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An application of the Green s-function Monte Carlo method to the Hamiltonian XY model is
described. Importance sampling is implemented with two trial wave functions —one corresponding
to a disordered state and one which incorporates the correlations derived from the spin-wave ap-
proximation of the model. Optimal trial functions are obtained from the variational principle. The
Monte Carlo results are interpreted with regard to the Kosterlitz-Thouless phase transition.

I. INTRODUCTION

The Green's-function Monte Carlo (GFMC) method is
a numerical technique for studying properties of the
ground state of a quantuin system with many degrees of
freedom. It was originally developed for application to
quantum many-body problems. ' We described an appli-
cation of this method to the Kogut-Susskind Hamiltonian
formulation of the compact U(1) lattice gauge theory in 2
and 3 spatial dimensions in a previous paper. In this pa-
per we shall describe similar calculations for the Hamil-
tonian formulation of the XYmodel.

The XY model, also called the classical planar spin
model, describes classical two-dimensional spins located
on a two-dimensional cubic lattice with a nearest-neighbor
interaction energy proportional to S.S'. The aim of clas-
sical statistical mechanics is to compute the partition
function

Z = g exp —P g S(x).S(x+k)
states x,k

An important feature of this model is the Kosterlitz-
Thouless phase transition, which separates a phase in
which the sum over states is doininated by spin-wave fluc-
tuations of an ordered state, so that the spin directions are
highly correlated, and a disordered phase in which the
correlation between spin directions is small. This phase
transition is driven by an interesting mechanism: vortices
in the spin field, which are coupled in pairs at low tem-
peratures, unbind to produce a disordered state at a criti-
cal value of P. Topological configurations that produce
long-range disorder of the fields may also be relevant to
the transition from an ordered to a disordered vacuum
state in lattice gauge theories. The XY model is impor-
tant to the lattice gauge theorist as the simplest example
of this mechanism. In this work we are interested in this
model as a testing ground for the GFMC method.

The Metropolis Monte Carlo algorithm has been ap-
plied to the computation of the partition function (1.1).

The Hamiltonian formulation of the XY model consists
of a quantum Hamiltonian that describes a one-
diInensional chain of interacting spins. The second di-
mension is time. The connection between this formulation
and that of Eq. (1.1) is that the partition function is a lat-

II. DEFINITION OF THE MODEL

The Hamiltonian of the XYmodel is

g2 1V

H = —g —A, g [1+cos(8;—8;+&)],
i=1 ~~i i=1

(2 1)

with the periodic boundary condition 0&+1——81. Here 0;
is an angle variable that defines the direction of the ith

tice approximation of the Feynman path integral of the
quantum system. For the sake of completeness we derive
this connection in the Appendix of this paper.

It is the quantum Hamiltonian to which we apply the
GFMC method.

An important, and even essential, aspect of the GFMC
method is the use of importance sampling. An impor-
tance function, which should resemble the ground-state
eigenfunction, is used to bias the Monte Carlo sampling in
favor of regions of configuration space where the wave
function is greatest. The variational principle provides a
way to construct useful importance functions. In the XY-
model calculations, as in the U(1)-gauge-theory calcula-
tions presented in our previous paper, we use two impor-
tance functions. The first describes a disordered state; im-
portance sampling with this function is good at weak cou-
pling, but becomes increasingly worse as the coupling in-
creases. The second is derived from the spin-wave ap-
proximation of the ground state, and yields good impor-
tance sampling at both strong and weak couplings. The
variational calculation that optimizes the trial function is
done analytically for the disordered state, but numerically
for the spin-wave state, by the Metropolis Monte Carlo
method. The variational results are interesting in their
own right as they give some indication of the nature of the
ground state as a function of the coupling constant. Then
the GFMC calculations extend the accuracy of the varia-
tional calculations.

The outline of this paper is as follows. We define the
Hamiltonian XY model and explain our application of the
GFMC method in Sec. II. We describe the variational
calculations that yield trial functions for the GFMC im-
portance sampling in Sec. III. We discuss the GFMC re-
sults in Sec. IV, and make some summarizing remarks in
Sec. V.
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g(8) = g P(n)exp i g n;(8; —8;+)) (2.2)

where periodicity in 0; requires that the variable n; be an
integer. Then the n-space eigenfunction P(n) obeys the
equation

spin; thus its range is ( m—,n), and wave functions are
periodic in 8; with period 2m. . 0 is defined such that the
ground-state energy is negative; we let —Q denote this
energy. In the calculate. ons to be discussed, we formulate
the eigenvalue problem in the space of variables conjugate
to 6;; specifically, we write the ground-state eigenfunction
as

XF(")(n ), (2.10)

which is the equation to which we apply the GFMC dif-
fusion process. Now the diffusion is governed by the
biased Green's function Pz (n)K(n, n ')/Pr(n ').

