

Now we add the outer radiative part of Eq. (13) to the
bremsstrahlung formula (16) and obtain the final total
radiative-correction term

a 2(8' —m) 1, 2(8'+m) 3 M
5„d(8') =—2 In —tanh 'p —1 —2 ln + —In +

m, p me 2 me 8
——(tanh p) + L—2 ) 2 2 2P

1+

+ p tanh-'p+ —tanh-'p+ —2I, +
p g2

o(8') =oo(8')(1+5;.+5wM+5..d) (20)

It should be remembered that the 8' above represents the
total positron + photon energy in the case when a real
bremsstrahlung photon is emitted. The numerical value
of the radiative correction factor is again shown in the
table.

Thus, we have obtained the fina1 cross-section formula

and the positron-yield formula

Y( 8') = Yo(8 )( I+5sp c+5.c+5wM+5 ad) (21)

The formulas (20) and (21) contain all corrections & 0.2%
for energies & 10 MeV relevant for the experiments at nu-
clear reactors. At higher energies, relevant to meson fac-
tories, one has to include the momentum-transfer depen-
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)b)

tio Y,„ /Y„, „,including the corrections of Eq. (21) and
using the quantities Y,„& and Yo of Table I in Ref. 1. The
signature of neutrino oscillations on such a graph is a de-
viation from a horizontal line which can be shifted away
from unity due to the uncertainty in the overall normali-
zation. These deviations in Fig. 2 are statistically insigni-
ficant for both the corrected and uncorrected points. It is
of interest to note, however, that the corrected points ap-
pear to be closer to the no oscillation situation. Detailed
analysis (exclusion plot), giving the largest allowed values
of the oscillation parameters Am and sin 20, must in-
clude systematic uncertainties as well as uncertainties in
the energy scale and the reader is referred to Ref. 13 for
results.
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FICx. 1. Feynman graphs describing radiative corrections to
the antineutrino capture on protons.

dence of the form factors f(q) and g (q).
Inspection of the table shows that the corrections are

indeed relatively small but non-negligible for the energies
of interest. The spectrum correction 5,~« is an exception
and becomes quite sizable at higher positron and antineu-
trino energies. The calculated effects change in unison the
shape of the positron spectrum (characterized by the ratio
of yields at the boundaries) for energies between 1 and 5
MeV by -2.5%%uo when only the last three terms in Eq.
(21) are counted and by —8%%uo when 5,„„is also included.
The integrated positron yield (for positron kinetic energies
0.7—5.6 MeV) is decreased by 0.5%%uo in the former cases
and by 2.2%%uo when all corrections are included.

At the present level of accuracy no significant changes
in the exclusion plots of the neutrino oscillation parame-
ters hm and sin 28 are expected. Indeed, calculations of
the Caltech-SIN-TUM group' confirm this conclusion.
On the other hand, with increasing accuracy, these correc-
tions will become more important.

As an illustration of the effect we show in Fig. 2 the ra-
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APPENDIX: DEVIATIONS FROM
THE ALLOWED SPECTRUM SHAPE

AND THE CONVERSION FROM ELECTRON
TO ANTINEUTRINO SPECTRA

The antineutrino flux n (E-) for a nuclear reactor [Eq.
(3)] is usually derived from the experimental electron spec-
trum' n, (E, ) by a conversion procedure' ' which as-
sumes that all P decays accompanying fission have the al-
lowed spectrum shape No. That is not quite correct be-
cause in reality the spectrum is a superposition of
branches of the form

N, (E, ) =No(E„E~ )[1+c(E~ )+oQED(EgyEppg )

(A 1)

where E~ is the end-point energy and c(E~ ) is the nor-
malization factor. [Only the main correction terms are
included in Eq. (Al).] The radiative part 5QED have been
evaluated, e.g., in Ref. 11. The weak-magnetism slope pa-
rameter is approximately the same for all P decays and
equal to

CL
1.0

0.8— =0.5%%uo/MeV .

4 (&+(p —p, )o)
3 CgM(o )

1

3 CgM
(A2)

I

5 10 15
L/E„- (m/NeV)

FIG. 2. Ratio of the experimental to predicted (for no neutri-

no oscillations) positron spectra. Experimental data and un-

corrected yields Yo from Ref. 1; corrections are added according
to Eq. (21) and the resulting ratios are denoted by full points.
The original uncorrected ratios (Ref. 1, Fig. 3) are denoted by
crosses. The uncertainties, shown only for the corrected ratios,
are statistical at the 1o. level.

10ZaR (or )Ac=- =—0.9%/MeV .
9fic (o )~~ (A3)

The last estimate in (A3) is for Z =46 and

The Coulomb slope factor Ac for the Ciamow-Teller tran-
sitions is



1922 P. VOGEL

that is, an average of the uniform and surface distribution
of the decaying neutrons. The values (A2) and (A3) are,
naturally, rather crude estimates.

When the experimental electron spectrum associated.
with fission is converted into the antineutrino spectrum
N„„„(E,) th-e result will deviate from the true spectrum
and

n (E„)=N«-»(Ev )[1+a@ED(E~)+ewM(Ev ) +ec(Ev)1

Numerically, using (A2) and (A3) together with the exact
QED terms, one obtains an approximate formula valid for
2&E &8 MeV,

eqED+ewM+ ec-1.15 X 10 (E —3.0), (A5)

where E~ is in MeV. The formula (A5) makes it possible
to estimate the size of errors associated with approximat-
ing the true spectrum shape by the allowed one and to
make a correction for them.
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