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Color confinement and the quantum-chromodynamic vacuum
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The bound-state problem in @CD is studied in the modified Tamm-Dancoff formalism. The con-
fining interaction is identified in momentum space as the vacuum expectation value of the instan-
taneous Coulomb interaction in the Coulomb gauge. If this vacuum expectation value is infrared
singular, then color is automatically confined. All colored states have infinite energy. For color-
singlet quark-antiquark and two-gluon states, the infrared singularity cancels out. The resulting
finite-energy bound-state equations produce an energy spectrum comparable to that produced by a
linear potential in the nonrelativistic Schrodinger equation.

I. INTRODUCTION

Now that quantum chromodynamics (QCD) has been
accepted as the theory of strong interactions, there
remains the problem of learning how to make meaningful
calculations. Two aspects of QCD have received particu-
lar attention. On one hand there is the effort to calculate
high-momentum processes where the theory becomes
asymptotically free and perturbation theory is expected to
apply. ' At the other extreme there are the attempts to
understand the hadronic particle spectrum. The funda-
mental fields of QCD are quarks and gluons, each of
which carries a color charge. The dominant feature of the
particle spectrum is the fact that all physical states are
color singlet. Free quarks and gluons do not exist. The
absence of colored states is summarized by the statement
that quarks and gluons are confined. This paper is an at-
tempt to formulate a theory for the confinement process
within the framework of QCD.

The lattice formulation of QCD has come the closest to
a first-principles calculation of the hadronic spectrum.
However, there is still a need for an analytic, as opposed
to numerical, understanding of the problem. The physical
picture based on two QCD vacuum phases is very attrac-
tive. A perturbative vacuum exists in regions of high
field strength. As a result, quarks and gluons appear as
nearly free particles when probed at short distances.
When the fields drop below a critical strength, there is a
transition to the true vacuum phase which expels color
flux. The analogy with the behavior of a superconductor
is obvious. Color flux is confined into tubes of finite cross
section. As the sources of the color flux are separated to
infinity, an infinite amount of energy is stored in the flux
tube. Although the details of this picture may not be
correct, the basic idea is that confinement is a conse-
quence of the structure of the QCD vacuum. There have
been a number of attempts to model the vacuum. What is
often lacking is a prescription that connects the properties
of the vacuum to the hadronic spectrum.

In this paper we start with the QCD Hamiltonian and
develop a plausible, quantitative connection between the
vacuum expectation value of a particular operator and the
confining potential in a set of relativistic bound-state
equations. The fact of confinement can be turned around

and used as a probe of the structure of the QCD vacuum.
The starting point is the Tamm-Dancoff method as
modified by' Dyson to incorporate relativistic effects.
The Tamm-Dancoff wave functions are the expectation
values of normal-ordered products of free-particle opera-
tors between the true ground state and an excited state.
The effects of interactions are introduced through equal-
time comrnutators of the normal-ordered operator prod-
ucts with the interaction Hamiltonian. The Coulomb
gauge is used to take advantage of the fact that only the
physical degrees of freedom are quantized, and there are
no residual gauge conditions to be imposed on states. In
addition, in the Coulomb gauge the interaction between
color charge densities is modified by vacuum effects in a
well-defined manner. The vacuum expectation value of
the modified Coulomb interaction is identified as the
source of confinement. Building on an earlier, more
ad hoc model, we assume that this vacuum expectation
value i's infrared singular. As a function of momentum
transfer, it diverges as q —+0 faster than (q )

~ . The
Tamin-Dancoff equations in momentum space are trun-
cated to the two-particle sector. The modified Coulomb
interaction contributes both to self-energy terms and to
scattering terms in the bound-state equations. When the
quark-antiquark pair is in a color-singlet state, the in-
frared singularity cancels between the two terms and leads
to a set of bound-state equations with finite energy. For
nonsinglet states of one or two quarks, the energy is infin-
ite due to the infrared singularity. Gluons exhibit the
same cancellation phenomenon in color-singlet states. An
immediate prediction of this model is that colored states
cannot exist.

In the next section, after a brief discussion of the
Tainm-Dancoff method, it is applied to the quark-
antiquark system. The Coulomb-gauge Hamiltonian is
written explicitly in momentum space, and the Coulomb
term is identified as the source of the confining interac-
tion. There are four two-particle amplitudes that are cou-
pled together in a set of integral equations. After demon-
stration of the infrared cancellation, two of the amplitudes
are absorbed into higher-order corrections that do not af-
fect the confinement process. The final analysis is carried
out in the center-of-momentum frame, although the valid-
ity of the equations is more general. Each approximation
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is identified and can, in principle, be tested for self-
consistency once solutions of the final equations are avail-
able. The third section is devoted to the study of gluon
bound states. Each step in the discussion of quark states
has an analog in the analysis of two-gluon states. The fi-
nal result is a finite-energy bound-state equation for mass-
less gluons in a color-singlet state. The fourth section is
concerned with verifying that the bound-state equations
do indeed produce a discrete spectrum of bound state for
reasonable values of the QCD coupling constant and the
scale parameter that enters through the vacuum expecta-
tion value of the Coulomb interaction. The Appendix
deals with the details of reducing the quark and gluon
equations to a tractable form through the use of an angu-
lar momentum expansion of appropriate scalar, vector,
and tensor amplitudes.

(H, +H, )
~

e) =E
~

e) . (2)

The free part of the Hamiltonian describes noninteracting
fields. The Tamm-Dancoff wave functions are defined by

q/» ——(%o
~

C(N')A(N)
~
4),

II. BOUND-STATE EQUATIONS FOR QUARKS

The proper description of quark bound states in QCD
requires a set of equations which are derived from field
theory and which account for relativistic effects. More-
over, since it is impossible to solve the theory exactly, the
equations must lend themselves to a set of approximations
which can be justified. The Bethe-Salpeter equation has
long been favored because it is manifestly covariant.
However, the price of covariance is a relative time coordi-
nate which complicates the analysis and is usually set
equal to zero. The Bethe-Salpeter equation is tractable
only in the ladder approximation, an approximation
which is motivated more by the requirement of solubility
than the physics of the problem.