The GFMC method is based on iteration of Eq. (2.9).
To iterate the equation we must take Q to be the given
quantity, and regard k as the eigenvalue to be determined.
Then iteration yields a sequence of functions F' '( n ),
F' '( n ), . . . , F(")(n ) defined by

F'"+"(n)=X("'g ' "
K(n, n')[g'+S(n')]-'&(n)

Pr(n ')

—Q P(n)=S(n)P(n) —A, QK(n, n ')P(n '),

where

S(n)= g (n; n+ —))

(2.3)

(2.4)

where the constant A,
(") may vary from one iteration to the

next. It can be shown that F'"'( n ) approaches the
ground-state eigenfunction with energy —Q as r~ oo, in-
dependent of the initial function F' '( n); and that the nor-
malization obeys the relation

and

K(n, n ') = g [5(n, n ')+ —,
' 6(n, n '+e;)

F(r+()(~n) g(r)
11m

F'"'( n )
(2.1 1)

where A, is the coupling constant for which the ground-
state energy is —Q . Constant normalization of the func-
tion F'"'( n ) (after convergence to the limit) requires

The GFMC algorithm for solving Eq. (2.9) is a simula-
tion of a diffusion process with branching. At the rth step
of the process we have an ensemble 8', of field configura-
tions

+ ~5(n, n' —e;)], (2.5)

where e; is the X-component vector with jth component
5gJ ~

To put the eigenvalue equation into a useful form, we
define

g(n)=[Q +S(n)]P(n);
this function satisfies the equation

X(n) =A, QK(n, n ')[Q +S(n ')] 'X(n ') .
n

(2.6)

(2.7)

F(n) =fr(n)X(n) .

This obeys the equation

(2 &)

F(n)=A, Q K(n, n ')[Q +S(n ')] 'F(n '),z.(n)

-„~ Pz(n')

(2.9)

The GFMC method applies to an equation of this form.
The method consists of simulation of a diffusion process
with branching. The branching probability is proportional
to [Q +S(n ')] ' and the diffusion is governed by
K ( n, n '). We refer to K ( n, n ') as the Green's function,
although in this problem it is not introduced as the inverse
of an operator.

The GFMC method is most powerful when combined
with an importance-sampling technique. In very large
systems this technique is necessary for obtaining accurate
results. We implement importance sampling by introduc-
ing a trial wave function Pz(n), which should be an ap-
proximation of the actual eigenfunction. Then we define
the function F ( n ) by

8', = f n '; o = 1,2, 3, . . . , X„];
let I'„(n) denote the probability distribution of 8', . The
next ensemble 8', +) is obtained from 8'„ in two steps:

(i) Each n' branches into k new points, where k is
an integer picked by a random process such that the ex-
pected value of k is

g(r)[Q2+S(~ i
)] J y r T & cTdz-(n)K(n, n '

)

Pz(n' )
(2.12)

The possibility k =0 is allowed. Here XO', which may be
thought of as a guess of the value of A, , can vary from one
iteration to the next.

(ii) Then each of the k~ points is moved from n ~ to a
new configuration n chosen from the probability distribu-
tion

Pz(n)K(n n )lgr(n )

+gal(n)K(n, n' )Igr(n ~)
(2.13)

Note that the form of K(n, n') implies that n differs
from n '

by at most one unit.
The ensemble 8', +1 is the result of processing all of the

elements of 8'„ in this way. The probability distribution
of 5 r+1 1s
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(,) X„z(n)
P„+&(n)=Ao' g K(n, n')[Q +S(n')]

~r+i -„, Pz(n ')

&(P„(n ') . (2.14)

That is, the evolution of P„(n) is the same as Eq. (2.10)
with

g(»)» g(»)
0 (2.15)

Therefore, P„(n) approaches the eigenfunction F(n) as
r~ oo . Also, since P, ( n ) and P„+~ ( n ) have the same nor-
malization, specifically g P„(n)=1 for all r, after a suf-

ficient number of steps in the diffusion we shall have

(.) N»
Ap (2.16)

This provides an estimate of the eigenvalue A, after each
iteration. Note that A,p' controls the size of the ensemble;
in practice we readjust the value of A,p' every few itera-
tions so as to keep the ensemble size approximately con-
stant. Thus the simulation yields an estimate of A, and a
sequence of ensembles of n-space configurations with
probability distribution F( n ).

