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CP(N-1) model with holomorphic constraints in D =2 and D =4 dimensions
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We introduce additional holomorphic constraints in the CP(N-1) model and derive, in the 1/X ex-
pansion, the effective action for neutral and charged composite fields. Then we discuss in four di-
mensions the generalized CP(N-1) model with four-linear Lagrangian and additional constraints.
We also present a supersymmetric generalization of the model.

I. INTRODUCTION

z-z'=zG, GEU(n) . (1 2)

In particular, if n = 1 we obtain U(N)/U(N —1)
XU(1)—the (N —1) dimensional complex projective space
CP(N —1). The nonlinear model with fields taking values
in U(N)/U(N —1)&&U(1) [so-called CP(N —1) model] was
discussed in great detail by D Adda, Liischer, and DiVec-
chia. According to (1.1) and (1.2) one constructs the
CP(N —1) model by introducing N complex scalar fields
z;(x), i = 1, . . . , N, which are constrained by

N

gz;(x)z;(x) =1 . (1.3)

The fields related by local U(1) gauge transformation

z;(x)-z (x)=e' '"'z;(x)

are to be identified.
The action

(1.4)

S= d x Vpz. Vpz, Vp
——8 +iAp (1.5)

possesses the global O(N) symmetry as well as the local

The nonlinear two-dimensional o. models with compos-
ite gauge fields have recently received much attention be-
cause of their interesting features in common with four-
dimensional QCD such as the presence of instantons,
asymptotic freedom, and confinement. The first o model
was introduced as the O(4) model of pion dynamics and
afterwards as a family of the O(N) models. ' Later, the
quantum properties of cr models were also investigated.
Many authors formulated and discussed their generaliza-
tion to other manifolds such as, for example, the Stiefel
or Grassmann manifolds.

In particular, the models with fields taking values in the
complex Grassmann manifolds have many interesting
properties. The Grassmann manifold CG(N, n)=U(N)/
U(N —n))&U(n) has complex structure, and it is known
to admit parametrization by means of N &(n complex rec-
tangular matrices, satisfying the condition

z~z =I z = ~ZJk~ J 11 ~ ~ tE&k=1 . . . 5 (1 1)n~

provided that we identify the U(n) gauge-equivalent quan-
tities

U(1) gauge symmetry. The composite gauge fields

A = tz 'B~zp 2

transform like the Abelian U(1) gauge fields

Ap~Ap ——Ap —BpA .

In two dimensions this model has several interesting prop-
erties. It is conformally invariant and has classical instan-
ton solutions for all N. Its quantum version is asympoti-
cally free. Using the 1/N-expansion method one can
show that particles z,z (with a mass m generated dynami-
cally by a Higgs-type effect) interacting with U(I) gauge
composite fields A,

& and the neutral scalar composite field
a are confined. The confinement in the CP(N —1) model
is also "generated dynamically" and is identical to that
which is already well known in other two-dimensional
models.

One can investigate also other manifolds defined by im-
posing holomorphic constraints on CP(N —1). Such man-
ifolds are called algebraic. All cr models on the algebraic
manifolds describe the dynamics of interacting composite
fields.

In this paper we extend the CP(N —1) dynamics by in-
troducing additional constraints z z=z z=0. As a result
we obtain interacting charged composite fields. We inves-
tigate their dynamics, using the 1/N expansion to obtain
the effective action and find it to be the same as the
dynamics of the a field. The saddle-point condition in
our model coincides with the one obtained in the
CP(N —1) model. We show that our model is also asymp-
totically free and the particles z, z are confined.

In Sec. II we discuss the equations of motion and the
instanton solutions of the model. The quantization via the
1/N expansion, using the method presented in Ref. 4, is
performed in Sec. III. In Sec. IV, following Ref. 5, we in-
vestigate the four-linear CP(N —1) model in D =4 dimen-
sions with the holomorphic constraints z =z =0. Using
the dimensional-regularization technique we show the re-
normalizability of the effective action. In Sec. V we
describe a supersymmetric generalization of the model.