Here we use the Tamm-Dancoff method as modified
by Dyson to remove the vacuum energy and to include
the effects of annihilation and antiparticles. If

~

'I'o) is
the physical ground state and

~

ql) is an excited state of
energy E, then

(Ho+HI)
~
%o) =Eo

l

'Ilo~

where C(N') is a product of creation operators specified
by N' and A(N) is a product of annihilation operators
specified by X. The physical energy, E=E—Eo, is calcu-
lated from

E@»= &Wo
I
[C(N')A(N), Ho+HI] (4)

The commutator of C(N')A(N) with Ho is easily evaluat-
ed; it is just the sum of the free-particle energies of the an-
nihilated particles minus the sum of the free-particie ener-
gies of the created particles. Thus, (4) becomes

N'

E gw(k—;)+g w(k; )

+ —,
' f d'p

i Ã I +[~2.(p)~2(p)+~2. (p)~~(p)]

Color indices are suppressed. The quark energy is
w(p)=(p +m )' and p=

~ p ~

is the gluon energy. The
operator b„;(p ) [d„.( p )] creates a quark [antiquark]
of momentum p, color index i, and spin projection r;
a2 (p) creates a transverse gluon of momentum p, polari-
zation A, , and color index e. The interaction part of the
Hamiltonian is

=('eo~ [C(N')A(N), H ] t
1II) . (5)

When the commutator on the right-hand side (RHS) is ex-
panded in a sum of terms with creation operators on the
left-hand side (LHS), the result is an infinite set of cou-
pled integral equations for the amplitudes 0'&&. In prac-
tice, the equations are truncated to produce a finite set of
time-independent bound-state equations. '

To apply these equations to quarks, we start with the
QCD Hamiltonian in the Coulomb gauge in momentum
space. The Coulomb gauge is used because only the
physical degrees of freedom are quantized; there are no
residual gauge conditions to be imposed on the states.
Moreover, in the Coulomb gauge, there is an explicit
mechanism by which the Coulomb interaction of ordinary
QED is modified to produce a confining interaction. In
addition the Coulomb interaction has the spinor structure
that produced confinement in earlier work.

The free QCD Hamiltonian is

Ho= f d'p w(p) g [b„(p)b,(p) —d, (p)d, (p)]

where

3,/2 f,/2 5 (P1+P2+P3)fabaA+(P1) A+(P3)P1 A+(P2)
[g(2 )3]1/2 ( )1/2

+ ', f »2 & (P1+P2+ P3+ P4)fabafadeA+(P 1) A+(P3)A+(P2) A+(P4)
(P 1P2P3P4)'"

+ 3 1/2 1/2 J (p).Aa+(p)+ d p1d p2Ã'(p1)Fgb(p1, p2)IC (p2),
g(2n. ) d p —, -, g (2m) 3 3, b

[2(2~)3]1/2(p)1/2 2
(7)

+(P)= g [&Z(P)~2.(P)+&a( —P)~2, ( P)]

and e~(p ) is a polarization vector transverse to p. If
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f(p)= g [b,(p)u, (p)+d, ( —p)v, ( —p)],

the current J '(p ) is the three-vector part of the four-vector

d Pl

[w(q)w(q —p)]'
The gluon charge density is

L'(p)= d q2(2'lr)'
~ P+q

~

1/2

f,b, A (q).A' ( —p —q),

and

F,b(pl, p2) = J d k D«( pl, k)k D,b(k, —p2), (11)

5„5(p+k)
D„(p,k)=

p (2m. )

f~, d q p A+(p —q)D„(q, k)
+lg

p [2(2m. )
i p —q i

]'i
(12)

Since the quark creation and annihilation operators satisfy
the usual anticommutation relations, I b, ( p ),b, ( k ) I

=5ss5 (p —k}, calculation of the commutator in (5} is a
straightforward, though lengthy, process.

There are four two-quark wave functions which have
the quantum numbers of the quark-antiquark system. We
choose them to be

eg(kl~k2)= gus(k2)&%P
~
d„(kl)bs(k2) ~% )Up(k )1

r, s

(13a)

CsB(kl k2} g Vs(k2}&'IIo
I
bs("i}ds("2)

I
+&&r(ki)

r, s

(13b)

@c(ki,k2) = g us(k2) & +o
I
b, (k1}b,(k2}

l
%') u (k, ),

r, s

(13c)
I

[E—w ( k 1 ) —w( k2) ]@~( k 1, k2)

and the total charge density is

&'(p) =Jp(p)+&'(p) .

The modified Coulomb interaction is described by
Fab( P l~ P2)s

~'D(klan

k2) = g vs(kl) & +o
I ds (1 1}d„(k2)1%')v„(k2) ~

(13d)

The external spinors have color indices as well as spin in-
dices. Each @„(k1,k2) is a 4 X4 matrix in spin space and
a 3X3 matrix in SU(3) color space. The wave equation
for 4z requires the commutator of d„(kl)b, (k2) with HI.
When the commutator is normal ordered, there will be
terms with the two-quark and four-quark operators as
well as terms with gluon operators. The two-quark sector
is coupled to the four-quark sector which is in turn cou-
pled to the six-quark sector, and so forth. Our first ap-
proximation is to keep only two-quark amplitudes so that
the system of equations close. The physical assumption is
that while multiquark states are important, confinement is
a consequence of interactions between quark and the QCD
vacuum and is insensitive to the multiquark component of
the states. This approximation could be checked by calcu-
lating the overlap of two-quark bound-state amplitudes
with four-quark amplitudes which are composed either of
free quarks or a pair of two-quark bound states. Our
second approximation is to drop contributions from states
with physical gluons. Again the argument is that while
the actual energy levels may be sensitive to such terms, the
fact of confinement is not. The final approximation is to
replace the modified Coulomb interaction defined by (11)
and (12) with its vacuum expectation value in the physical
vacuum. This is a natural step, since confinement, if it
occurs, is a consequence of the complicated structure of
the QCD vacuum. In this model confinement is produced
by two charge densities interacting via an instantaneous
Coulomb interaction that has been modified by vacuum
processes. Only the last term in Hi is relevant for con-
finement, X'( p ) is replaced by Jp ( p ), and the operator
F b(pl, p2) is replaced by the function F,b(pl, p2).

