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We study the scattering of a quantal particle with internal degrees of freedom coupled to a long-range
non-Abelian external field, acting nontrivially in its internal space. It is shown that the asymptotic states
are singlets of the internal-symmetry group and the corresponding S matrix exists for singlet states (only).
It is shown that the long-range interaction, although vanishing as I/I r

I (for I r I ~l, modifies the
asymptotic free motion by corrections which cause precession of all degrees of freedom orthogonal to the
field direction (in internal space) as t approaches infinity, thereby not admitting a well-defined color con-
tent in the asymptotic states. Remarks are made about the analogy in QCD. Vr'e explain how modified
perturbation theory can be applied.

We study the scattering theory of a quantum particle with
internal (non-space-time) structure interacting with a long-
range potential acting nontrivially in its internal space.

We show that the long-range residual force masks the
internal structure of the particle as the time approaches in-
finity; it is therefore possible to construct the S matrix for
asymptotic singlet states only; the (color) degrees of free-
dom precess indefinitely, thus .the asymptotic states do not
admit a we11-defined color content. We ca11 this obliteration
of color bleaching.

We shall describe the particle dynamics by a non-Abelian
generalization of the Schrodinger equation, where the com-
plex number field is replaced by quaternions.

The state P(x) of the particle is given by a quaternion-
valued wave function in the Hilbert space of square-
integrable q-valued functions ~~. '2

The algebra of observables associated with such a particle
include, apart from the position x and momentum p, the
operators acting in its internal space, the quaternions E;
[ = SU(2)] acting from the left and e; from the right
(i =1,.2, 3). The space P~ is linear over e; (replacing C)
and are the (non-Abelian) phases of the state P, while the
E; are operators in the usual sense in P~. It should be
stressed that although we use here the quaternionic
quantum-mechanics description only as a convenient tool to
study non-Abelian quantum theory, this approach has an in-
terest of its own concerning, e.g. , preon models.

We choose the free dynamics to be
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Us 4=exp «i
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(the choice of et is not unique); the full dynamics is given
by local gauging of the global SO(4) symmetry of the corre-
sponding Schrodinger equation.

Since we are interested in long-range interactions we re-
tain only the part which decays slowly; we are thus led to

consider the following dynamics:

92
U, /=exp r et, +E; 1;,.e,

where V~ are real functions of x; Vo; and Vo, with
i =1, 2, 3, are the only nonzero ones (ea=Ea= 1). The
Heisenberg equations of motion for P(r) and E;(t) (under
the full dynamics) are the quantum analog of a classical
colored particle moving in an external gauge field. 5 Such an
equation was first derived by Wong as a classical limit of
SU(2) gauge theory. 6

We study the asymptotic behavior of the operators associ-
ated with the particle in the Heisenberg picture which are
then used to construct a generalized S matrix appropriate to
such cases using the algebraic approach to scattering theory.

Let A~ denote the quaternionic Hilbert space of q-valued
square-integrable functions of R'. This space of functions
is linear over quaternions acting from the right (called a
right vector module). The scalar product is given by

(f,g) = Jl, f'(x) g (x)d'x V f,g C m, (3)

where the asterisk is the conjugation of quaternions. The
norm of f 6 4» is given by (ff)t~2. An operator 2 in H~ is
called q linear if 2 (f'q) = (Af)qVq 6 0 (the quaternions).
So the E; are q linear but the e; are not. P C A~ can be
represented as a four-component (real) function that we as-
sociate with a quantal particle with non-Abelian phase de-
grees of freedom, which is naturally coupled to an SO(4)
gauge field A'„(x). When P is viewed as a q-valued func-
tion the gauge field can be described as multiplication from
left and right by (x-dependent) quaternions (hence it is
not, in general, q linear). A complete description of a freely
moving particle [up to the right SU(2) phase] can be given
by the algebra of operators generated by
sdp—= (P E;Ii = 0, 1, 2, 3} (with P = —Et'7) that commutes
with the free dynamics.
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In the algebraic approach to scattering theory we seek the asymptotic motion of these operators under the full dynamics
(by construction Wo is expected to be asymptotically time independent if the full dynamics approaches the free one):

WOE 2 2 (t) =exp{t[e](—'2 ) +E; V»e J]}A exp{—t[e](—'7 )+EV~e, ]}P~ (4)

PM denotes the projection on those states which are to be
identified with scattering states (typically the continuous
spectral part of the full dynamics).