II. RG(N, 2) MODEL —THE CLASSICAL EQUATIONS
OF MOTION AND INSTANTONS

In this section we will discuss the classical o. model in
two-dimensional Euclidean space, with fields taking
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values on the Grassmann manifold GR(N, 2) =O(N)/
O(N —2) X O(2). This manifold has a standard real
parametrization since it is a symmetric space. However, it
is also a Kahler manifold and has complex structure.
There is a homeomorphism between RG(N, 2) and the
complex hyperquadric in projective space CP(N —1).6'4

This observation lets us introduce the GR(N, 2) o. model
as a field theory with N scalar fields, where

gz;(x)z;(x) = 1,

zg(x)~z (x)=e' '"'z;(x)

the composite fields transform as

a(x)~a'(x) =a(x),
A„(x)~A„'(x)=A~(x) Bp—A(x),

p(x)~p'(x)=e ' '"'p(x),

P(x)~P '(x) =e+""'"'P(x) .

(2.9)

(2.10)

gz;(x)z;(x) = g z;(x)z;(x) =0,

z;(x)-z (x)=e' '"'z;(x) .

(2.1)
The RG(N, 2) model is topologically nontrivial and in the
two-dimensional space-time it has instanton solutions for
all X. Following Ref. 4 one can define the topological
density q (x) and the topological charge Q:

The action formula for z;(x) is

S=fd x V„z Vqz, (2.2) Q= d xq(x), e&2 ———ez& ——1.2
(2.11)

where

V„=8„+LA„ (2.3)

A„(z,z ) =iz.a„z . (2.4)

and it has the same form as in the two-dimensional
CP(N —1 ) model. Solving the algebraic equation of
motion for the gauge fields A„we find

One can show that the topological charge Q is an in-
teger. Q labels the homotopy classes of fields z(x), i.e.,
any two fields with equal charge can be continuously de-
formed one into another and, furthermore, for any integer
p there exists fields such that Q =p.

To obtain the instanton equations we rewrite the topo-
logical density as

W =V&z V&z +a (z z —1)+pz +P z

Equations of motion are

A„=iz.B„z, z z =1, z z=z z=O,

VpVpz +az +2p z =0,
V&V&z+o.'z+2pz =0 .

(2.5)

The action (2.2) is conformally invariant. It is also in-
variant under global O(N) transformations and local U(1)
gauge transformations. So, the local symmetry group in
our model is exactly the same as in the CP(N —1) model.

Using the Lagrangian multiplier fields a(x), p(x), P(x)
one can rewrite the Lagrangian as

l
q = epvV&z Vvz .2'

Let us consider the unequality

l
Vqz+iep V,z

l

)0,
which, after some transformations, takes the form

M=V„z V„z) +E'e„,V„z V,z =+2mq .

Integrating over x we get

The equality is saturated if and only if

Vpz =+imp V z .

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

In this way we incorporate the constraints in the Lagrang-
ian and may treat the fields z;(x) as unconstrained vari-
ables.

Eliminating the auxiliary fields a,p, p by means of the
algebraic equations of motion

a(z,z ) =V„z.V„z,

The finite-action solutions of these self-duality equa-
tions are called instantons (anti-instantons) and, because of
(2.15), they are also solutions of the equations (2.8).

In the CP(N —1) model the situation is the same. One
can solve Eq. (2.16) by introducing unconstrained coordi-
nates W;(x) Ref. 4,

p(z, z )= 2 Vzz. V&z,

P(z,z )=—,V&z V&z

(2.7) z;(x) =e'A'"'W, (x)/
l
W(x) l,

which satisfy the Cauchy-Riemann equations

(2.17)

and inserting (2.7) into (2.6) we finally obtain the classical
equations of motion for scalar fields in the form

a„W(x)=+i.e„„a„W(x). (2.18)

V„V„z+(V„z Vpz)z+(Vpz V„z)z=0,

z.z —1=z z=z.z=0 .
(2.8)

But now, in our model, we have the additional condition
z =z =0 and therefore fields W~(x) are only "partially
unconstrained", i.e., we must impose the condition to be
fulfilled by W;(x):

Under the gauge transformation
g W;(x)W;(x)=0. (2.19)
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Finally we can say that the most general solution of Eq.
(2.16) is given by (2.17) where A(x) is a real function,
W;(x) are meromorphic functions satisfying (2.19), and
8;(x ) = 1 for some j=a.