The modified Tamm-Dancoff equations for the func-
tions C„(kl, k2) are

' 1/2

= —A+(k2) I,b
w(ki)w(k2)

w(kl —pl)w(k2 —p2)
~ [~A(kl Pl k2 P2)+@B(P1 klip2 k2}

@c(pl klik2 P2} CD(P2 k2~kl Pl)]~
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+ ~I b
w(kl) [~.(kl-pl —Pz, kz}+~c(p1+P.-kl, k.}]

w( k 1
—p 1

-Pz)

X Ay[A (kl —pl) —A+(kl —pl)]A,, A (kl)

+ —,
' A+( kz)I,g

w(kz)

w(kz-pl —p»
A,, [A+(kz —pl) —A (kz —pl)]Ay

X [@~(k1, kz —P 1
—Pz) —@21(P1+Pz —kz, kl)]

[E+u (k, )+u (kz)]e, (k, , kz}

=A ( —kz) 'I,g
w(kl)w(kz)

w(k 1+pl)w(kz+ pz)

1/2

~'[@'~(—Pi —kl —Pz —kz)+@21(P1+kl Pz+ kz)

b+ ec(pl+ kl, —pz —kz) —eg)(pz+ kz, —pl —kl)]i, A+( —kl)

1——,A ( —kz)I, b

w(kz+ pl+ pz)

1/2

A, '[A ( —kz —pz) —A+( —kz —pz)]&"

X [&&g(kl, kz+pl+pz)+@c(kl, —pl —P2 k2}]

1

2 Jab
w( k 1)

w( k 1+P, + Pz)

' 1/2

[~8(kl+ Pl+ P2 k2} @D(k2 Pl P2 kl}]

x A,'[A+( —kl —pz) —A ( —k, —pz)]A~ A+( —k, ),

[E+w(kl) —w(kz)]Ac(kl, kz)= TA+(kz)I, g
w(kz)

A;[A+( kz —p 1 ) —A ( kz —p 1)]A,

X N'c(ki kz —Pi —Pz)+4's(ki Pi+Pz —kz}l

w(kl)

w(kl+ P 1+Pz}

1/2

[@c(k1+P 1+Pz kz)+@~(—kl —P 1
—Pz kz}]

X A,'[A+( —kl —pz) —A ( —k 1
—pz)]lb A+( —k, ),
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[E+w(kl) —w(k2)]C D(kl, k2) = ——,A ( —kl)I,b
w(k 1)

w(k1+ Pi+ P2)

' 1/2

A;[A ( —k 1
—pl) —A+( —ki —pi)]A,

+ [@D(kl+Pl+ P2~k2} @A {k2~ kl P 1 P2}]

w(k2)

w(k2 —pi —P2)

' 1/2

[@D(ki k2 —Pi —P2}—@s(pi+ P2 —k2 ki}]

X A.'[A (k2 —pi) —A+(k2 —pi)]A, A (k2), (17)

where

I b[G b(P1 P2}l

=g (2~r) f d pid p2Fab{ P li P2}Gab{P l~ P2) .

w(k)+yp(y k+m)
A+(k =

2w(k)

u(k)u(k)yp
w(k)

u(k)u( —k) .
w(k)

A (k}=1—A+(k)=
w(k}—yp(y k+m)

2w(k)

(18a)

ypu(k)u(k)
w(k)

u( —k)u(k) .
w(k)

(18b)

The energy projection operators arise naturally in the
evaluation of the commutators. The yp is supplied by the
vector nature of the effective Coulomb interaction. Only
in the Coulomb gauge do the equations have this com-
paratively simple form. The projection operators match
the properties of the @„(kl,k2). For example, from (18),
{13a),and {13b)we see that

A+(k2)@g (k 1,k2)A ( k 1)=@g( k 1,k2),

A (k2)N~(ki, k2)=@g(ki, k2)A+(ki)=0,

In these equations A,
' is an SU(3) matrix normalized so

that g, A, ,~A~~ = —25J51~/3+25~5J&. The matrices

A+(k) and A (k) are positive- and negative-energy pro-
jection operators:

A ( —k2)C's(ki, k2)A+( —ki)=C'21(ki, k2),

A+( —k2)@s(ki, k2) =@21(ki,k2)A ( —ki) =0 .

The projection properties of @c and ND can be deduced
from those for Nz and 421.

The integral terms in (14}—(17} are of two types. In
(13) and (14) the factor @„(ki+pi,k2+ p2) indicates that
the two quarks scatter off each other. The scattering
terms cancel out of the equations for 4c and @D. The
other integrals are self-energy interactions that affect only
one of the quarks.

To proceed further, we need information on the func-
tion F,b(p„p2). Drawing on earlier work, we assume
that in F,b(pl, p2) there is a piece which is color conserv-
ing, momentum conserving, and infrared singular. The
color and momentum properties are prescribed by a
color-singlet and translationally invariant vacuum,

5,
, 5'(p 1+02}F(pi) . (19)

(2~)'
To lowest order in g, Fab(p»p2} is a pure Coulomb in-
teractjon and F( p )= 1/p . The condition that F( p ) is in-
frared singular implies that as p —+0, F(p)~p " where
yg & —', .9 For large p, F(p) is expected to approach 1/p .
Large p corresponds to small distances where vacuum
screening should be unimportant. Renormalization via
mass and wave-function counterterms in HI will control
ultraviolet divergences to order g . Since we are interested
in the confineinent mechanism, we assume that the large-

p behavior of F(p) is such as to render all integrals ultra-
violet finite. If —,

'
& n & —', , the singularity at p =0 can be

controlled by a single subtraction, 9

F(p) =F(p) —p5'(p)+p5'(p)
=F(p )+p5'( p ) . {20)

The function F(p) is infrared finite and p is an infinite
constant that must cancel out if the equations are to pro-
duce finite energies. When (19) and (20) are combined,
Eq. (14) becomes

[E w( k 1 ) —w( k2) ]—@z( k „k2)= op[ —A, '@z ( k 1, k2)A, '+ —,@z( k „k2)A,'A, '+ —,A, 'A, '4„(k 1, k2) ]

+ finite terms, (21}
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with a a constant. The projection operators remove the @~, @c, and Nzi amplitudes. The color properties of N~ now
come into play. For SU(3) @~ describes a quark and an antiquark which can either be in a singlet state or in an element
of the eight-dimensional regular representation. If @~ is a singlet, (21) is automatically satisfied. If C&z belongs to the
regular representation, the only finite-energy solution to (21) is C&z ——0. Thus, there can exist bound states only for
color-singlet configurations of a quark and an antiquark. This result depends on the exact cancellation of the infrared
singularities between the self-energy and the scattering parts of the equations. Additional calculations show that there
do not exist finite-energy quark-quark states. The first prediction of this model is that if finite-energy bound states exist,
they Inust be color singlets.

The infrared-singular terms in Eq. (15) for 4zi drop out if 4z is a color singlet. The equations for 4c and 4D are au-
tomatically satisfied. In fact, when (19) is used for F,b(pi, pz), the @c and @zi equations become algebraic. For color-
singlet amplitudes

[E+w(ki) —w(kz)]Wc(ki, kz)
2

f d pF(p)A, 'A, 'I A+(kz)[A+(kz —p) —A (kz —p)][4c(ki, kz)+@zi(ki, —kz)]
2(2n )

(22)
—[ec(ki, kz)+e„(—ki, kz)][A+( —ki+p) —A ( —ki+p)]A+( —ki)] .