Use of the trial function Pz is called importance sam-
pling. The diffusion in the space of n configurations
is controlled by the biased Green's function
Pz(n)X(n, n')/gal(n '). The factor Pz(n)lgz(n ') biases
the diffusion in favor of moves n '~ n in directions that
increase Pz (n). If Pz is an approximation of the ground-
state eigenfunction, then this bias accelerates the conver-
gence to the ground state, and reduces fluctuations of the
estimates of the eigenvalue A, .

The importance-sampling technique also provides a way
to estimate expectation values of operators in the ground
state, provided Pz is a good approximation of the eigen-
function P. If Pz differs from P by an amount of order e,
then to order e we have

thought of as an extension of the variational principle,
that improves the accuracy of numerical estimates. The
GFMC determination of the eigenvalue A, is in principle
exact, even if Pz is not a good approximation of P; but
that is only for a large enough ensemble, and in practice
the calculations are not feasible if Pz. differs from P too
much. Expectation values computed from the mixed ex-
pectation value are valid to order (Pz —P), so Eq. (2.17)
gives the order-(Pz —P) correction to the ordinary varia-
tiona1 estimate. In addition, the GFMC approach can in-
dicate whether a variational wave function is an accurate
representation of the ground state by testing whether it
works well as an importance-sampling function. It can be
proven, for example, that fluctuations in the measurement
of A, by Eq. (2.16) approach zero as the trial function ap-
proaches the exact eigenfunction.

In the next section we describe the two trial functions to
be used for importance sampling in the CxFMC calcula-
tions, and variational calculations which optimize the
choice of these functions.

III. VARIATIONAL CALCULATIONS

We shall consider two trial wave functions to approxi-
mate the ground state of the XY model. The first is de-
fined as a function in the space of 8 configurations as

P,(8)= + u(8; —8;,); (3.1)

the energy (g& f
H

f g& ) is to be minimized with respect to
the choice of the function u (co). It can be shown that the
minimum energy is obtained if u (co) is the ground-state
eigenfunction of the Hamiltonian of a quantum pendu-
lum,

h = —2 +A, (1—cosco),
Bco

(3.2)

where —n & co & m. The resulting variational bound on the
energy per spin is

& —2A, +ep, (3.3)

The left-hand side is the desired expectation value of an
operator A. The second term on the right-hand side is
simply the expectation value in the trial state. The first
term on the right-hand side, which is called the mixed ex-
pectation value, can be estimated as

Ep ——2A.K —Q

note that Ep is the ground-state energy of

(3.4)

where ep is the smallest eigenvalue of h. We shall present
our results in terms of another energy Ep, rather than
—Q, defined by

(P f
A

f Pz) (3 (n)[Q +S(n)] '),„,
([Q'+S(n)]-'),„,

(2.18)

X g2
2

+A, g [1—cos(8; —8;+~)] .
i=1 i i=1

The variational estimate of Eo based on P& is

(3.5)

where ( ),„, denotes the average of the enclosed quantity
over the ensembles generated by the GFMC diffusion.
Since Eq. (2.17) is only valid to order e, this estimate is
not trustworthy if (A )z and (A ) are very different.

The trial function Pz. is ordinarily obtained from a vari-
ational calculation. Thus the GFMC method can be

N
=ep

The small- and large-A, limits of ep are

(3.6)
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7A'
eo—A, — + +0 (A, ) as I,—+0,

4 256

e,=X'~' ,'—+—O(X '~') as X

(3.7)

SS4
Eo/N=A, — + +0 (A, ) as A ~0,

4 768

Eo/N=A, ' d(N) —,'d (N—)+O(A, '~
) as A, ~ao,

(3.8)

where

l/2 '

d(N)= 1 —cos—
X

sm (3.9)

for a chain of N spins with periodic boundary conditions;
the value of d (N) is approximately 0.90 for N greater than
10. Thus eo and EOIN have the same small-A, limit, but
eo is greater than Eo/N for large A, .

The trial function gl describes a disordered state of the
spins. Specifically, the correlation between spins separat-
ed by a distance k is, for this wave function,

k

(g, ~
cos(8;+k —8;)

~ f, ) = f dcou (co)cosco

(3.10)

which decreases exponentially with k. We expect Pr to be
a good approximation of the eigenfunction for small A, ,
where the ground state is disordered in this way. But it
can already be seen by comparing the limiting forms (3.7)
and (3.8) that rtjr becomes less accurate as A, increases.