In this paper, in order to quantize the RG(N, 2) model,
we apply the method used by D'Adda, Luscher, and Di
Vecchia in two-dimensional CP(N —1). Let us start
from the classical action

III. 1/N EXPANSION OF THE QUANTUM RG(N, 2)
MODEL IN TWO DIMENSIONS

The method of the 1/N expansion has been applied to a
number of theories, in particular, to the Gross-Neveu
model, the O(N) o models, P theory, ' and the
CP(N —1) model. '

S= d xV&z T&z, z.z —1=z.z=z z=0
2f

where N is the number of components of the field z(x)
and f is a dimensionless coupling constant.

The vacuum generating functional for Euclidean
Green's functions of the quantum RG(N, 2) model is

Z =f~z ~z ~a &p &pexpI —S+fd x[ia(z z —1)+ipz +ipz 2] J . (3.1)

For convemence we calculate the functional integral in Euclidean space. If necessary the final result can be rotated back
into Minkowski space We have introduced the Lagrange multiplier fields p(x), p(x), a(x). After pedo~ing the fol
lowing rescaling of the fields

z;(x)~(N/2f)' z;(x), a(x)~(2f /v'N)a(x),
(3.2)

p(x)~(2f /v'N)p(x), A„(x)~(2f/N)A„(x) = iz—B„z.P

we get

Z= fWz&z&p&P&a&A, exp —fd2x z —~— ' a+ —g2 2' g g z
N v~

We have also introduced a new integration over the A,„field, in order to get rid of four-linear terms.
We would like to point out that we do not keep track of any constant (infinite) factors in front of z. The Gaussian

path integration over z, z may now be performed and we get

Z =f&z Wz WP Wp &a Wk,„exp ' —fd2x —,
'

(z,z)
(2i/~N)P 0 1

b, T 1 0,' +' a(x)

=f&p Wp Ma &A,„exp( —S,rf ), (3.3)

where 5Seff

5p

5Seff =0,
5p

(3.4)

Dp ——Bp+ ~ Ap,

6= —Bpap — a,P Iji

which are solved by the zero values of the fields. In effect
we obtain the saddle-point condition as the classical equa-
tion of motion for a (A&

——p'=P '=0):
5S.

a=a +0

Sea'= —,N Tr ln
2E + fd xa(x).

2
5

N

Trinal,

+fd x a(x),=0 .ivN
5a 2 a=ac ~

The tracing operation is to be understood in the matrix
as well as in the functional sense. The integrations over
the auxiliary fields a,p,P cannot be performed exactly,
therefore a stationary-phase approximation is used.

Variation of the effective action with respect to p,p
gives the equations of motion

If we introduce a new parameter m & 0 such that

a'=i~Nm
we get

1 dP 1 =0.
2f (2m) p +m

(3.5)

(3.6)
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As we can see the saddle-point condition in our model
coincides with the one obtained in the CP(X —1) model.