The @D equation is similar. Since both @c and @D are algebraic functions of @~ and @zi, they can be explicitly elim-
inated from the equations for @~ and 4&zi. The new terms of order g are comparable to the four-quark terms that have
been neglected. Hence, we drop the g contributions due to Nc and ND. Given a solution of our final equations, it is
possible to calculate the error involved in this approximation. There is one final step before we write down our final
equations. Since the infrared singularities cancel for color-singlet amplitudes, F,i, (pi, pz) is replaced everywhere by (19)
with F( p ) in place of F(p ). When (14) and (15) are properly renormalized, part of the self-energy effect is absorbed into
the physical mass. The residual momentum dependence will not affect the existence of finite-energy bound states.

The final equations for the quark-antiquark simplify in the center-of-momentum frame where ki ———kz ———k. (In
principle, the equations could be studied for arbitrary total momentum. ) If %z ( k )=@q ( —k, k ) and
0'zi(k) =C&~(k, —k),

[E—2w(k)]%~(k)= f f d pF(p ——k) A+(k)[%~(p)+0'~(p)]A ( —k),
w(p)

[E+2 (wk)]V (ski)=f f d pF(p —k) -A (k)[%z(p)+0'~(p)]A+( —k),
w(p)

where

g2

3 (2n. )

(23)

(24)

These equations describe energy levels of permanently confined quark-antiquark pairs in color-singlet states. In Sec. IV
we discuss the problem of solving (23) and (24) to demonstrate confinement.

It is possible to go through the development of this section for a single-quark state. Although ultraviolet divergences
are controlled by renormalization, the infrared divergence remains and gives single-quark states infinite energy.

III. GLUON BOUND STATES

A theory which binds quarks into color-singlet hadrons does not necessarily bind gluons and produce glueballs. It is
possible to extend the analysis of the previous section and study gluon bound states. The only additional assumption
that needs to be made is that the Coulomb term also dominates gluon-gluon interactions at low momentum transfer. We
consider two-gluon amplitudes, use only the Coulomb part of HI, and retain just the two-gluon terms in the commuta-
tor. Again it is possible, given a solution, to estimate the effect of neglected terms. The three Tamm-Dancoff wave
functions are

~"i~d "i kz) = g &'Po
I
~'(ki)&."(kz)

I
+&& (ki) &.(kz)p, (25a)

C'z 8"i "z)=g &+oI &' (ki)u ("z) I'P&&'("i) &'(kz)p, (25b)

@3 ski kz)= Q &Po
~

&' (ki)& (kz)
~

'P&&*(ki)~~ (kz)p (25c)

Since FIq contains several gluon interaction terms, the justification for the approximation of singling out a particular
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term and keeping just two-gluon pieces from the commutator rests on the hypothesis that the mechanism for gluon bind-
ing is similar to the mechanism for quark binding. " Explicitly gluon charge densities (9) interact via the modified
Coulomb interaction (19).

The Tamm-Dancoff equations for the gluon wave functions are

(E—kl —k2)@laP(kl, k2) = Pa—y(k 1)PP5(k2)Icd
f-.fhdg

(kik21kl Pl I I
k2 P2 I

)'"

)& [ (kl+
I

kl —pl I
)(k2+

I
k2 p21 )@~ly5(ki —pi, k2 —p2)

+(kl
I
ki —Pl I )(k2

I
k2 P21 )@2y5(P1 ki»P2 k2)

+«1 —
I
k i —Pi I

)«2+ I
k2 —P21)@'3;5(P1—k i, k2 —P2)

+ (kl+
I
kl Pl I

)(k2 I k2 P2I ) Ny(P2 k2 kl Pi)l

Pae—( k 1 )Icd 'fachfhdePey( k 1
—P 1) I 1+ @lyP(kl Pi —P2»k2)

pi

@3 P( P 1+P2 kl» k2)

1
Pp, (k2)Ic—d f«e fhdgPe5(k, p, ) 1M2—+ @a5(k „k,—p, —p, )

P2

+ P2-
P2

43Sa( P 1+P2 —k2» k 1 ) (26)

where

pi=
I
ki —pi I

i(ki
I
ki —pi —p21) and p2 I

k2 p21i(k2 I k2 pl p2 I

&'" '

(E+k 1 + k2)e2aP( k 1» k2) =Pay( k 1 )PP5( k2)Icd
f-.fhdg

(kik2
I kl+pi I I k2+p2 I &

X [(k1+ I
ki+ P 1 I )(k2+ I k2+ P21)@2y5(k 1+P 1» k2+ P2)

+«i —
I ki+Pi I )«2 —

I k2+Ã2 I )C'lys( —ki —Pi —k2 —P»

+(ki —
I
ki+ pl I )(k2+ I k2+Ã2 I )Ray(k2+ P2» —kl —Pl)

+ (ki+
I ki+Pi I

&(k2 I k2+P21)@3y5(kl+Pl» k2 P2)l

r r

b+Pae(kl)Icd 'facgfgdePey(kl+Pl) Vl+ 42yP(kl+P1+P2, k2)
Vi

b+ Vl 4 3p (k2, —kl —k2)
1

1
+PPe( k2)Icd fbdgfgcePey( k2+ P2) +2+ @2ay( kl» k2+ P 1+P2)

V2

r

ae+ vi @3 y(kl k2 Pl P2)
'V)

(27)
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where

vl I kl+Pl I
~(kl

I kt+P1+ P21 )'" and v2=
I
k2+ P21 ~(k2

I
k + P1+ p21

)'"

(E+k1 k2)@3 p( k 1 k2) = P,( k 1)led fachfhdePey( k 1+P 1 ) vl @lpy( k2 k 1 PI P2)
V]

+ vi+ C 3yp(kl+ Pl+ p»k2)
V&

—Pp, (k2)I'd fa gfgd. .P.y(k2 P2) lM2+
aeC3 (kl k2 Pl P2)

p

+ P2 @2 y(kl Pl+ P2 k2)
P2

(28)

P p(k) =5 p
—k~kplk is the spin-1 projection operator (P~p@pyPys =@~s). There are scattering and self-interaction

terms for @1 and 42 but only self-interaction terms for @3.
Each step in the reduction of the quark wave equations has its counterpart in the gluon sector. The infrared singulari-

ty from the scattering terms cancels against the self-energy parts for color-singlet amplitudes. Thus, the finite-energy
gluon bound states must be color singlets. When (19) is used for F,h(pl, p2), Eq. (28) becomes algebraic. @3 is a func-
tion of C&1 and N2 and induces a g correction in the integral equations for @1 and @2. We drop this term as we did for
quarks. Residual finite self-energy contributions are dropped. In the center-of-momentum frame with

%1(k)=4&1(k, —k) and %2(k) =@2(—k, k), the infrared-finite equations for color-singlet gluon wave functions are

(E—2k)%'1 p(k)= f' f d'p —P y(k)Pps(k)[(k+p)'+lys(p)+(k p)'ip—2ys(p)],
pk

(29)

(E+2k)+2 p(k)=f' f d P P y(k)Pps(k)[(k+P)'P2ys(P)+(k P)'+l—ys(P)],
pk

(30)

where f'= 3g l4(2m) . In the next section these equations
together with the corresponding quark equations are stud-
ied to determine if they produce a sequence of finite-
energy bound states.

