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The variational principle is used to estimate the ground state of the Kogut-Susskind Hamiltonian
of the SU(2) lattice gauge theory, with a trial wave function for which the magnetic fields on dif-
ferent plaquettes are uncorrelated. This trial function describes a disordered state. The energy ex-
pectation value is evaluated by a Monte Carlo method. The variational results are compared to
similar results for a related Abelian gauge theory. Also, the expectation value of the Wilson loop
operator is computed for the trial state, and the resulting estimate of the string tension is compared
to the prediction of asymptotic freedom.

The Hamiltonian of the SU(2) lattice gauge theory in
the formulation of Kogut and Susskind is'

H = g gE, '(l)+
2 QM(p),

2 I g p

where l and p denote, respectively, a lattice link and pla-
quette; the gauge-invariant plaquette variable M(p) is

M(p) =1——,
' TrU(li)U(l2) U (l3) U (l4), (2)

where l&, 12,l3, l& are the links that make up plaquette p,
and U(l) is an element of the group SU(2) associated with
the link l. The electric field E,(l) is defined by the com-
mutation relation

We shall report the results of our calculations in terms
of a rescaled Hamiltonian

H = gE, (l)+A, QM(p),

where A, =8/g . The energies calculated below are for this
Hamiltonian. Also, since we work with a finite lattice to
do numerical calculations on a computer, we impose
periodic boundary conditions on the couplings of the
fields in Eq. (2); this reduces finite-lattice-size effects.

In this paper we describe a variational estimate of the
ground state of the Hamiltonian H. Our trial wave func-
tion is of ihe form

[E,(l), U(l')] = ——,
'

4T, U(l)5(l, l'), @=+ u(M(p));
P

(9)

where o., is the Pauli matrix.
Any group element U can be specified by three angle

variables ($,8,$) as

U =cosily+i t7 n sing, (4)

where n is a unit vector in three dimensions with polar an-
gles (8,$); the domain of g and 8 is (0,1r), and that of p is
(0,2m'). Alternatively, a gauge field A, may be introduced
by

E

U =exp —aaAaa a

The relation between the three gauge fields A, and the an-
gles ($,8,$) is

A, =2frt, .

The simplest explicit expression for the electric field
operators E, is in terms of the gauge fields, as

[f (A )—1]A,Ab
l

BAb

8
abc b

gA

A =(A,A, ) i, f(A)= cot-&yz A A

2 2
'

this is manifestly gauge invariant. It describes a disor-
dered state of the gauge fields, i.e., one in which the Wil-
son loop operator obeys an area law, because there is no
correlation between the magnetic variables M(p) on dif-
ferent plaquettes. Similar variational wave functions have
previously been applied to the U(1) lattice gauge theory in
two and three spatial dimensions, and to the Hamil-
tonian form of the XF model. s In the two-dimensional
U(l) lattice gauge theory the single-plaquette wave func-
tion u(M) that minimizes the energy is the ground-state
eigenfunction of a quantum pendulum. In the present
SU(2) calculation we do not optimize the functional form
of u (M), but simply take

u (M) =exp( —2aM), (10)

where u is the variational parameter. This should be al-
most as good as finding the optimal functional form of
14 (M).

In a recent paper Horn and Karliner have also
described the variational calculation for the trial function
in Eqs. (9) and (10) on the SU(2) lattice gauge theory,
along with a second calculation for a trial function with
uncorrelated links projected onto the space of gauge-
invariant states.

There are several motivations for our study. The most
straightforward motivation is just curiosity to see whether
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where A, =8/g, and the electric energy

f dQQ [E,(l)C&]

here d0 is the invariant measure of the group SU(2), i.e.,

dQ= Q i g,dP, i 8 dO, dg /2
I

(13)

We use Creutz's heat-bath Monte Carlo method to gen-
erate a set of field configurations with probability distri-
bution @ . This is equivalent to a Wilson path-integral
Monte Carlo calculation in three spacetime dimensions.
Then the magnetic energy is estimated as the average of
g M(p) over the set of configurations. The difficult part
of the calculation is the evaluation of the electric energy,
which is the average of

this very simple trial wave function can reproduce the
known properties of the vacuum of a lattice gauge theory.
More precisely, the wave function 4& is a natural model of
a disordered state, in that the only correlation between
gauge fields is local, and is dictated by gauge invariance.
Since quark confinement in lattice gauge theories is asso-
ciated with a disordered vacuum state, it is important to
find out whether this "minimal" model of a disordered
state, in which the nature of the disorder is trivial, resem-
bles the true vacuum state. If not, then the origin of the
disorder that causes confinement must be more complicat-
ed.