Renormalizing the bare coupling constant f as

fields. We perform a shift in the effective action

a~a+a'=a+i~Km (3.9)

(3.7)
2m A 2m

one gets the equation for the arbitrary parameter I & 0:

Now, one can expand the effective action in a power
series of 1/N around the classical minimum
~„'=p'=P'=0, a'&0. We write

1 m-ln
4~ p2

1 =0.
2f~(C )

(3.&)
oo

Seff =
v/2 —1

S' '+const . (3.10)

The composite scalar field a has a nonzero vacuum ex-
pectation value m, so the symmetry is broken. As a re-
sult of this mechanism we get a mass for the scalar fields
z,z, even though z,z were first introduced as massless

The term proportional to v N in this expansion van-
ishes due to the saddle-point condition. The quadratic
term of S ff may be written in the form

2 f fd'x d'y[a(x)& (x —y)a(y)+2p(x)1 "(x —y)1M(y)+A, „(x)l&„(x —y)A, „(y)]

where the Fourier transforms of the nonlocal vertices are

(3.11)

(p)= f [(q +m )[(q+p) +m ]I '=I 1'(p),(2'�)' (3.12)

(3.13)
2~ 2m q +m q+p +m

We see that the charged composite particles p,p, have the same propagator as the neutral particle a. The integral
(3.12) is easily evaluated:

( 2+4m 2)1/2+ ( 2)1/2
I (p)=l""(p)= [p (p +4m )] ' ln

( 2+4 2)1/2 ( 2)1/2
:—A(p) . (3.14)

The one-loop integrals (3.13) are both divergent. How-
ever, in two dimensions, regularizing by a cutoff A, the
divergent parts cancel and we get

I p„(p) = 5~„— ppp„(p +4m )A (p) —— . (3.15)p' "
All the other terms in the effective action are convergent,
which ends the proof of its finiteness.

The calculated terms may be represented in the form of
Feynman diagrams. We introduce the following graphical
representation for propagators and vertices (see Figs. 1

and 2). Internal propagators for z,z fields are integrated
with measure d q/(2~) . The terms S"', S' ' considered
above may be now represented in the form shown in Fig.
3. This is the graphical technique for calculating the ef-
fective action. Following Refs. 11 and 4 one can establish
a modified Feynman technique with inverted bilinear
parts of the effective action. But to invert the express-
ion 1 „(p) it is necessary to fix the gauge. The tadpoleA,

I

and self-energy diagrams shown in Fig 3 which were al-
ready taken into account in a, A, , and p propagators, are
now forbidden.

Let us point out that the presence of new particles p,p
will modify the result of the CP(N —1) model in higher
orders of the 1/N expansion, e.g., the self-energy diagram
for A& fields in our model in order 1/N can be written as
in Fig. 4. There are additional diagrams in our model for
nonlocal vertices as well. "

The Feynman rules for the 1/X expansion, derived
above, show that the quantum RG(X,2) model has similar
properties as the CP(N —1) model. The RG(N, 2) model
describes the O(N) vector of charged interacting particles

R;(p'm'I ' internal lines —~N/p„p~J iq

external lines

FICx. 1. The propagators in the 1/% expansion. FICx. 2. The vertices in the 1/N expansion.
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FIG. 4. The 1/N correction to the full gauge field propaga-
tion.

FICx. 3. The tadpole and self-energy diagrams.

with a mass m. The mass for z,z is generated dynamically
and m is the positive vacuum expectation value of the
composite neutral field a. Particles z,z interact by ex-
changing a, A& and p,P quanta. The a exchange [as in
CP(N —1) (Ref. 4)] leads to weak short-range interaction
among z and z, so the a particle does not propagate in the
effective theory. The exchange of the p,P charged com-
posite particles leads to the same effect because of the re-
lation (3.12).

In two dimensions the A& interaction has the same ef-
fect as a linear Coulomb potential so that the particles z,z
are confined. The one-loop corrections generate a kinetic
energy term for the composite gauge field A.&. Our model
is also asymptotically free as can be seen from Eq. (3.7).

K
4 F„„Fq„+ Vqz. V„z

2
(4.1)

where f is the coupling constant, x. the masslike parame-
ter, and

(4.2)

the effective action is not renormalizable unless we add
some additional terms to the action. In this section we
will discuss this problem in great detail.