IV. THE ENERGY SPECTRUM

The finite-energy equations for color-singlet configura-
tions of quarks or gluons have a deceptively simple ap-
pearance. For quarks, the energy projection operators
reduce the sixteen components of %z and %~ to four in-
dependent components for each. To demonstrate confine-
ment, we need to solve coupled three-dimensional integral
equations for eight amplitudes. When the functions are
expanded in partial waves, parity conservation reduces
(23) and (24) to sets of two, two, and four coupled equa-
tions in one variable. The angular momentum expansion
reduces the gluon set from eight coupled integral equa-
tions to a more manageable two, two, and four. The de-
tails of the wave-function decomposition and angular

I

momentum expansion are given in the Appendix.
The singular nature of the interaction creates additional

problems in any numerical treatment of the equations.
F(p) is regular at p =0, but the subtraction procedure is
cumbersome in practice. If we choose

(~2)n —1

F(p)= lim
1-O (P'+P')" (31)

I (n ——', )
lim yl3t2 (+2)n —ip3 2n—

0 I'(n) (32)

If n ~ —,, p is infinite. The explicit subtraction procedure
is avoided by calculating the Fourier transform of F(p)
from the Fourier transform of (31):

with A a parameter with dimensions of mass, then the
divergent constant p in (20) is

p= f d'pF(p)
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(A )" '2m. d r;-.-, rF(p ) = lim e' i' ' '
p r(n) (2m)' 2p

3/2(A2)n —i (Pi ——)r( ——yi ) d 3

p2n —3 r(n) (2m. )

n —3/2

K„3&&(pr ) —p

3p. ei p- r&2n —3

4m
(33)

Thus, when —,
'

& n & —,, the interaction is equivalent to an
infinitely rising potential. In general F( p ) will have other,
shorter-range, terms, but we are looking for confinement,
not a detailed fit to the hadronic spectrum. The Fourier
transform in (33) is well defined only when used with rap-
idly converging functions.

When the quarks are very massive, the expansion
w(p) =m+p /2m together with E=2m+e reduces (23)
and (24) to the nonrelativistic Schrodinger equation with
an infinitely rising potential. In that limit, quark confine-
ment is obvious. However, the legitimacy of the expan-
sion in powers of p /m must be justified. Moreover, no
such expansion is available for massless gluons or for very
light quarks. We explore two complementary approaches
to the problem of solving the bound-state equations. The
lowest energy levels are calculated variationally. ' An
inner-product operation is defined such that the equations
are generated by a variational principle. A set of linearly
independent functions with arbitrary coefficients is used
to produce a sequence of upper bounds on the energies of
the system. The signal of confinement is rapid conver-
gence to a set of discrete energy levels that are both
nonzero and unbounded from above. A possible contrary

I

I

result would be levels which all converge to zero energy.
In that case there would be a continuous spectrum rather
than the discrete spectrum that is expected from a confin-
ing interaction. The semiclassical approximation is used
to prove analytically that the spectrum is discrete and un-
bounded from above for both quarks and gluons. There is
quantitative agreement between the variational and semi-
classical calculations.

When the constituents are light, they should be we11

separated in space so that the long-range part of the po-
tential dominates the interaction. Thus, a final check on
the consistency of our calculations is an order-of-
magnitude comparison of the scale parameter in our linear
potential with the values used in more quantitative calcu-
lations.

A complete discussion of all possible combinations of
quarks or gluons would be overwhelming. Instead, the de-
tails of the angular momentum decomposition are relegat-
ed to the Appendix. Our variational procedure is sketched
for the simplest set of quark equations. When the quark
and antiquark are in a spin-0, orbital-angular-
momentum-0 state, we have from (A10)

(34a)

(34b)

ER+(k) —2w(k)R (k) = 4vrf f p dp—Fp(k,p)R (p),
2d

ER (k) —2ip(k)R+(k)= 4~f f —[m Fp(k,p)+kpFi(k, p)]F+(p) .
wow k

There is no easy way, based on its definition, to create an inner product for the Tamm-Dancoff wave functions. Howev-
er, if

and

R
'II =

+

2w(k) —EI= f k dkVt(k) E 2 k %(k) 47rf f k dk f—P dP +t(k)
Fp(k,p)

0
m Fp(k,p )+kpFi (k,p )

4(p),

w (k)ip (p)

(35)

then variation of I with respect to %t(k) produces the in-
tegral equations in (34). It is possible to use a set of trial
wave functions in I and generate a set of upper bounds on
the energy E. If the infrared-finite interaction is given by
(33), the partial-wave projection of F( p —k) is equal to

FJ(p, k)= —iI f r dr r " j&(pr)jj(kr) . (36)

For massive quarks we choose the variational wave func-
tions,
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FIG. 1. The energy levels for massive S-wave and P-wave
quarks are calculated for increasing X, the dimensionality of the
variational wave function. Solid lines are for S waves and the
dashed lines are for P waves. The energy is in units of the quark
mass and the effective coupling constant is set equal to unity.

I i I

4 5 6 T 8 N

FIG. 2. The energy levels for massless S-wave quarks are cal-
culated for increasing N, the dimensionality of the variational
wave functions. The energy is scaled by the coupling constant
which has dimensions of (mass) .

N C„—
R+(k)=

( l+I 2/ 2)n+3/2 (37)

X+
X

the variation of

with X+ ——X&+Xz,

so that the integrals can be evaluated analytically. The
formally divergent transform in (36) becomes finite if we
insist that all momentum-space integrations are done be-
fore the r integration. The expansion constants are fixed
by the requirement that the energy is a minimum. In Fig.
l we plot (energy) versus N, the order of the approxima-
tion for n =2, a linear potential. Convergence is rapid,
and the discrete-energy-level structure is exactly what
would be expected in a confining theory.