We are also motivated by a desire to apply the Green's-
function Monte Carlo method to the SU(2) lattice gauge
theory, in the manner of our calculations on the compact
U(1) lattice gauge theory. A necessary first step in this
program is to develop reasonable variational wave func-
tions to be used in importance sampling in the Monte Car-
lo calculations.

To check whether the variational estimates based on the
trial function N are accurate, we compare our results to
similar calculations for a compact Abelian lattice gauge
theory.

We evaluate the expectation value of H in the trial state
@by a Monte Carlo method. The expectation value is the
sum of the magnetic energy

A, f de @ QM(p),

periodic boundary conditions, and since there are no
long-range correlations in the trial state N.

Figure 1 is a graph of the value of cz that minimizes the
energy vs coupling constant k. The two sets of points are
for the SU(2) lattice gauge theory defined above, and for
comparison for a U(1) XU(l) XU(1) lattice gauge theory.
The Hamiltonian of this Abelian gauge theory is

H„b ——gE, (I)+—g [1—cosB,(p)],4
(14)

where B,(p) is the lattice curl of A, (l), and E,(l) is just
iB/dA (1); the index a runs from 1 to 3. The two Hamil-
tonians H and H„b in Eqs. (8) and (14) have the same
large-k, limit: in the harmonic approximation they both
describe three noninteracting free fields. The trial func-
tion for the U(l) X U(1) XU(1) gauge theory is

C&~b = + exp cosB&(p)
a,p

(15)

=c(n)v 2A, —c (n)/3+0(A, "i
) (16)

for an n &n &n lattice, where %p is the number of pla-
quettes; the constant c (n) is weakly dependent on n, e.g.,

This is gauge invariant under the Abelian group
U(1)XU(1)XU(1), and is identical to 4& in the limit of
small fields.

A few words of explanation are needed at this point to
explain why the two models give different results in the
large-k, limit. At first sight one would guess that the re-
sults would be identical since the Hamiltonians and trial
functions are identical in the limit of small fields. How-
ever, the electric energy is sensitive to a nonleading term
in the small-field approximation of the Hamiltonian, and
the nonleading term is different for the two models. We
have checked that in our numerical results the leading,
i.e., harmonic, terms of the electric and magnetic energies
are equal for the two models in the limit of large a, which
corresponds to small fields. The difference seen in Fig. 1

is due to a nonleading, anharmonic energy.
Figure 2 is a graph of the variational bounds on the en-

ergy per plaquette obtained for these two theories with the
uncorrelated trial wave function 4. The curve on that
graph is the ground-state energy per plaquette of the free-
field harmonic approximation of Hqb, given by

g [E,(l)N/N]
I c (3)= 1.181, c ( oo ) = 1.194 . (17)

we compute this quantity from an explicit formula for
E,(l)WIN. We calculate these two energies for many
values of the variational parameter o., and fit the resulting
numbers to an analytic expression for the energies as func-
tions of a. Then for a given value of the coupling con-
stant A, we minimize the energy with respect to a.

The calculations described below are for a small three-
dimensional lattice, of size 3&3&3. We have checked
that the results are very insensitive to lattice size by com-
paring the electric and magnetic energies for 3X3&3 and
6X6&6 lattices; on the scale of the graphs in this paper
the difference is small. That is not surprising since we use

In Eq. (16), the term independent of A, derives from the
four-field coupling in the small-field approximation of the
theory Hzb, this term would be different for the non-
Abelian Hamiltonian H. On the other hand, the term pro-
portional to A, is the same for H and Hzb since the har-
monic approximations of these theories are the same.

The variational bound on the vacuum energy of the
U(1) lattice gauge theory, based on the uncorrelated wave
function in Eq. (15), lies well above the harmonic limit of
the energy. This is an indication of the phase transition of
the U(1) lattice gauge theory; it is known that for A, (4.5
the disordered state does approximate the ground state,
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FIG. 1. Variational parameter u vs coupling constant X. The

circles () are the SU(2) gauge model defined in Eq. (8); the tri-
angles (L) are for the U(1)&U{1))&U(1)model defined in Eq.
(14).

but that for A, & 4.5 it is quite different from the harmonic
free-field vacuum, and so has a significantly higher ener-

gy. It is possible to construct a wave function for which
the energy approaches the harmonic limit, i.e., the curve
in Fig. 2, for large A, . Thus the phase transition of the
compact U(1) gauge theory can be visualized as a level
crossing: for A, & A,, the disordered state, similar to that of
Eq. (15), lies lower in energy, but for A, & A,, the harmonic
free-field state lies lower.

It is interesting to note that the variational bound of the
vacuum energy of the SU(2) gauge theory lies lower than
that of the U(1) gauge theory, and only slightly higher
than the harmonic limit of the ground-state energy of
Hgg.