We start from the four-linear Lagrangian in D =4 Eu-
clidean space first introduced in Ref. 5,

IV. FOUR-LINEAR RG(N, 2) MODEL
IN FOUR DIMENSIONS

It is interesting to perform the renormalization pro-
cedure of our model for D =4. We obtain the result that

I

The additional four-linear term —,F&„describes the kinet-
ic energy for the composite gauge potential 3„. The con-
straints of the model are the same as in the D =2 case.

One can write the generating functional

P

Z= f&z&z5(z'z —1)5(z )5(z )exp —fd x ( ,'F—„„+,'a. V—„z V„z)— (4.3)

As usual we introduce the Lagrange multiplier fields, a,p,P, and Z takes the form

Z = &z ~z &p &p &aexp — d'x 'F '+ —K'V-Z.V z t K'a(z —iK'(p" +. pz')f & P& 2f P
(4.4)

Rescaling the fields as in Sec. III, we introduce a new integration over the field A,„(x) and perform some standard cal-
culations '" and obtain

Z= fNzMz&pWp&a&A, „e xp f fd"xd y k„(x)G„(x—yQ, (y)P

~ 2

dx ~zM — (pz+Pz )+ a2~I ~ ~ ~ 2 ~ ~2 t K ~
I

t (4.5)

where

G„„(x—y) =(Cl5~„—B~B ) 1+ U
(x —y),

dimensional divergent integrals. Therefore, the effective
action obtained from Lagrangian (4.1) after performing
integrations over z,z is not renormalizable. To solve this
problem, we must add a counterterm to our Lagrangian:

6= —DpDp — n,P P

Dp ——Bp+ A,p .

(4.6)

(4.7)

The gaussian path integrals over z,z are the same as in
the two-dimensional model discussed in Sec. III. Howev-
er, now the expressions for the propagators are the four-

The expression (4.7) destroys the constraint conditions
in the model because our modified Lagrangian is classi-
cally equivalent to
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2

W'=V&z V z+ gz z — z.z ——3)C4 2, 3X~4 2V

N 2N 2f
However, after quantization, if the bare quantities a., A,,g satisfy suitable conditions, the constraints of the model are not
changed, because the 5 functional may be approximated as

1V A,z N —2 2 & —2 25 z.z — ~exp z z-
2f 2N 2f ' 2N

5(z )5(z )~exp z2z2 (4 &)

and

AK ~GOi gK ~00 ~
(4 9)

Using a suitable renormalization procedure we can fulfill the conditions (4.9). With this additional term effective action
of the model is

N
~em= —,N Tr ln 2l

mdiv"

2

+fd x ' -a+ a +—Pp + f fd x d y A,„(x)G„„(x—y)A, „(y) . (4.10)

lK 1~N +—a'=0 .
2f A,

Sirice the integration over a,p, A,& cannot be performed exactly, the expansion around the saddle point is used. Varia-
tion of the effective action with respect to p,P gives the equations of motion which are solved by the zero values of the
fields, and therefore we get, with p'=P '=A,„'=0,a'&0,

' —I
5~.ff i N Tr ln —CI—

ia'
(4.11)

5a = N N

If, similarly as in Sec. III, we define

a'=i~Km 2, (4.12)

we obtain the following equation for the spontaneously
generated mass m:

(4.13)

then Eq. (4.11) takes the form

G p 1 K m

(2~) p +m2 2f
The one-loop integral in (4.13) is divergent. However,

we can extract the regular part

dp 1
4 2 2+ren

(2ir) p +m res fren ~ren
4 2 2 2

+

1 m
m ln

16~' em'
(4.16)

8 p 1

(2ir) p +m

+
(2ir) p +m p (p +M )

(4.14)

Now, one can expand the effective action around the
saddlepoint A.„'=p'=P '=0, a'+0:

(4.15)

(M is an arbitrary mass paraineter), and renormalizing
the bare parameters properly,

K karen h cE p 1

f 2f„„o (2~)~ p2 A

h~ gp lnA
~ren (2ir) (p +M )

v/2 —1
OO

jeff S'"'+const . (4.17)

The term which is proportional to ~N vanishes due to
the saddle-point condition (4.13). The quadratic part of
the effective action leads to the following propagators:

I (p) =—+f, t(q'+m')[(q+p)'+m'][
(2m)

(4.18)

I i'(p) =—+f q4 I(q'+m')[(q+p)'+m']]
(2~)'

(4.19)

2
I „(p)=-8 f ~2 (2m)~ "'q2+m2 (q +m )[(p+q) +m'] (4.20)
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The one-loop integral for a and p propagators has only logarithmic divergences. On the other hand, the integrals in
(4.20) have quadratic divergences as well.

