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A deterministic nonlocal hidden-variable theory with arbitrary initial conditions is consistent with quan-
tum theory. The sufficiency conditions for the hidden variables are developed.

While the recent observations of Aspect and co-workers' 2

are very strongly consistent with quantum theory and offer
compelling evidence to dismiss local hidden-variable theory,
these experiments do not bear upon nonlocal hidden-
variable theory. Nonlocal hidden variables such as Bohm'’s
1951 theory® are also consistent with quantum mechanics
for equilibrium conditions. Keller had noted the important
role that probability and equilibrium have in Bohm’s 1951
theory.* Bohm subsequently showed that random collisions
would drive even an initial arbitrary nonequilibrium proba-
bility density to an equilibrium probability density consistent
with quantum theory.® Some workers have concluded that
nonlocal hidden-variable theory would deviate from quan-
tum theory for tests that are sufficiently fast to measure
motion still in a nonequilibrium condition before the hidden
variables could relax to their equilibrium distributions from
their arbitrary initial nonequilibrium distributions.? -7

Herein we show that, although quantum mechanics is in-
complete (the Schrédinger wave function is not exhaustive
as it has microstatess), faster or even instantaneous tests on
a set of nonlocal hidden variables with arbitrary initial con-
ditions would still yield observations consistent with the pre-
dictions of the Schrddinger equation and that probability
need not be evoked for a nonlocal hidden-variable theory.
We also develop the set of nonlocal hidden variables whose
initial conditions are sufficient to determine continuous
quantum motion. For this exposition, one dimension suf-
fices.

The Hamilton-Jacobi equation for continuous quantum
motion is given in one dimension, x, for stationary states
by?
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where S(x,E,t) is Hamilton’s principal function for continu-
ous quantum motion, ¢ is time, E is the Hamilton-Jacobi
transformed momentum and a constant of the motion, w is
the mass, and U is a modified potential which is the
quantum-mechanical continuation® of the classical potential
that exactly accounts for the nonlocal wave nature of the
finite test charge needed to establish the field for a force
rather than the local infinitesimal point charge assumed for
the classical field. We note that the relationship between
the modified potential U and Bohm’s quantum-mechanical
potential %, is given for and only for U < Eby U=V +%,,
where V' (x) is the classical potential.® For stationary states,
Halpern had noted!® that the constants of motion for
Hamilton’s principal function for continuous quantum
motion are not nontrivial integration constants. This is

manifested by U being an explicit function of 9.5/9t
Nevertheless, for stationarity we may still choose

2
n U(x,BS/at)+%= ) )

29

S=WI(x,E)+ Et, where W is Hamilton’s characteristic
function. The constant of the motion E may now be identi-
fied as energy. Then Eq. (1) may be expressed as
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where U is explicitly energy dependent. In order to deter-
mine a unique trajectory for a particle, x(¢), Eq. (1) or (1)
must be supplemented by the initial conditions and U must
be described. Keller* had given the initial conditions for Eq.
(1) explicitly and Eq. (1') by extrapolation as

x(0)=xp , 2)
S(X,E,0)=SU(X,E)= Wo(X,E) ) (3)

where S and W contain an arbitrary integration constant,
and

P(X,E,0)=Py(xE) , C))

where P, which is the amplitude factor for Bohm’s ansatz
for the wave function [i.e., Pexp(iS)], has been identified
by Keller* to be the ‘‘quantum-mechanical field”> and by
Bohm? to be the probability density.

Keller deduced first that P obeyed the equation of con-
tinuity of probability and consequently that if Py, which
represents the real quantum-mechanical field of some par-
ticular experiment, accidently represented the initial distri-
bution of x for some ensemble of experiments, then only in
this fortuitous case would Bohm'’s theory give probabilities
consistent with quantum theory.* In response Bohm evoked
many random interactions of large assemblies from the
theory of measurements that would rapidly and irreversibly
drive Ptoward an equilibrium distribution.® Since the initial
conditions for the hidden variables of a particular experi-
ment were in general arbitrary and different from those of
an ensemble of experiments, nonlocal hidden-variable
theory was believed to differ from quantum theory for the
transition period necessary to establish equilibrium condi-
tions of the hidden variables.>5-7 Furthermore, Bohm
speculated that for small domains of the order 10~ 13 cm
present theories may not be adequate.>?

However, in Bohm’s and Keller’s deduction it was as-
sumed that the conjugate momentum 9.5/0x was equivalent
to the mechanical momentum (i.e., ux) which is not so® in
general. As a result, P does not obey the equation of con-
tinuity of probability. This casts doubt on any conclusions
that nonlocal hidden-variable theory differs from quantum
theory for nonequilibrium conditions.

Keller also reported that while the classical trajectory is
uniquely determined by knowing 9.S5/9x at x=x,, for the
quantum trajectory Sy must be known for all x.* The partic-
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ular trajectory specifies the particular microstate of the
eigenfunction for the particle.?

Previously the set of hidden variables [xg,X¢,X¢], whose
initial values are necessary to specify a unique quantum tra-
jectory, have already been determined.® We now proceed to
show that this set is also sufficient and then to resolve
whether nonlocal hidden-variable theory differs from quan-
tum theory for nonequilibrium conditions.