If the functions V» decay fast enough as Ix I ~ (faster
than 1/lx I) the usual wave operators exist and the asymp-
totic motion is given by the free one, i.e.,

I I U, y - U,'e I I
- 0 as It I ~, V + & ~

In this case the asymptotic algebra is given by the asymptot-
1c 11mlts of Afp'.

and

s-lim UD ( —t) U, PM ——0'+ P]rg~ +oo
(10)

s-lim U( —r)PU(r)PM ——s-lim U( —r) U]](t)P
g~ +oo f~ +oo

x UD( —r ) U(r)PM

Asymptotic completeness means that PM P„(—H—), the pro-
jection on the continuous spectral part of H, which is true in
this case. Since P commutes with UD(t) we get

{P,E; - } = Q + {P E }0'+ (6)
+= 0 +PA'+ =—P

UD(t) = exp —e]t( —'7 )— E] ln14Hpr I

Hp
(g)

The explicit dependence of the modified part on Ej which
does not commute with E2 and E3 is the essential new
feature, which is, of course, expected to hold for more gen-
eral long-range interactions. One can prove in a similar way
as in the Abelian case that the following limits exist:

s-lim U, UD(t)]II= 0+/, ]]]']t] &4~f~ +c]o

where 0+ are the usual wave operators.
In the presence of a long-range potential, in the Abelian

case, the asymptotic algebras exist, though the usual wave
operators do not; this is true since the only effect of the
long-range part is to modify the phase shifts in an uncon-
trollable way, leaving the momentum an asymptotic observ-
able. In our case the analog of the phase shifts belongs to
a non-Abelian algebra. If they become unmeasurable it is
expected to be reflected in the asymptotic behavior of the
E;(r). In fact, as we shall show, the limits do not exist,
leaving the asymptotic particle state bleached from its origi-
nal internal degrees of freedom.

If we can show that P — exists we can still associate the
asymptotic states with a new (structureless) object. We may
also be able to construct S: P+ P, the generalized S ma-
trix; in this way we get a scattering theory for the case
where the asymptotic particle is qualitatively different from
the (nonasymptotic) original one.

We shall construct a simple model generalizing the
Coulomb interaction to the non-Abelian case which allows
one to achieve the generalized scattering theory described
above.

A direct way of sho~ing that bleaching occurs is to prove
that limits defining E; —do not exist. Since the free part of
the dynamics commutes with all of the E; we need the
long-range part to depend on some E; (namely, the long-
range part acts nontrivially in the internal space of the parti-
cle). Let us restrict our attention to the simplest case satis-
fying the above demands:

E; V»ej = nE] V(x)

where n is real and V ( x ) = 1/ I x 1. Motivated by the
Coulomb problem we deduce the following asymptotic
motion:

xexp —e]r( —V )— E]rn14Hor I

Hp

= exp — E] ln14Hot I E2 (12)
Hp

The last expression is easily sho~n to converge weak1y to
zero as Ir I

~ and therefore the strong limit does not ex-
ist; we see that the E2(E3) phase of the wave function oscil-
lates logarithmically fast as It I approaches infinity. Howev-
er, since UD(r) does not commute with E2 (or E3) it does
not follow, in general, that the limit of
Eq(t) = U'(r)E2U(t) does not exist. To prove it we need
an extra argument.

Asymptotic completeness implies that

I I U(r)y U(r)@ll- 0 lr I-—, vy e P m

for some $, which depends on ]r].

Let us assume that the limit

E2+ ——s-lim U(t)'E—2U(t)P]]r+ oo

exists; we then obtain

(13)

1

U(t)'E2UD(t) = U(t)'UD(t) exp E]lnl4Hor I
E2=

/HO
(14)

is a uniformly bounded family of operators converging
strongly to some operator, call it 3, since

IIE~ y- U(r)"E2UD(r)all

~
I I

U'(r) E211

converges to zero for all p by asymptotic completeness (for
suitably chosen ]r] which depends on @). Since A @=E2+,
(I —p~)g y —(1 —p~)E2 Q = 0. Since asymptotic com-

hence asymptotic momentum exists. Moreover, since E~
commutes with e, , E] commutes with U(t), and hence
E]+ (= E]) —exist. Consider now the E2(E3) behavior under
the time evolution. We first show that ED2(r) does not have
a limit as It I

~. ED2(t) gives the time dependence of Eq
(in the Heisenberg picture) under the modified free dynam-
]cs U]] ( r):

E2 (t) =exp te]( —'0 )+ E]ln14Horl E2
JHo
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pleteness holds, UD(t) U(t)PM 0——, Pst converges strongly. Hence

s-lim Qt'I'~A, = lim 0,'A, = lim UD(t)U(t)U(t)'Uo(t) exp — E~ln(4Hot( E2 ——lim exp Etln(4HotI E2g~ oo ~oo g~ oo
0-IH taboo -~00

(16)

also converges strongly (I}A,'P~II 1), which is impossi-
ble. %'e therefore conclude that E2—,E3—do not exist.