The second trial wave function is designed to be accu-
rate in the large-k limit; it turns out to be accurate at
small A, as well. It is defined in the conjugate space of n
configurations as

$2(n)=exp ——,a g njbJJ'n~' (3.11)

where a is the variational parameter, and

For comparison these limits for Eo/N are easily shown to
be

probability distribution Pz, and estimating the expecta-
tion value by the average of the operator over these con-
figurations. This is done for many values of the variation-
al parameter a. The resulting data on the energy as a
function of a is then fit to a polynomial of sufficiently
large degree to give a good fit. And finally we minimize
the polynomial with respect to a.

Figure 1 is a graph of the value of u that minimizes the
energy, as a function of the coupling constant A, . The er-
ror bars are calculated in a straightforward way from the
standard errors in the polynomial coefficients found by
the least-squares fit mentioned in the previous paragraph.
The calculation is for a chain of 50 spins, with periodic
boundary condition.

As anticipated, a approaches 1, the spin-wave value, at
large A, . As A, decreases, a increases and so P2 becomes
more sharply peaked at n =0, which implies a more disor-
dered state in 8 space. There is a fairly dramatic varia-
tion of a for A, near 1. A similar variational calculation
for the U(1) lattice gauge theory in three dimensions, dis-
cussed in Ref. 3, has a discontinuity in the value of a as a
function of A, , indicating a phase transition in that model.

Figure 2 shows the variational bounds on Eo/N as a
function of A, , for both trial functions @, and P2, alorig
with the large- and small-i, limits given in Eq. (3.8).
Clearly the trial function Pz derived from the spin-wave
approximation is more accurate than the disordered func-
tion 1(& for A. ) 1; its energy approaches the correct large-i,
limit, as it must by construction. The spin-wave function
is also a good approximation at small A, , where its energy
is only slightly larger than that of the disordered state.
Both functions approach the correct small-k limit.

The two trial functions Pr and Pq are analogs of the tri-
al functions that we used in U(1)-lattice-gauge-theory cal-
culations. The analog of g& is a product of single-
plaquette functions, and the analog of $2 derives from the
free-field harmonic approximation of the U(1) gauge
theory.

In the next section we describe the results of GFMC
calculations that use these two trial functions for impor-
tance sampling.

1/2
2h. ~ ——

JJ
2 ' 27jl

exp q (j—j') sin (3.12)

The motivation for this form is that with a= 1 it dupli-
cates the ground state of the spin-wave approximation of
the model, which is known to be the eigenstate in the
large-A, limit. The spin-wave approximation consists of
replacing 1 —cos(58) by —,

' (b,8) in the Hamiltonian, and
extending the range of 8; from ( —m. ,m) to ( —ao, oo ). The
resulting model is solvable since its Hamiltonian is qua-
dratic; its ground state is Pz with a =1, but where the
variables n; take a continuum of values. We emphasize
that the trial function Pz is not a naive harmonic approxi-
mation, because the n; are restricted to integer values; this
is necessary to preserve the periodicity of the wave func-
tion in I9 space.

We evaluate the expectation value ($2 ~

H
~ $2) numeri-

cally, using the Metropolis Monte Carlo algorithm to gen-
erate a set of configurations Inr, n2, n3, . . . , IlkI with

1.90 i

1.70 .

a 150-

1.30 ~

r

I I
t

1
4

1.10
0.00 0.50 1.00 1.50 2.00 2.50

FICr. 1. Variational parameter a vs coupling constant A, .



1788 DAVID W. HKYS AND DANIEL R. STUMP

1.60 ~

1.20 '

U
0.80 .

Z

0.40 "'

0.00 '~
0.00 0.50 1.00 2.00 2.50

FIG. 2. Variational estimates of the ground-state energy per
spin vs coupling constant X. The solid and dashed curves are
perturbation expansions for small and large A, , respectively. The
crosses (+ } and circles {0) are variational estimates vvith trial
wave functions g& and P2, respectively. Error bars are much
smaller than the size of the points.

Figure 3 is a graph of Eall, the ground-state energy
per spin of the Hamiltonian (3.5), as a function of the cou-
pling parameter k, from Green's-function Monte Carlo
calculations with importance functions gi and $2. The
curves are the variational bounds obtained in Sec. III, and
the points are the GFMC results. The GFMC calcula-
tions used an ensemble of approximate1y 100 configura-
tions; this ensemble size changes with each iteration. The
results in Fig. 3 are averages over 800 iterations. Each
GFMC point required approximately 90 sec of computa-
tion time on a CDC Cyber 750 computer at Michigan
State University.

