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Color screening in classical Yang-Mills theories with sources

C. H. Lai and C. H. Qh
Department of Physics, National Uniuersity ofSingapore, Kent Ridge, Singapore 051I

(Received 20 September 1983)

We show that color screening of external sources by Yang-Mills fields is gauge independent, and
a sufficient condition for color screening to occur is given. A gauge-invariant conserved total color
of the system is constructed.

I. INTRODUCTION

In the past few years there has been some interest in the
problems of the Yang-Mills (YM) fields interacting with
external sources. The main motivation is that the in-
sights and experiences gained at the classical level will il-
luminate our understanding of the fully quantized YM
theories, particularly the nonperturbative aspects. Color
screening is one of those properties that can be envisaged
at the classical level. Recently, questions have been raised
on whether color screening is a gauge artifact and wheth-
er total-screening solutions found previously ' are really
completely screening. The purpose of this paper is to
point out that color screening is complete and gauge in-
dependent, at least at the classical level. A sufficient con-
dition for the YM fields to screen external sources is ex-
plicitly stated.

The crux of the color-confinement problem is the defi-
nition of the total color and what one means by color
screening. For the non-Abelian gauge field interacting
with an external source, the Noether charge due to the
global symmetry ceases to be a conserved quantity when
the symmetry becomes localized. In contrast, the total
dectric charge in the Abelian case is always conserved
whether the U(1) symmetry is global or local. This is be-
cause the external current j& is an invariant irrespective of
whether U(1) is global or local, so that one always has
8'j& ——0. Thus when the non-Abelian symmetry is local-
ized, the Noether charge associated with the global sym-
metry can remain conserved only if we restrict the gauge
transformations to a specified class, that is, the gauge
transformation must be independent of x„at large dis-
tances. This is discussed in the next section. On the other
hand, one can introduce a color direction in the internal
group space at each space-time point so that a meaningful
total color charge can be defined. We present this point of
view in Sec. III. Once the total color of the whole system
(external sources plus the YM fields) and the total color of
the external source have been clarified, it is a simple
matter to determine whether a YM configuration can
completely screen the external source in a gauge-
independent manner.

II. NOETHER COLOR

In the presence of an external source current j&, the
SU(2) Yang-Mills (YM) equations are

DpF" =j
F" =a"a a"a"+—[W",W ],
Ap 2p (o——'/Zi ),

(lb)

(lc)

Under the gauge transformations

U(x) =exp[ ico'(x)o—'/2],
we have

UW„U-' —a„UU-',

Fp„~UFO' U

jp~Ujp U

(5)

(6a)

(6b)

(6c)

Although the equations of motion are gauge covariant, the
Lagrangian density (4) is in general not gauge invariant.
However, it is still globally invariant and one can con-
struct the Noether current

J"=j —[A„,F""],
B„J =0.

(7a)

(7b)

Expression (7a) indicates that the contributions to the to-
tal color current comes from the external color current as
well as from the YM field. It can also be derived directly
from the Lagrangian density (4) by

The total color charges arising from Eq. (7) are

I=I'(cr'/2i) = f d x J (x)

=f F"ndS,

where a' are the Pauli matrices and our metric is
g;; = —goo = 1. The external current j& is gauge-
covariantly conserved,

(2)

and for static sources, j =0, it then follows that

[A,jo]=0 .

The above equations of motion can be derived from the
Lagrangian density
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which can also be written as

I=isource+Ifield ~

3 p
Isource d X J

(10a)

(10b)

(10c)

1E =
3

I5' [1 —cos(2mn.h(r))]
4n r3 2mn

—5' sin(2mnh (r))),

jp =5pq

(16c)

(16d)

Under global SU(2) transformations, the total Noether
charge is conserved provided J; vanishes fast enough at
large distances. However, under local gauge transforma-
tions, I, is not gauge covariant unless the gauge transfer-
mations are restricted such that for r =(x;x')' —+ co,

q =qu gg3 Q 1 dh (r) gu3
4' p dr

L

h (r) =—I rrrr' q(r')dr' . (16e)

U(x;,xo)~U(xo) .

Condition (11) is not enough to ensure that the conserva-
tion of I be gauge independent. If we furthermore impose
the strong boundary condition on U(x„) such that, as
P'~ oo,

U(x;,x )—+U, (constant matrix),

it follows that the total color is conserved in any gauge
choice. Condition (12) essentially compactifies R to S
and it does not permit monopole solution. It also means
at large r, 2@ transforms covariantly and hence so does
J@.

Thus under the gauge transformations which satisfy the
strong boundary condition (12), I, is gauge covariant and
a gauge-invariant conserved charge can be defined by

If we set g'=5', then the gauge-invariant measure of this
external source is

Q. = 4~
(17)

is employed to convert solution (16) into the "physical
gauge" frame

whereas the total non-aphelian charge Q vanishes. Hence
color screening definitely takes place and is gauge in-
dependent under the restricted gauge transformations. In
Ref. 3, a gauge transformation which satisfies condition
(12),

1

U=exp 2nnh (r)
2l

Q (I I )1/2 (13) Ap' ——0, (19a)
which is the total color of the system consisting of the
external source and the YM fields. In order to render the
concept of "color screening" more precise, we need to
have a gauge-invariant specification of the external source.
Let g (x) be a unit vector in the internal group space; for
instance, when the source is static, one can choose g'(x) to
be along the common direction of Ap and jp by virtue of
Eq. (3). Then a gauge-invariant specification of the total
external charge is

Qs= Jd xjo7/ (14)

xi 1E '=
I 5 [cos(2rrnh (r)) —1]

4m y3 2mn

—5' sin(2~nb (r))],

1 dh (r) [5' sin(2mnh (r))
I" dT

(19b)

(19c)

which is different from Iso the latter being gauge
dependent and can be gauge transformed to zero.