The modified potential U is determined by®
12 92u/ox® . sw2 [ausex|
U+8” T U +32M E—U v, (%)

where % is Planck’s constant. From Egs. (1') and (5) we
may eliminate U to develop an alternative form of the
Hamilton-Jacobi equation for continuous quantum motion
expressed by

@W/8x)*  ,  p_ _ 12 ¥W/exX
2u tV-E 4 dW/dx
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In Eq. (6), 8 W/3x remains real. Equation (6) has a nodal
singularity where 8 W/9x — 0 as x— #*oo. The second and
third derivative terms on the right-hand side of Eq. (6),
which contain the nodal singularity, manifest the quantum
effect while the terms on the left-hand side of Eq. (6) are
the terms for classical motion. Thus the quantum effect
raises the Hamilton-Jacobi equation from a first-order dif-
ferential equation to a third-order differential equation.
With this alternate form, some of the confusion about the
initial conditions may now be resolved. As Eq. (6) is third
order, the sufficient set of initial conditions for determining
a unique solution becomes the following:

xo=x(0) , 2)
Wo(E)= W(x0,E) , (@)

where W contains an arbitrary integration constant,

dWo(E) _ aW(xE) ®)
dx dx -xp
and
2 Wo(E) _2W(xE) 9
ax2 dx? -xy

where Eq. (2) still stands but the initial conditions specified
by Egs. (3) and (4) are replaced by those of Egs. (7)
through (9). This relaxes Keller’s requirement that Eq. (3)
be known everywhere. However, Eq. (9) represents the ad-
ditional initial condition nescessary to describe quantum
motion vis-a-vis classical motion. These initial conditions
with a given energy specify the unique trajectories or, for
bound states, orbits that are microstates of the wave func-
tion.! As such, these initial conditions of hidden variables
form a sufficient set to specify continuous quantum motion.

The initial conditions for the set of alternate hidden vari-
ables [xo=x(0), xo=x(0), and Xo=X(0)] may be derived
from the equations for continuous quantum motion®

= dW/9x

T w(1—3U/BE) (10)

and

3= —08U/8x 20E-U) U
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Hence for given energy the set [xg,Xg,Xo] is not only nes-
cessary® but sufficient to specify unique quantum motion.
We note again that Eq. (10) manifests that the conjugate
momentum is not the mechanical momentum (.e.,
95/8x #= ux).2 With this set of initial conditions, x, and
9S5/9x at x = xo must be consistent in accordance with Eq.
(10). This had been a point of concern for previous work-
ers because the velocity at an initial point must be esta-
blished by Bohm’s quantum-mechanical potential.>»1® Now
we see that a modified potential may always be determined
from the set of initial values of the hidden variables which
includes the initial velocity as a member. Thus ‘‘the tables
are turned’’: the set of initial values of the hidden variables
determines the particular form of the modified potential.

For given energy the set [xg,x¢,X0], which is sufficient to
determine a particular microstate among the set of micro-
states for the Schrédinger wave function represents for sta-
tistical purposes a &-function distribution of the initial
values as shown elsewhere.® Thus a deterministic theory
may be obtained from quantum theory by assuming a &-
function distribution for the hidden variables which over-
comes Keller’s objections* on this aspect of Bohm’s
hidden-variable theory.

A conclusion that is the converse to the above is now
given. For given energy the arbitrary set of initial condi-
tions [xg,x0,Xo] is sufficient to determine a unique micro-
state of the Schrodinger wave function and its associated
particular modified potential. The Schrdédinger wave func-
tion may be recovered immediately from any one of the
particular modified potentials by itself as shown elsewhere.?
Accordingly there is no need to postulate an assembly of
many microstates of arbitrary initial conditions which must
interact randomly in order to achieve irreversibly in an ap-
propriate relaxation period a statistical equilibrium that is
consistent with the probability density of quantum mechan-
ics.®>-7 The individual deterministic microstates of an ener-
gy eigenfunction are always consistent with the probability
densities of quantum mechanics for that energy eigenvalue
regardless of the particular values of the initial conditions
and there is no need to bestow upon probability a role in-
herent to nonlocal hidden-variable theory. Furthermore, no
test can be devised to show any difference at any time
between a deterministic nonlocal hidden-variable theory for
an arbitrary set of initial conditions and quantum mechanics.
And finally, although quantum theory is not exhaustive, its
statistical predictions remain consistent with arbitrary initial
conditions and Bohm’s speculation®® for modifying the
Schrédinger equation to cover small domains (i.e., 10713
cm) is unnecessary.

Added note. Equation (6) also shows that the constant of
the motion E for a particle of mass u may be deduced in
one dimension if somehow V(x), d W/dx, 82°W/08x2, and
3 W/dx3 could all be evaluated at the same arbitrary point
x=1xp. This is in contrast with classical mechanics where
for time-independent conservative systems FE is a first in-
tegral of the motion and may be deduced by only evaluating
the potential ¥ and the conjugate momentum d W/dx both
at the same arbitrary point.
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