Let us consider the a propagator. It may be made finite by the subtraction

where
1/2

1 m 4m +p (p +4m )' +(p2)' 2

I „,„(p)= ln —2+ ln
16m M p

2 (p2+4m2)1/2 ( 2)1/2 (4.21)

The dynamics of the field a depend on the choice of the
parameter A,„„.In particular, when we take

1 N1
1/A, „„=— ln

16m M

we get

r CÃ(p) p2

(4.22)

4'ren

one obtains

A'dq 1

(2m. ) (q +M )
(4.23)

2

I &(p)= In —2+(4m +p )/I(p) +
16m M1 karen

(4.24)

In particular, choosing

1 1 m
ln

karen

(4.25)

so the composite scalar field a is massless. Choosing
M =I we obtain 1/kren=O

The renormalization procedure for the p propagator is
similar. Renormalizing the constant g' as

we get

I "(p)= [(4m +p )/1(p) —2j-p
16m

(4.26)

so p is a charged massless field. If we take
m =M =Mi then I" (p)=1 &(p) and I/g„„=l/A, „„
=0. However, we would like to point out that in this case
the propagators for a and p,p fields are generally not
equal. They can be made equal by the suitable choice of
~ren alld krenr namely,

1
ln

16m

M1

karen ~ren
(4.27)

Now let us consider the A,& propagator. Here one can
use the cutoff method, and renormalizing the coupling
constant f obtain cancellation of the divergences. Such a
method was presented in Ref. 5. However, the calcula-
tions are rather complicated. In fact, the difficulties men-
tioned above are connected with the gauge invariance. It
is well known that the regularization by means of a cutoff
A destroys this invariance. To avoid this problem we wi11
use the dimensional-regularization technique.

Using the Feynman-Schwinger integral formula and in-
troducing a complex continuous dimension 2' we write
I „„(q)as follows:

2
—1

I &„(q,2') =—1—
K

25 (p +a q +m )—4p&p„—(2a —1) q&q„
(q tv —qpqv)+ da

(2ir) [p +m +a(1—a)q )
(4.28)

+ II '"(0,2') —II" (q, 2rd)

This integral may be evaluated (see Refs. 11 and 12), and finally we obtain

2
' —1

I „,(q, 2')=(q 5„„q„q ) ——1—
K

(4.29)

where

Ildiv(0 2rd) m 2m —4r(21

3 (2~) " (4.30)

II" (q,2ro)= m " 4I (3 co)f da—(2a —1) ln 1+a(1—a)
(2ir) Pl

(4.31)

The expression (4.31) is finite when co~2,

1 2
II"s(q,4) = f da(2a —1) ln 1+a(1—a)16' I (4.32)

whereas II "(0,2ro) is divergent when de~2. However, this infinity may be canceled by the renormahzation of the cou-
pling constant f. Namely,
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—+II '"(0,2') = co~2 . (4.33)

As a result we get the finite propagator for the gauge field:

I p„(q,4)=(q 5p, —qpq„) . fren

1 2

f da(2a —1) ln 1+a(1—a)
16m. m

(4.34)

In this case, similarly as for a,p particles, the dynamics
of the composite gauge fields depends on the choice of the
renormalized coupling constant f„„.In particular, if we
choose f„„such that

—II"s(q,4) —q (4.35)

(2 —co) -lnA, —— -lnA ~ 00,1 1 2

f 2 —6)

we get the asymptotic behavior of the masslike parameter

(4.36)

a -A /lnA ~00 .2 2 2

then we obtain the A& propagator with massless double
pole.