Figure 3 shows the mean magnetic field on a plaquette
for the two theories, estimated from the variational wave
function N; to be precise the quantity V defined by

1 ——, TrU~ UzU3U4 for SU(2)
(18)

1 cosB for U(1—)

FIG. 3. The mean plaquette field V in the variational state N;
the circles (~) are for the SU(2) model, and the triangles (g) are
for the U(1) &(U(1)&U(1) model. The curve is the harmonic lim-
it of the vacuum expectation value of V, given in Eq. (19).

on any plaquette. Again the curves are the harmonic lim-
its

( V ~o fc(n)/V ——2A, , (19)

where f=1 for the SU(2) gauge theory, and f= —', for the
U(l) gauge theory.

In the SU(2) gauge theory, the mean plaquette field V
decreases monotonica11y as k increases, down to values
that are slightly larger than the harmonic free-field value
given in Eq. (19). Since Eq. (19) is the large-k, limit of the
vacuum expectation value of V, this discrepancy at large A,

is a measure of the inadequacy of the uncorrelated trial
function 4 as a model of the vacuum state. In the U(1)
gauge theory there is a large difference between the varia-
tional estimate of V and the harmonic limit. Other calcu-
lations, such as those of Ref. 4, indicate that there is a
phase transition in this model at A, =4.5, to a state with
mean plaquette field V nearly equal to the harmonic limit.

The vacuum expectation value of V is related to the
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FIG. 2. The variational energy bounds vs A, . The circles ()
are for the SU(2) model and the triangles (4, ) are for the
U(1) &U(1)&U(1) model. The curve is the large-A, limit of the
vacuum energy of Hqb, given in Eq. (16).

FIG. 4. The log (base 10) of the string tension, y, estimated
from the variational wave function @, vs A,

' . The solid line is
the asymptotic-freedom prediction of Eq. (23) with an arbitrary
intercept with the A,

' axis.
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y=X exp

vent

11
(23)

vacuum energy E in an interesting way. First-order per-
turbation theory implies that

(I )= ~ (20)
dA,

where the angle brackets stand for vacuum expectation
value; of course this relation holds only for the exact vac-
uum. The fact that (@

~

V
~
@) is too large at large A, in-

dicates that the difference between the trial state 4 and
the exact vacuum grows as k increases.

Perhaps the quantity that reveals the most concerning
the nature of the vacuum state is the expectation value of
the Wilson loop operator. We can easily calculate this
correlation function for the variational wave function 4,
i.e., the quantity

W=(@
( ,' T«&Uz—U3 . (21)

where U&U2U3 . . U& are the group elements around a
loop. Because 4 describes a disordered state, 8'obeys the
area law

W-exp( —yA), (22)

where 3 is the area enclosed by the loop. The quantity y
is an estimate of the string tension, insofar as the trial
function 4& is a reasonable approximation of the vacuum
state. Figure 4 shows the value of y obtained from the
variational wave function as a function of the coupling
constant A, , for the SU(2) lattice gauge theory; the solid
line on the graph indicates the large-A, limit of the string
tension derived from asymptotic freedom. In the limit of
large A. the dependence of the string tension on the cou-
pling constant is given by the relation

here the constant K is unknown, but the exponent is calcu-
lated from asymptotic freedom. The solid line in Fig. 4
shows the slope of log(y) vs k' implied by Eq. (23); the
intercept with the A,

' axis depends on the unknown
quantity E, and is chosen arbitrarily on this figure.

The results shown in Fig. 4 were obtained for a 6 X 6 & 6
lattice, from calculations of W for loops with dimensions
between 1 & 1 and 3 &(3, both square and rectangular.

Figure 4 shows that the string tension produced by the
uncorrelated variational wave function N remains signifi-
cantly too large for large A, . That is, this wave function is
excessively disordered compared to the vacuum state in
the weak-coupling limit.

Quark confinement in QCD does require that the vac-
uum state be disordered, i.e., that 8' obey the area law
(22), even in the limit A, ~ac, for a non-Abelian gauge
theory. Figure 4 shows that the disorder of the weak-
coupling vacuum state is more subtle than the trivial lack
of correlation between magnetic fields on different pla-
quettes that defines the trial function @. What kind of
wave function does describe the weak-coupling vacuum?
In the case of the U(l) gauge theory the answer is known:
a wave function derived from the harmonic free-field ap-
proximation can be constructed that approximates the
vacuum in the large-A, limit. Qf course that state is non-
confining. In the SU(2) gauge theory there might be dis-
ordering topological configurations' superimposed on the
harmonic vacuum that maintain confinement in the limit
A, ~Do but that do not affect average quantities such as
the vacuum energy and the mean plaquette field V.
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