Confinement means that the quark and antiquark
should have a similar set of bound states for any spin and
angular momentum configuration. The I =1, spin-0 lev-
els are also shown in Fig. 1. Even more interesting is the
spectrum for massless quarks. There could be a continu-
um of states starting at E=0 in the absence of a quark
mass scale. In fact, for massless particles, the energy scale
is set by the mass scale from the confining interaction [see
(33)]. The trial wave functions for inassless quarks are

E2

27—

I8—

(I) g C+ +
e

—ak/A+ n (38)

and a is an additional variational parameter. The results
for massless quarks appear in Fig. 2 for n =2, a linear po-
tential. The convergence is rapid, and there are discrete
energy levels comfortably separated froin E=0.

Except for kinematic differences, the gluon equations
are similar to the massless-quark equations. If

I

8 N

FIG. 3. The energy levels for massless S-wave gluons are cal-
culated for increasing X, the dimensionality of the variational
wave function. The energy scale is arbitrary, it is fixed by the
dimensional coupling constant. !n configuration space the con-
fining interaction is linear.
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2k —EI= f k'dk%t(k) E 2k %(k)

k

2Fp(p, k)+F2(p, k )+8nf'f k dk f p dp (39)

with respect to 4't produces the J=0 limit of (A19). The variational wave functions are given by (38), and the results
appear in Fig. 3. The spectrum is basically the same as for massless quarks.

The calculation of energy levels in the semiclassical limit follows closely the methods developed to study the
Schrodinger equation with relativistic kinematics. ' The apparent complexity of the quark and gluon equations is due to
spin. However, the analysis is still quite straightforward. Reference 13 should be consulted for details and for justifica-
tion of the steps which are outlined here. For quark-antiquark bound states the starting point is (A10) which can be
rewritten in the form

E2 2

w(k) — R (k)= nEf f [m Fz(k,p)+kpKJ(k, p)]R+(p)wpwk

+2mf f p dpw(k)FJ(k, p)R (p), (40a)

Q2
w(k)' — R+(k)=~Ef f p dpFg(k, p)R (p)

+2mf f [m Fq(k,p)+kpKq(k, p)]R+(p),
w p

(40b)

where Fz(k,p) is given by (36) and Kz(k,p) is defined by (A13a). When configuration-space amplitudes are introduced
via

R+(r)= f p dpjq(pr)R+(p),

the complete configuration-space integral-differential equations are

(41)

d 2 d J(J+1)
r r dr r2

R (r)= 2rif f k d—k f R dRR2" f p dp f r' drj'z(krj)z(pr')

X m jq(kR j)z(pR )+kp jz+, (kR )jz+ &(pR )
J+1

wpwk 2J+1

+ kp jJ,(kRj)J,(pR) R+(r')J ~ J
2J+1

+ 2w(k)[j~(kR j)z(pR )]R (r') (42a)

d' 2 d J(J+1)
dr2 r dr

+ r2 R+(r)= —2gf f k dk f R dR R " f p dp f r' drj'j(krj)q(pr')

X E[jz(kR j)z(pR )]R (r')

+ m jq(icr)JJ(pR)+kp jz+&(kRj)J+&(pR)
2 k. J+1

w p 2J+1

+ kp jJ,(kRj)z, (pR ) R+(r')J J
2J+1 (42b)
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P=Eikr+eikR+e3pR+eqpr'+o(r'), (44)

and each e;=+1. The requirement that o''=der/dr be
positive and P be stationary as a function of the four vari-
ables k,p,R,r' fixes 6'y = —62=6'3= —E4= 1, r'=R =r,
and p=k=o'(r). The integrals are evaluated around the
stationary point to generate

J{J+1)
m +o. —io. + r'

ICT

—(m +o.' )'~ U(r)U(r)—
2 r

(45a)

, 2 . „J(J+1)
m +o.+ —io++ r2

E2 +

= ——U(r)
2 r

iver+

—(m +o.'+)'~ U(r) (45b)
r

where U(r)=m gfr " . In the semiclassical approxima-
tion cr' »o". In addition to be consistent with (43), we
drop J(J+1)/r on the LHS of Eqs. (45), although it was
shown in Ref. 13 that a better approximation is obtained
if instead J(J+1)lr is added to o' on the RHS of Eqs.
(45). The solution of Eqs. (45) has o.+ ——o =cr, and

E2
(m +o' )+U(r)(m +sr' )'~ = — U(r) . —(46)

4 2

From this expression we obtain
' 1/2

[E—2U(r)]
4

(47)

The quantization condition for energy levels is
rf o'(r)dr =n(M+ —,

' ),
where r+ is the turning point defined by cr'(r+)=0,
U(r+)=E/2 —m. Since we are interested in both E and
M large, the mass factor can be dropped. For a linear in-
teraction with mass m =0, the turning point is at
r+ E/2n. rjf, and (48) b—e—comes

r E2
(E 2n gfr)dr = =nM—

0 8m2gf

ol

E =8m gfM . - (49)

The semiclassical approximation enters when we write
R+(r)=exp[icr+(r)]/r and replace the spherical Bessel
functions by their asymptotic form

ikr —i m.J/2 —ikr i m.J/2jq(kr) = (43)
2skr

an approximation that is valid when kr »[J(J+1)]'
The integrals are evaluated in the stationary-phase ap-
proximation. In each term of the integrals in (42) there is
a product of four spherical Bessel functions. When each
of the four is approximated by (43), there is a sum of six-
teen phase factors, the variable parts of which have the
orm

Egg 32m gf'M——= ,'8m gfM— (50)

and E~ =3E /2 in this limit. The curves in Fig. 3 corre-
spond to 4m' =0.1. .

No attempt has been made to fit actual hadronic or
glueball states. The emphasis of this paper is on the con-
finement process, and it is clear that the equations pro-
duce confineme~t. There are other, less singular, terms in
F( p ) which must be included before one seeks to compare
the details of the spectrum with the real world. However,
there are comparisons that can be made. If the lowest
quark-antiquark bound-state energy is adjusted to be on
the order of 1 GeV, then the strength of the linear poten-
tial is fixed and can be compared with the linear potential
used in other calculations. If that strength is denoted by
p, we obtain p=g A /4n. =5.2)&10 GeV. In the non-
relativistic limit of (23) and {24) the coefficient of the
linear potential is fixed such that V(r) =npr/2. Eichten,
Gottfried, Kinoshita, Lane, and Yan' in their charmoni-
um fits use p=1.16&&10 ' GeVz, a factor of 2.2 larger.
If we use the r ' potential from Ref. 14 we can extract a
value of g /4+=0. 39. Combining this number with the
value of p, we calculate the scale mass A to be on the or-
der of 0.65 GeV. The final comparison we can make is to
note that the ratio of the mass of the lightest pseudoscalar
meson to the lightest glueball is 0.6. All of these numbers
confirm the fact that our picture of confinement is
phenomenologically reasonable.

