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Symmetries of the Dirac equation
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The symmetry of the free Dirac equation recently discussed by Radford is regarded as a subgroup of a
larger SL(2,C) group of transformations. The Radford Lagrangian is shown to be unsatisfactory for a field
theory quantized according to Fermi-Dirac statistics, and is replaced by a suitable alternative. The sym-
metry of the Dirac equation, of the equal-time field anticommutation relations, and of the Lagrangian, is
studied under SL(2,C) and various subgroups. In particular, it is found that the Radford subgroup is not a
symmetry of the quantized field theory.

I. INTERNAL SYMMETRY OPERATIONS

Radford' has recently presented an interesting symmetry
of the free Dirac equation. This symmetry is not new. In
this Brief Report we present the detailed results only
sketched in Ref. 2. We regard the SU(1,1) symmetry group
considered by Radford as a subgroup of a larger SL(2,C)
group which mixes the two independent left-handed fields
of the Dirac bispinor in the most general way possible. This
enlarged group is a symmetry of the free Dirac equation for
a zero-mass particle (i.e., a Dirac neutrino). However, we
show that the canonical anticommutation rules do not share
the full SL(2,C) symmetry of the Dirac equation, but are
invariant only under the maximal unitary subgroup SU(2)
of SL(2,C), which is just the Pauli group. In particular,
the SU(1,1) symmetry discussed by Radford is incompatible
with the canonical anticommutation rules. We also show
that the Lagrangian proposed by Radford is incompatible
with canonical quantization according to Fermi-Dirac statis-
tics, whereas a modified Lagrangian, which is compatible
with canonical quantization, is invariant only under the Pau-
li SU(2) subgroup. Hence although the full SL(2,C) group
is a symmetry of the Dirac equation for a neutrino, and the
subgroup SU(1,1) is a symmetry of the Dirac equation for a
neutral massive particle, neither group is a symmetry of the
quantized field theory. We use the notation of Itzykson and
Zuber.

The Dirac field p can be written

4=4L+4s

4L= 2(1 —vs)4 ~

(i rI eg)@r =—m/2, (irf+eg)@2= m@r

These are equivalent to Eqs. (1) and (2) of Radford's paper.
We now wish to consider transformations which arbitrarily
mix P~ and P2. We are not interested in a mere scaling of
Eqs. (5) and therefore we impose the condition that the
transformation be unimodular. The group of a11 such
transformations is SL(2,C). The group operations are con-
veniently expressed as

where

ia r/2' ~ + e
—i a V/2~

1 (6)

0
r r

1 0 —i 1 0
Oj' ~i 0 j' ~0 —Ijj

is a set of Pauli matrices acting on the space of [p~, p2), and
c7 is an arbitrary complex three-component "vector. " The
notation W, W, reminiscent of Van der Waerden's undotted
and dotted spinors, is adapted from Pursey. s Equations (5)
can be written as

Then
—T4=Ai+Az=Ai+C42 .

The Dirac equation for a particle of charge e and mass I in
an external electromagnetic field A~ is

(i rl eg —m )—y = 0, (i rrI + eg —m ) ttr'= 0

from which

y, = —,(I+y, )q
(i rl —e r~ )qr + m r pP = 0 (9)

fl = QL =
2 ( I —ys)tf

y2—= (y')L = —,(I —ys)4' .
(2)

The charge conjugate field P' is defined by P'= Cgr. As is
well known, (Q')L = (Qg)', (f')g = (QL)'. We define two
independent "left-handed" fields Qq and Q2 by

r~ = (I, r ), r& = (I, — ) . (10)

The generators of infinitesimal "Lorentz transformations"

The transformations (6) are locally isomorphic to Lorentz
transformations in a fictitious "space-time, " which is relat-
ed to physical space-time only by mathematical analogy.
Following Refs. 5 and 6, and using notations adapted from
Ref. 5, we define ~", 7", p, =0, 1, 2, 3, by
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acting on P, %' are S"",S"",respectively, where

S""=4i(r"r"—r"r"), S""=4i(r"r" r—"r") . (11)

Corresponding to a four-vector m", we can define matrices
M, M by

II. CANONICAL ANTICOMMUTATION
RELATIONS

The equal-time anticommutation relations for the quan-
tized Dirac field are

M=m„7", M=m„~" (12) (ili ( r, t ), ilii3( r ', t ) J = g ttil3( r —r ') (16)

A "Lorentz transformation" of m" is equivalent to'

M~ e
—i a ~ V/2M —l a V/2

~ e —i a ~ V/2Mei a ~ V/2

Hence Eq. (9) can be written as

(i tiI
—e„„S""g) 'P + m „2~'I = 0

where

(e01 e02 e03 e23 e31 e12) ((l () () P P e)

m" = (0, 0, O, m)

(14)

(15)

The general form of Eq. (14) is uniquely determined by
Eq. (9) and the requirement that Eq. (14) be formally co-
variant under SL(2,C), i.e., that the effect of an SL(2,C)
transformation of O', W can be exactly compensated by a
"Lorentz transformation" of the c-number "tensor" e"'
and "four-vector" m~. In particular, it is not possible to in-
terpret the charge as a "four-vector" or the mass as a
"second-rank skew tensor. " The particular values for
e"",m" given by Eq. (15) are uniquely determined by the
conditions that Eq. (14) is identically the same as Eq. (9)
and that e"" is real. (The second of these conditions may
be relaxed, leading to a one-parameter ambiguity in e&",
without significantly changing the conclusions of this paper. )
Of course, if '0 and 'P are replaced by functions
transformed according to Eq. (6), then ei'" and m" must be
replaced by the corresponding "Lorentz-transformed" quan-
tities in order that the transformed Eq. (14) be identical to
Eq. (9). This freedom is analogous to the "form invari-
ance" exploited in Refs. 3 and 7.