Now we should investigate a corinection between the pa-
rameter of the cutoff A and the parameter of the dimen-
sional regularization 2 —~. Discussing the saddle-point
condition we assumed that a. /2f -A ~ oo. On the other
hand, from Eq. (4.33) we get 1/f-1/(2 —co)~ec. So, if
we assume that

(5.2)

where A(x, O) is a real scalar superfield. One can con-
struct a supersymmetric, gauge, and O(N)-invariant action
using the supercovariant derivative

fd'x dO y,d 8 VQ y,VP,

where

(5.4)

D =B +i8~$ . (5.5)
The bar denotes here complex conjunction, and we use the
following representation for the Euclidean y matrices:

One can easily check that asymptotic conditions (4.11) are
also fulfilled.

There are some additional divergent terms in higher or-
ders of the 1/N expansion. However, as was pointed out
in Ref. 5, these divergences cancel pairwise due to the
Abelian Ward identities. All other diagrams are conver-
gent, which ends the proof of the renormalizability of the
effective action.
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0 1

—1 0
The constraints are

In terms of the component fields it reads

(5.6)

V. THE SUPERSYMMETRIC RG(N, 2) MODEL
IN TWO DIMENSIONS

P;(x,O) =z;(x) +i OX; (x) + , i Oy 58K; (x), — (5.1)

where the components z;(x), F,(x) are complex scalar
fields, g;(x) is a spinor field, and 8 is a real two-
component spinor coordinate. All components transform
according to the fundamental representation of O(N).

We introduce also the supersyrnmetric gauge transfor-
rnation

The supersymmetric CP(N —1) model in four dimen-
sions and its coupling to supergravity has been introduced
first by Cremmer and Scherk. ' In two dimensions it was
also discussed by D'Adda, Luscher, and Di Vecchia. '

Following these references, in this section we will con-
struct a supersymrnetric generalization of our model.

To get the supersymmetric invariant action one starts
with a superfield P;(x,O), i = 1, . . . , N,

zz=1, z =z =0,
z X-X.z=o, z X=z=X=O,

z F+F z=iX.@5', z.F= 2iX y5X .
'1

(5.7)

A =P.D~P . (5.8)

Now we rewrite the action (5.3) in terms of components.
Performing the integration over 8&,02, using constraints
and equations of motion for auxiliary fields, we finally ob-
tain'4

The action (5.3) with constraints (5.6) gives a supersym-
metric extension of the RG(N, 2) model. Classically, in
terms of the superfields we can write the topological
charge, the equations of motion, and the supersymmetric
version of the self-duality equations presented in Sec. II.

The fermionic superfluid A~(x, O) may be eliminated by
using its equation of motion:

S= fd x[D&z.D&z t'P g P+ „' [(g P) +—(g y5$) —(P yzP) ]I, —
2f

(5.9)
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where D& ——B&—z.B&z and a new fermionic field g is given by

Q; =X;—z;(z X) .

The constraints now supplementing the action are

(5.10)

z z=1, z.z=z z=O, z P=g.z=z.g=f.z=O, (5.11)

and the gauge transformations

z'(x) =e'"'"'z(x), g'(x) =e' '"'g(x) .

The action is also invariant under the supersymmetry transformations'

5z;=ief;, 5$;= —,'i';(f—P)+,'iyqez;(—g.y5$)+y„e[D&z; —,'iz;(f—y&P)].

One can write the generating functional for Euclidean Green's functions of our model:

Z =fWz &z &f&$5(z z —1)5($ z)5(g.z )5(z )5(z )5(g z)5(g z )

(5.12)

(5.13)

Xexp —
2 f" xID„z D„z if $—$+. , [(p p)—+(gy5$) (p y„p—)']I (5.14)

The exponentiation of the constraints leads to the appearance of the Lagrange multiplier fields
a(x), p(x), P(x), c (x), c(x), cr(x), o.(x) and (5.14) reads

Z= z z a c c p, p cr oexp —S+i z z —1 a+ipz +ipz +icz

z~
2f Zp Z +

2f

Rescaling the fields
1/2 1/2 1/2

X
z,

2

+if zc+ioz /+i' zo] .