1.60

1.20

C9
Kg 0.80-
x
LLI

0.40-

0.00,
,

0.00 0.50 1.00 2.00 2.50

FIG. 3. Monte Carlo estimates of the ground-state energy per
spin vs coupling constant A, . The solid and dashed curves are
variational estimates with trial wave functions g| and P2, respec-
tively. The crosses (+ ) and circles (0) are Monte Carlo results
with importance functions Vi| and $2, respectively. W=(1—cos(8; —0;+i)) . (4.1)

The results shown are for a chain of 50 spins with
periodic boundary condition. As A, varies from 0 to oo the
energy interpolates between the small-k, asymptotic
behavior described we11 by the disordered wave function
g, and the harmonic spin-wave behavior described by $2.
The crossover from one form to the other occurs for I,—1.

The two Monte Carlo estimates are almost equal, and
are consistent with the variational bounds. However,
there is a tendency for the GFMC estimate obtained with
the disordered function f& to lie higher in energy than
that obtained with $2 in the region A, ) 1. Furthermore,
the former estimates have greater uncertainty, as indicated
by the error bars, than the latter, for which the error bars
are much smaller than the size of the point plotted. These
error bars come only from the fluctuation associated with
stochastic sampling. These two tendencies are not unex-
pected; they reflect the fact that gi is not a good approxi-
mation of the ground state for A. ) 1, where the spins are
more correlated than in Pi.

It is interesting to compare these results to the analo-
gous calculations for the U(1) lattice gauge theory in 3
and 2 spatial dimensions. In the three-dimensional model,
the Monte Carlo results obtained using the disordered
wave function for importance sampling are definitely dif-
ferent than those obtained with the harmonic wave func-
tion, in the region of large A, ; in fact the former results are
inconsistent with the variational bound provided by the
harmonic wave function. %'e interpret this as evidence of
the phase transition of the three-dimensional U(1) gauge
theory: the disordered state is metastable with respect to
the GFMC diffusion process. In contrast, the Monte Car-
lo results are the same for the two importance functions in
the two-dimensional model; this is consistent with the fact
that there is no phase transition in the two-dimensional
model.

Our XY model results show evidence of the Kosterlitz-
Thouless phase transition, in that the disordered function
does not provide effective importance sampling for A, ) 1.
The disordered state is not metastable, as it is in the
three-dimensional U(1) gauge theory, but the energy esti-
mate obtained with the disordered importance function is
slightly larger, and has larger fluctuations, than that ob-
tained with the spin-wave function in this region. The
difference between the XY model and the U(1) gauge
model is explained by the fact that the Kosterlitz-
Thouless phase transition is an infinite-order transition,
while the gauge-model transition is a second-order transi-
tion.

The Kosterlitz-Thouless renormalization-group calcula-
tion predicts that the phase transition of the XY model
occurs at X=1.02; this point is discussed briefly in the
Appendix. That value is perfectly consistent with the in-
terpretation of our results given above. For k&1.02 the
ground state is disordered so fi acts as an effective impor-
tance function; but for A, ~1.02 the spin directions are
more correlated than in Pi so this function gives weaker
importance sampling.

Figures 4(a) and 4(b) show Monte Carlo estimates of the
correlation function of neighboring spins
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1.00 i V. SUMMARY

0.80 ~

V 060-

0.40

0.20
0.00 0.50 1.00 1.50 2.00 2.50

1.00 )

0.80 ~

0.60 ~

0.40 ~

0.20
0.00

I

0.50 1.00 1.50 2.00 2.50

Note that P is related to the energy Eo by

FIG. 4. The expectation value of 1 —cos(0; —0;+~) vs cou-
pling constant A, . The curves are perturbation expansions. The
triangles {A) are simple expectation values in the variational
wave functions, and the crosses ( + ) are Monte Carlo estimates
of the mixed expectation value, Eq. (2.17). The trial functions
are Pq for (a) and g~ for (b).

In this paper we describe results of an application of the
Green's-function Monte Carlo method to the Hamiltonian
XF model. These calculations are parallel to calculations
described in an earlier paper for the compact U(1) lattice
gauge theory in 2 and 3 spatial dimensions.