We say that the external source is completely screened
by the YM fields if Q=O and Q, &0. This is a gauge-
independent statement and the unnecessary confusion ' in
discussing color-screening problems is avoided. By virtue
of expression (9), we see that color screening will result if
at large distances the electric field E'=I' behaves as

lj[m r +'E'=0
r—+ oo

However, this result is valid only under the restricted
gauge transformations of Eq. (12).

We now discuss the total-screening solution of Sikivie
and gneiss. In the Abelian gauge frame,

Ap ——0,

A =E t 5''ii;[2mnh(r)], —.

+5' cos(2vrnh (r))] . (19d)

In this physical gauge frame,

Isource =I d x 'q (20)

vanishes and the author of Ref. 3 then claimed that the
total-screening solution. is a solution to the color-singlet
source problem and hence questioned the meaning of color
screening. In our opinion this is merely an interpretation
of the screening solution in a particular gauge frame. If
we follow definition (14), in the physical gauge frame we
still have Q, =Q/4' and Q=O and hence it is perfectly
legitimate to talk about color screening in the physical
gauge frame. In all the above discussions, we have tacitly
assumed q & 0 for all r.

In passing we note that the argument of Ref. 7 will not
apply here as long as the gauge transformations are in the
restricted class.
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III. CONSERVED GAUGE-INVARIANT CHARGE Fpv]a
&
~bc~ bFcpv

P (29b)

q'(x)g'(x) =1,
q(x) =g'(x)o'/2i,

and under a gauge transformation

UgU

(21a)

(21b)

We now define the generalized electromagnetic field
strength W& by

pv=Fpv (22)

which is of course a gauge singlet. Once this is done a
current which is conserved and gauge invariant can be
easily written as

g v —(j ~pv D~pv-
P

Expression (23) can also be written as

g v D (+aFapv} +a~ av+ (D + )aFapv

(23)

(24)

The field vP(x) selects a direction in the internal group
space at each space-time x&. With respect to it, the YM
connection can be resolved into two parts:

Ap ——hp+Ep,
h „=(A „'ri')g [q,Ops], —

Kp [vy, Dpvy] . ——
(26)

(27)

When a gauge transformation is performed along g'(x),
hp(x) remains invariant while Kp(x) transforms covari-
antly. hp(x) is known as the restricted connection. For
our purpose we note that Eq. (26) yields'o

In the above discussions, although characterization of
the external source by Eq. (14) is gauge invariant, the total
color is gauge dependent unless gauge transformations are
restricted to those satisfying condition (12}. The restric-
tion (12) is quite severe as it requires the YM connection
to vanish faster than 1/r at large r. Consequently we raise
the question of whether it is possible to discuss color
screening in a gauge-independent manner without impos-
ing the condition (12). The answer is yes as we shall see'
below. The essential idea is to construct a gauge-invariant
conserved current.

The Noether current (7a) is not gauge covariant because
the YM field A& transforms inhomogeneously. In con-
trast the electromagnetic current and field strength are
gauge invariant. The YM field strength Fz, however,
transforms covariantly and from which a gauge-invariant
entity can be obtained if a color direction is chosen suit-
ably at each space-time point. To this end we follow Ref.
9 and introduce an adjoint-representation scalar field,

Qz ——f dxg (x)

=f (g'F"o)ngdS,
surface at 00

(30)

which is conserved as long as g' vanishes fast enough at
large r. Color screening occurs if Q~ ——0 and Q,&0. This
is a gauge-invariant statement. As before, a sufficient
condition for Q~ to vanish is

lim (r +'i1'F" ) =0 .r~ Oo

(31)

We note that the long-distance behavior of F" (x) can be.
affected by gauge transformations but not ri'F" (x),
hence condition (31) is independent of gauge choice, in
contrast with condition (15).

We have checked all the known screening solutions and
found that for all cases Qz ——0 and Q, &0, thus justifying
the claim that color screening is a gauge-independent ef-
fect, at least at the classical level.

IV. COMMENTS

We make some remarks.
(1) The generalized electromagnetic field strength (22)

is different from 't Hooft's definition, " although at large
distances they agree. Definition (22) is also advocated in
Ref. 12.

(2) A gauge-invariant conserved current is also given by
Ref. 13. It makes use of a background field to derive Kil-
ling vectors and hence the construction is different from
Sec. III here.

(3) The conservation of g' can be shown to be associ-
ated with the invariance of the Lagrangian density (4)
under gauge transformations along g'(x) as defined by
Eq. (21). To see this, consider infinitesimal transforma-
tions of the form

U(x) =exp( —i58 ' ri' o/)2, 58=constant . (32)

Comparing with the Noether current (7a), clearly g'"
transforms covariantly so that g "=g'g '" is a gauge in-
variant; and as in the Noether-current case, g consists of
two parts: the external current j"and the current carried
by the YM field.

With g "(x) we now define a gauge-invariant total color
charge as

Bpg+ [hp, il] =0
and consequently Eq. (24) can be rewritten as

(28} Suppose g'(x) is chosen such that in the decomposition of
the Yang-Mills field (25)—(27), the condition

E"=n'J "+W„,F""]'n' [h",jp]=0

where

a av (29a)
is satisfied. Then the variation in the Lagrangian density
1s
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aW», aW ~(~„A.) aW fj„'0= a + aaA„' » a(a„A:)» aj„' »
= rj'[J'q, A "]' d"—[F„'„(Drl)']

=d"[q'j „' F„'—„(D rl)']

using the equations of motion (la) and the fact that j„is
covariantly conserved. However, condition (33) is gauge
dependent.
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