1/2

2

(5.15)

(5.16)

a~ a, (p, ,p )~ (p,p ), (c,c)~ (c,c), (cr, cr)~ (o,cr)
2f 2f — 2f — — 2f

N N N

and introducing the integral over the auxiliary fields we obtain

Z = f&z &z Wg~1( ~a &c Nc &pup &cr &crM~„&p Wpq

Xexp fd x z z+A.„[(z B„z)—tp y„g] + z z — a f Qg+ — (.pz +pz )
N N 2 N

+— (c .y+y )+ ( 0' +0 )+ (rtp0 0+4' 0'y 0)

(P +Pq ) ——A, z z
iV

(5.17)

After performing some simple transformations we get

Z= fNzNz&gWp& &acNcWp&pNo &cr&~„Wp&p,

fd x z bzz+g AFAR+ a+ —,(p +$5 ) — [pz +p z +(cz+oz).g+f.(zc+zo.)]
2 N

(5.18)

where we use the notation

a& ———D„D„— a, D„=a„+ X„, aF Z (y+y5y5——). —l l 1
P ~ ' P P ~ Iii' (5.19)

We can perform the Cxaussian path integration over fermionic fields P, f and over z,z getting the effective action of the
model
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2—kg+ —cAp- 'c
N

S fg
———,N Trln 2' 2p+

o'er

c

2l 2P+ cAy' 0

TAg+ oky 0
N—Trlnb, ~+ d x ct+ P +z AN 1 z 1

2 2 2
(5.20)

a'~0~&',
5S,g 6S,ff

,=0 ~

5a a=a' 5$

(5.21)

As before, we wish to now expand the effective action
in a power series of 1/v N around a classical minimum.
Such a minimum occurs at nonzero constant values of the
a, P fields.

We write the saddle-point condition as

where the Fourier transforms of propagators are'

I (p) =& (p),
I "(p)=A(p),

I „" (p)=(p'&„—p„p )&(p),

I ~(p)=(p +4m)A (p),

I '(p) =p'& (p),
I'&(p) = —~„~„2m&(p),

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

If we define a'=iv Nm, P'=u Nm, Eqs. (5.21) read

1 d p 1

2f (2m. ) p +m
(5.22)

and the saddle-point condition coincides with the one ob-
tained in the supersymmetric CP(N —1) model. ' The
divergent integral in (5.22) may be regularized with a cut-
off A and as a result we obtain the finite equation for an
arbitrary parameter m .

Performing suitable shifts in S,it,
a~a+i~Nm
/~)+V Nm,

(5.23)

we get the spontaneously generated mass for fermions and
scalars. Expanding the effective action around the
minimum we find that the term proportional to VN van-
ishes due to the saddle-point condition. The quadratic
part of S,tf is given by

S'z'= , aI- a+ , X„r—„p,+p I—"i+ ,' yI &y-
+ , Q,I 'P, +—A„l~&P, +c,I"c+ I"

I '(p) = ( —,
'

ip —m )A (p),

I (p)=( , ip —m)A—(p) .

(5.30)

(5.31)
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The propagators for the auxiliary fields calculated in
the 1/N expansion are the same as in the supersymmetric
CP(N —1) model. However, in our case we have new par-
ticles connected with additional constraints: the charged
composite scalar particles p,p of the dynamics, which is
the same as the dynamics of a, and the spinor particles
o.,o. of the dynamics, which is the same as the dynamics
of c,c.

The masses for scalar and spinor fields are thus generat-
ed. However, m, =m@ and the supersymmetry is not bro-
ken. Following Ref. 14, one can establish the Feynman
rules and show that the higher-order diagrams in the 1/N
expansion are finite and need not be renormalized.
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