Remark. It is possible to find directly from estimates
based on classical equations of motion which observables
are asymptotic: For example

but

dP 6U( ( )) 1

dt Bx Ix(t)I' t 2
(17)

dE2 —V(x (t)) ——,
dt

(18)

V = (Ho —k —e(e) ' V(x)(HO —k +etc)

V(x) = . (19)

To first order in V we get an oscillatory term of the form
f("o)

e ' o, for some real function f, which behaves like the
Abelian Coulomb phase, but which causes transitions in
(E2, E3) space in an unpredictable way since the phase fac-
tor is not uniquely determined by the dynamics.

In the case we are considering S (and fl + ) can be viewed
as an operator in P~ and there is a question of whether this
can used to extract extra information other than that con-
tained in (P —,I,Et}. One can, for example, define
E2—+ = 0 +E20 +., it gives the difference of the actions of
UD(t) and U(t) on E2, and this difference is convergent as

~ since UD(t) and U(t) rotate E2 in (E2,E3) space

and hence a logarithmic divergence in time is expected.
Since the asymptotic algebras are (P —,I,E~—

I
= (P-, I,Et} the S-matrix operator intertwining them is an
operator between two operator algebras over the complex
numbers (= (I,E~}), and can therefore be represented as a
complex linear operator acting in a complex Hilbert space,
which can be identified with the complex submanifold of A~
over (I,Et}; this submanifold is left invariant under the ac-
tion of S (and 0+) and has the property that ~~P —,I,Et}
are maximal Abelian algebras on it. The S matrix therefore
describes the scattering of a particle which is initially finally
structureless, although for finite times it is not.

Recently we developed a perturbation theory for the S
matrix in the presence of long-range (Coulomb-type) in-
teractions8 which can be used in this case. The approach is
based on finding a modified (momentum-dependent) poten-
tial V, in terms of which the Lippmann-Schwinger equa-
tions are cast in the usual form and then expanded in

powers of V . One can then show that the only effect of
the change V V is an addition of a phase factor in each
vertex in the usual Feynman graphs and that the resulting
expansion is finite order by order.

In the case we are dealing with here V will depend expli-
citly on E~. Following the procedure of Ref. 8 one finds
(up to choice of phase in the definition of UD)

I

with the same divergent angle (for t large enough) relative
to the free dynamics. But since UD(t) is determined only

E)f(Ho)
up to multiplication by a phase factor of the form e
the phase difference between U(t) and UD(t) is undeter-
mined too, although finite.

In the Abelian Coulomb case the choice of UD(t) is also
not unique, but can be found be considering Coulomb +
short-range part, experimentally. The analog in the non-
Abelian case is not so immediate and is associated with
non-Abelian interference. 9 Another point to be noted is
that when long-range fields are present with (asymptotically)
fixed direction in color space they dictate a choice of E; in
the definition of the momentum, which is otherwise arbi-
trary. This might clarify the question of what is the analog
of i (the complex unit) in quaternionic quantum-mechanical
models.

For the analogous problem in non-Abelian quantum field
theory, it is clear that we cannot take quantum effects of the
gauge field itself explicitly into account, but let us assume
that colored particles do emerge as asymptotic states. They
interact through the gauge field which in the non-Abelian
case will induce a long-range potential U„"=(g2/4m. )e ej'/rj
where (e }, ~, ~ are the gauge group [SU(N) ] matrices
for the jth particle and r;, the distance between the i and j
particles. For this case our approach applies and the con-
struction of the S matrix will depend on the form of the
asymptotic dynamics UD(t) of each particle. Because of the
long-range character of the interaction UD(t) depends on
the directions in color space of all other particles, which
themselves rotate indefinitely in directions orthogonal to the
potential they see from the others. Consequently, if asymp-
totic states do exist they are bleached from their color.
Moreover, cluster decomposition cannot hold in this case
since the direction of the field each particle sees depends on
its position and on the other particles. Of course, it is ex-
pected that the continual rotation in color space of each par-
ticle causes a significant change in the gauge field itself'
(namely, enhancing gluon emission) that can change the
momentum of the particle or even stop it completely from
going to infinity, thus leading to confinement. " Colorless
configurations of particles, however, induce only short-
range-type fields and are expected to show up in the final
states. It should be remarked, however, that this analysis
rests on the assumption that the asymptotic states can be
well approximated by classical gauge field configurations,
which need not have to be the case. What does seem to
follow is that if confinement does not hold it is a purely
quantum effect of the gauge field.
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