V. CONCLUSIONS

The modified Tamm-Dancoff method has been used to
study bound states in quantum chromodynamics. Starting
with the QCD Hamiltonian in the Coulomb gauge, we de-
rived homogeneous integral equations that describe both
quark-antiquark and gluon-gluon color-singlet bound
states. In the course of the derivation several approxima-
tions were made: (i) The moinentum-space equations were

The curves in Fig. 1 are plotted for 2m. qf = 1 and should,
for large M, match E =4aM. Remembering that M
starts with M =0, we find that the agreement between the
variational and semiclassical calculations is better than
1% for s waves at M=3,4. The variational calculation in
Fig. 1 is not accurate for larger M due to the limit on the
number of parameters in the variational wave function.
The curves for massless quarks in Fig. 2 are for 4m' =1
and the agreement with (49) for the spacing is good.

The semiclassical method can be extended to the
quark-antiquark states described by (A 1 1) and (A12). The
asymptotic energy spectrum in both cases is given by (49).
The energies of the highly excited states are independent
of spin as is expected in a confining theory.

The structure of the gluon equations is nearly identical
to that of the quark-antiquark equations. In the semiclas-
sical limit the four coupled equations in (A19) separate
into two identical sets of coupled pairs of equations. The
kinematic factors which distinguish gluons from quarks
drop out in the stationary-phase approximation since
p=k=cr'. The energy eigenvalues are given by (48) with
cr' fixed by (47) with m =0. U(r) is scaled by a different
coupling constant. When M~ op and E—+ cc
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truncated to the two-particle sector, (ii) the modified
Coulomb operator was replaced by its vacuum expectation
value, (iii) higher-order interactions were dropped, and (iv)
the vacuum expectation value was identified as the source
of the confining potential, and other terms in the Hamil-
tonian were dropped. Except for the replacement of the
operator by its vacuum expectation value, these approxi-
mations are, in principle, subject to quantitative justifica-
tion. Confinement is produced by an assumed infrared
singularity in the interaction, a singularity which produces
infinite energy unless the constituent particles are in a
color-singlet state. ln that case the singularity cancels be-
tween the scattering and the self-energy terms in the
bound-state equations. Both a variational calculation and
a semiclassical calculation demonstrated the existence of
finite-energy bound states. Hence, the hadronic spectrum
was connected directly to the properties of the QCD vac-
uum through the vacuum expectation value of the modi-
fied Coulomb interaction.

This calculation is not a true deviation of confinement.
The infrared singularity was postulated. Rather, this
work should be viewed as establishing another constraint
on the QCD vacuum state. If the vacuum expectation
value of the modified Coulomb interaction is responsible
for confinement in the Coulomb gauge, then the fact of
confinement implies that the vacuum state must be such
as to create that infrared singularity. The remaining step
in proving confinement is the demonstration that the vac-
uum has that property. Any sufficiently explicit model of
the vacuum can be tested against this criteria. If the
singularity is there, confinement is automatic.

One extension of this work is to use it as probe of the
vacuum. For example, if the vacuum expectation value of

I

the product of two-gluon fields is

(A+;(p}A+J(q) }=5,b 5J — 5 (p+q)A(p),

(51)

then it is possible to derive a nonlinear integral equation
for the function D,b(p, k) in (12). The infrared behavior
of D is controlled by the infrared properties of A ( p ).

A second extension of this work is to use the bound-
state equations in a unified calculation of the hadronic
spectrum for both light and heavy quarks as well as for
gluons. In this program the infrared-singular part of the
interaction would need to be augmented with nonsingular
terms. In addition, one must have a quantitative evalua-
tion of the errors in the approximations used to derive the
bound-state equations.
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APPENDIX

1. Quarks

The most general 4X4 spinor amplitude which satisfies
A+(k)Pg(k)A ( —k) =%~(k) has the form9

k Gz + cr kR& i o'( k X—Fq ) (w+ m )[Rq + cr (G~ +F~ )]

(w —m)[R„+o (G~ —"F~)] k G~+o kR~+'icr (kXF )'

(Al)

The vector function Gz is parallel to k (G~ ——kk Gq lk ), and Fz is perpendicular to k (k.F=O). The corresponding
decomposition of 4'~(k), A(k)+z(k)A+( —k) =%+(k), is obtained from (Al) by the change of w to —w:

k.G+ o"kR& —icr. (k XF~) —(w —m)[R~+ cr (Gg+Fg)]
—(w+m)[Rg+cr (G~ —Fii).] k Gii+cr. kR~+icr. (kXFii)

(A2)

Equations (Al) and (A2) are used in (23}and (24) to produce a set of scalar and vector integral equations. With the defi-
nitions

and

I{R(p)I=y f "~ P " R(p)
w(k)w(p)

(A3)

R+(p) =R„(p)+R~(p),
the 4 &4 spinor equations reduce to the set

ER+ —2wR = —I{w(k }w( p)R (p) ],
ER —2wR+ = —I{(m'+k p)R+(p)],

(A4)

(ASa)

(A5b)
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EF —2wF+ —— I —m F+(p) — F+(p) +[K pF+(p) —pk. F+(p)]
k

+ mw(p) G (p) — .G (p)
kk
k

T

EF+—2wF = I w—(k)w(p) F (p) —
z F (p) +mw(k) G+(p) —

~
.G+(p)

k k

2

EG 2wG—+ ———kI p G+(p)+ z k G+(p)+, k.F (p)

(A6a)

(A6b)

(A6c)

EG+ —2wG = —kI [w(p)k G (p)+mk. F+(p)]
k

The angular momentum decomposition of these equations begins with

F(p —k)= g(21+1)Fz(k,p)P~(cos8~~),
J

and

R~(k)= QR~(k)Y (Q~),
J

G+(k) = g G+ (k)Yii (Qa ),
J

F~(k)= g[F~(k)Y (Qg)~Fi(k)Yg (Qg)] .
J

(A66)

(A7)

(A8a)

(A8b)

(A8c)

and Y zM are the linear combinations of the vector spherical harmonics that are parallel and perpendicular to k

Y
II

1/2J+1 Y JJ+1M+
2J ~1 Y JJ—1M

7 (A9a)