We now draw attention to various subgroups of SL(2, C).
(i) The SU(1,1) subgroup The subgr. oup which leaves m"

unaltered is SU(1,1), the universal covering group of
R(2, 1). If e =0, this is an exact symmetry of the Dirac
equation, Eq. (14) or Eq. (4), for a neutral particle. This is
the symmetry discussed by Radford. '

(ii) The Pauli subgroup The maxim. al compact subgroup
of SL(2,C) is SU(2), defined by n real in Eq. (6). This is a
symmetry of Eq. (14) if e =m =0, i.e. , for a (massless)
Dirac neutrino. This group was first discovered by Pauli.

(iii) The QED gauge group The on. ly subgroup of
SL(2,C) which leaves Eq. (14) invariant when e W 0,
m Wp, is the U(1) subgroup generated by S' = —r3. This
is the group of (global) gauge transformations of the Dirac
field. It is also the maximal compact subgroup of the
SU(1,1) group. '

(iv) 3 new symmetry If e & 0 but m. = 0, then Eq. (14) is
invariant under the two-parameter group locally isomorphic
with rotations about and boosts along the third spacelike
axis of the fictitious "space-time. " This corresponds to
n = (0, 0, n) in Eq. (6) with n an arbitrary complex
number. The restriction to real n corresponds to the QED
gauge group, (iii) above.

III. LAGRANGIAN FORMULATION

The Lagrangian density proposed by Radford' is
equivalent to

i glSilil ili2ti)ili2) m (Qlc iii2+ Qlciii ) . (18)

This Lagrangian leads to the Eqs. (5) (with e =0) only if the
fields commute rather than anticommute Likewise. , the mass
term of Eq. 08) is invariant under the full SU(1,1) group only
if the fields commute rather than anticommute [These sa.me
assertions may be verified directly using Radford's Eq. (2).
There it must be remembered that u "u~ = 0 only if the field
components commute. ] We conclude that Radford's
Lagrangian is unsuitable for use in quantized field theory.

In order to find a suitable Lagrangian, we start from the
conventional Lagrangian density

L 4(itI =m)A = i—(ALtiIAL+ ARtiIAR) m (ALAR+ QRQL)

(19)
or, better, '

L =
2 iii(i SI —m)ili+ 2 1' (i tl + m)ili

2
i ( iliLtiI iliL + ili jtilibL + 1liR 9iliR + lRfiiliR )

2
m gLAR iiiR 17iL + TiiR iliL iliL 1liR )

—T
Since ili2 = (ili') L = (iliR ) '= Cili R, we have

iiiR C iii 2 ~ iliR ili2 C iii 2 C

1iiR = —PCili2= C@2 = ili2

(20)

(21)

These relations must be preserved by a unitary transforma-
tion of the quantized field theory. In terms of ili1=—iliL and
@2= (iii')L, Eq. (16) becomes

{ilia ( r, t ), iiikti( r ', t ) I = sjk —,
' ( I —y, ) tig3( r —r '),

j,k =1,2

From this it is apparent that the equal-time anticommutator
of the fields is invariant under the transformations (6) only
if c7 is real, i.e., only for elements of the maximal compact
subgroup SU(2), namely, the Pauli group. Hence, only ele
ments of the Pauli group can be produced by a unitary transfor
mation of the theory. In particular, only the compact U(1) sub
group (the QED gauge group) of the SU(1,1) symmetry group
considerd by bradford can correspond to a unitary transforma-
tion of' the theory This . is in contrast to real Lorentz
transformations in physical space-time, which do correspond
to unitary transformations of the quantized field theory
even for the noncompact "boost" operations. This differ-
ence of behavior can be traced to the fact that physical
Lorentz transformations act on the coordinates x& of the
field point as well as the field components, whereas the
transformations (6) leave space-time coordinates unaltered.
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Hence, from Eq. (20),

z
I ($1841+Alai 41 + 42sf 42 + 42sf42)

—
2

m (ftCQz+ $2CQt —$2C 'Qt —QtC 'Q2) . (22)

In Eq. (22), derivatives always act to the right, and
sfr= y—~rB". If the fields anticommute, the Lagrangian densi-
ty given by Eq. (22) differs from that of Eq. (19) only by a
divergence. If the fields commute, then the Lagrangians
given by Eqs. (19) and (18) differ only by a divergence. It
is easily verified that when one considers infinitesimal varia-
tions BPJ which anticommute with the fields, then the
Lagrangian density of Eq. (22) does indeed yield the field
equations (5).

We now investigate the invariance of L given by Eq. (22)
under the transformations Eq. (6). It is immediately clear

that the kinetic part of L is not invariant under the full
SL(2, C) group or even under the SU(1,1) subgroup. In-
stead, the kinetic part of L is invariant only under the Pauli
SU(2) subgroup. It is also readily seen that the mass term
of I. is invariant only under the QED (global) gauge
transformations. A more careful investigation shows that
the kinetic energy term of the Lagrangian transforms like
the "time" component of a four-vector in the fictitious
"space-time" when the fields 4' and + undergo an SL(2,C)
transformation as in Eq. (13). This is true also for the full
Lagrangian, including the mass terms and interaction terms
with an external electromagnetic field, provided the c-
number parameters m" and e"" are also "Lorentz trans-
formed. " Thus the correct Lagrangian is not even form in-
variant (in the sense of Refs. 3 and 7) under SL(2,C) or
any noncompact subgroup of SL(2, C).
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