In these models an important issue is the existence and
nature of a phase transition separating a disordered phase
and a phase in which the model is accurately described by
its harmonic approximation. We find that the GFMC re-
sults give a good indication of such a phase transition. In
particular, we can judge whether a wave function resem-
bles the ground-state eigenfunction by its performance in
reducing fluctuations when used in the importance-
sampling procedure. In our calculations the disordered
trial function performs poorly for values of the coupling
constant for which the harmonic wave function approxi-
mates the ground state. For the three-dimensional com-
pact U(1) gauge theory the inadequacy of the disordered
trial function is obvious: it yields energy estimates that
are greater than the variational bound provided by the
harmonic wave function, at least for the ensemble size
that we use in the GFMC diffusion. For the XI'model
this inadequacy is more subtle, but can be seen in the large
fluctuations of energy estimates.

The CxFMC method offers a second way to judge
whether a trial function represents a good approximation
of the ground state, based on the mixed expectation value,
i.e., Eq. (2.17). If PT approximates P then the mixed ex-
pectation value of an operator 3 is nearly equal to the ex-
pectation value of A in PT', if these two quantities are
quite different, then PT cannot be a good approximation
of P. Thus, for example, the increasing difference between
ihe two estimates of P as A, increases beyond 1 in Fig.
4(b), is another indication that the disordered wave func-
tion does not resemble the eigenfunction for A, & 1.

The Monte Carlo results imply by these considerations
that the ground state of the XF model changes from a
disordered state to a state better described by a harmonic
wave function for A, =1. This value is in agreement with
the Kosterlitz- Thouless renormalization-group analysis,
which predicts a phase transition at A, =-1.02.

dEO

dA,
(4.2) APPENDIX

The Monte Carlo points in Figs. 4(a) and 4(b) are obtained
from the mixed expectation value, i.e., Eq. (2.17), for the
importance functions Pq and g~, respectively. The curves
on these graphs are from small- and large-i, perturbation
theory. Here there are marked differences between the
Monte Carlo results. In particular, the GFMC estimates
of 1 obtained with the disordered importance function
have large uncertainty and differ significantly from the
ordinary expectation value in g&, in the region A, ) l.
Again, this is precisely what we expect from calculations
with an importance function that does not approximate
the ground-state eigenfunction. It is interesting to note
that the GFMC and variational estimates of P obtained
with the spin-wave function P2 are almost equal for all A, ,
suggesting that Pz is quite a good representation of the
eigenfunction.

The connection between the Hamiltonian (2.1) and the
partition function (1.1) of the classical XI' model derives
from the Feynman path integral of the quantum problem.
The path integral for the Hamiltonian H is, with
imaginary time,

Z = f d8;(t)e (Al)

where d8;(t) denotes integration over paths in the space of
0 configurations, and 3 is the imaginary-time action

dO;
A = f dt g — +k[1—cos(g, + &

—g,. )]
l

(A2)
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We now consider a discrete approximation of the time
coordinate; let t take the values g I2 —cos[8(i,j+1)—8(i,j)]

tj =QJ~ J =0, 1,2~3, . . . (A3)

with interval a to be specified later. If a is small com-
pared to the time over which 8;(t) varies then we may re-
place the integral over t by a sum over j, and the time
derivative by a difference; i.e.,

(A4)

—cos[8(i+1,j)—8(i,j))I . (A7)

The lattice "path integral" over 8(i,j ) is precisely the par-
tition function (1.1) for classical statistical mechanics of
the XY model, where the direction of the spin at (i,j) is
defined by the angle 8(i,j ), and the inverse temperature is

1/2

p= (AS)
2

where 8(i,j)=8;(t~). Again for small a, we may assume
that 8(ij + 1) 8(ij )—is small and approximate

[8(ij +1) 8(—ij)] =2t 1 cos[8—(ij +1)—8(i j)]I .

(A5)

With these substitutions the action becomes

[1 cos[8(i—,j +1)—8(i,j)]I
1

2a

+ah, I 1 cos[8(—i + 1,j)—8(i,j)]I . (A6)

At this point we let the interval a be (1/2A, )'; then

This derivation of the connection between the one-

dimensional quantum problem and the two-dimensional
classical statistical mechanics problem is the inverse of the
usual derivation, which starts from the partition function
and derives the Hamiltonian H as the transfer matrix in
the limit that one of the dimensions becomes continuous.

The Kosterlitz-Thouless phase transition occurs at in-

verse temperature P=2.24/~, according to a
renormaliz ation-group calculation. Therefore, by Eq.
(AS) the critical value of k is 1.02. This value is perfectly
consistent with the results of the GFMC calculations
described in Sec. IV.
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