Y JM
2J ~1

1/2

YJJ+1M~ ~ +
2J ~1

1/2

Y JJ—1M (A9b)

The coupled partial-wave equations are

ER ~(k) —2w(k)R (k)= 4mf f p dp F~(k—,p)R (p),

cEER (k) —2w(k)R+(k)= 4mf f — [m Fz(k,p)+kpKi(k, p)]R+(p),wpwk

EF+(k)—2w(k)F (k) = 4n f f p dp F—z(k,p)F (p),

(A10a)

(A10b)

(A11a)

EF (k) 2w(k)F+(k)= —4mf f — [m F~(k,p)+kpL~(k, p)]F+(p),
w kwp

(A11b)

EF (k) —2w(k)F (k)= 4mf f p'dp L (k,p—)F' (p)— Mz(k, p)G+ (p)
w p

(A12a)

m Lg(k,p ) ~kpFg(k, p ) i~ mEF' (k) —2w(k)F' (k)= 4nf f p dp — F' (p) — Mq(k, p)G (p)
w(k)w(p) w(k)

(A12b)

EG+(k) —2w(k)G (k)= 4~f f p'dp K~(k—,p)G (p)— Mq(k, p )F~ (p)
w p

(A12c)

EG (k) —2w(k)G (k)= 4mf f p dp — Gi(p)—
m Kg(p, k) ikpFg(k, p) ~ m

0 w(k)w(p) w(k)
(A 121)
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The kernels KJ, LJ, and MJ are defined by

(J+1)FJ+i +JFJ
J 2J+1

JFJ+1+(J+ 1)FJI. 2J+ 1

(A13a)

(A13b)

less, the F' and 6 amplitudes decouple, and there are
just two different types of equations. Solutions to (A10)
have space parity P = ( —1) + and charge parity
C=( —1); the quarks are in a singlet-spi'n state. Quarks
in the coupled triplet state, (All), have P=( —1) +' and
C=( —1) +'. In the coupled triplet state, (A12),
P=( —1) and C=( —1) .

[J(J+1)]1/2
MJ ——

2J+ 1
(FJ+1 FJ —1) . (A13c)

Equations (A10), (A12c), and (A12d) are valid for J&0,
and the others require J& 1. When the quarks are mass-

I

2. Gluons

The gluon wave functions in (29) and (30) have two vec-
tor indices. A complete angular momentum expansion of
%~y has the form

ql M [$ gJYJM+e (BJY +1 +CJY M+DJY M)+EJY J+ M+FJY J+ M+GJYJ M
ap ~ ap &ap y y ap ap apJ

+HJYJJ 1M+I JYJJ——2M] (A14)

c'=0
1/2J+1

2J+1

1/2J+2
2J+3

Each amplitude JI,B,. . . is a function of k, and each
spherical harmonic is a function of Qi, . The functions
Zap are tensor spherical harmonics constructed in a
manner analogous to the vector spherical harmonics
They are symmetric and traceless in the aP indices. The
transversality conditions k a 4'ap ——+pak a =0 constrain the
nine amplitudes. We have

The defining equations for %1~~ and %2~~ imply the sym-
metry property

e 1s(k)=%~( —k) . (A16)

When J is odd, only F and H are nonzero. When J is
even, there are six nonzero amplitudes and three con-
straint equations. The antisymmetric amplitudes B and D
from (A14) combine to yield

1/2J ~J J—1

2J+1
i

2J —1

J(2J —1)
6(2J + 1)(2J+3)
1/2

IJ

1/2

G'= 0
V~p(k)=e~prkr gB' (k)Y (Qk) .

Another set of even-J amplitudes has the form

(A17)

J
2J+1

1/2 J+1
2J+1

1/2J+2 J
2J+1

1/2

H =02J+1

(J+ I)(2J+3)
6(2J —1)(2J+ 1)

1/2

D =0

1/2

6 =0
(A15)

0'"p(k)=(5 p
—k kp) gA (k) YJM(Qk) .

J
(A18)

Except for J=O, A is coupled to another even-J ampli-
tude.

When the partial-wave expansion for %'ap is introduced
into (29) and (30), a set of coupled one-dimensional in-
tegral equations results. For even J, with p+ ——(p+k) /pk
and I'[g(p) ]=4mf' f p dp,

(E—2k)X'1(k)= I'(UJ(k, p)[p+Xi(p)+p—X2(p)]+SJ(k,p)[p+ Y'1(p)+p Y'2(p)]j,

(E+.2k)X2(k) =I'( UJ(k, P)[p+X2(p)+p Xi(p)]+SJ(k,p)[p+ Y2(p)+p Yi(p)] j,

(E—2k) Y, (k) = I'( VJ(k,p)[p+ Y, (p—)+p Y,(p)]+ TJ(k,p)[p+X, (p)+p X2(p)]j,
(E+2k) Y2(k) =I'( VJ(k~p)[p+ Y2(p)+p- Yi(p)]+TJ(k~p)[p+X2(p)+p Xi(p)]j,

(A19)
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with

(J+.2)(3J+1)Fg+(J +J+1)Eg+2
Ug ——

(2J+1)(2J+3)
(J 1)—(3J+2)F~+ (J'+J+1)F~,

(2J+ 1)(2J—1)

Tq co(F——J 2 FJ )—,

(A20)

and

1/2(J—1)J(J+1)(J+2)
(2J—1)(2J+1)'(2J+3)

A, 6, E, and I are linear functions of X and F that
satisfy the constraint equations

1/2
1 (J+ 1)(J+2) ~q 1 J(J—1)
3 (2J+ 1)(2J+3) 3 (2J —1)(2J+1)

YJ

EJ J +J+' XJ+M YJ
(2J+1)(2J+3)

(A21)
J(J+2){2J—1)

6(2J+ 1)(2J+3)

1/2 1/2
2(J—2) I (J—1){J+ l)(2J+3) 2(J+3)X + 6(2J+1)(2J—1) 2J+ 3

J +J+1 J
(2J+ l)(2J—1)

When J=0, the F amplitudes vanish and (A19) reduce to
two coupled equations.

A second set of even-J equations are

(E—2k)B, (k)= —I'IK (k,p)[p Bi(p)+p B~(p)] j

odd-J equations, starting with J=3:

(E—2k)Hi(k)= I'IKq(k—,p)[p+Hi(p)+p H2(p)] j,
(A23)

(E+2k)H', (k) =I'I K,'(k,p) [p+H', (p)+p H &(p)]j,
(E+2k)B2(k) =I'IKJ(k,p)[p+B2(p)+p B~(p)]j,
and Kz(k,p ) is defined by (A13a). Finally there is a set of
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