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The Green’s-function method is employed to study the two-dimensional system of classical O(N)-
vector spins. The second-order double-time retarded Green’s functions of the corresponding quan-
tum Hamiltonian system on a one-dimensional lattice are decoupled approximately in a self-
consistent manner. The expressions for the mass gap and the spin-correlation function thus ob-
tained reproduce the known exact results in the large-N limit and in the strong-coupling region.
Some directions are discussed to improve the present method in the region of weak coupling with N

not large.

I. INTRODUCTION

The system of classical O(N)-vector spins in a two-
dimensional lattice has received much attention not only
as a model of magnetism but also as a convenient testing
ground for new theoretical methods and as a system hav-
ing considerable relevance and similarity"? to the four-
dimensional lattice gauge system,’ another interesting but
more complicated system. It has been analyzed by various
theoretical techniques such as weak-coupling perturba-
tion,! renormalization-group method,? strong-coupling ex-
pansion,** duality transformation and topological excita-
tions,® Monte Carlo method,”® the large-N limit,>!° varia-
tional method,!""!? and so on.!?

In this paper yet another method, the Green’s-function

method,'*13 is employed in order to study the spin system
and, at the same time, to test the applicability of the
method itself, hoping to get some indications that the
method will also prove its validity for some other interest-
ing systems, such as the lattice gauge theory. The
Green’s-function method is one of the standard methods
in quantum theory and has been used successfully in
several branches of theoretical physics. In particular, in
the development of its application to the Heisenberg
model of ferromagnets,'* a quantum version of our
vector-spin model of N=3, one can expect to find some
ideas and lessons useful in studying our spin system by us-
ing a similar framework and techniques. Therefore it
seems appropriate to recall here the main steps of its
development for the Heisenberg model briefly.

Tyablikov'® first studied the three-dimensional Heisen-
berg model of spin s =+ in an external field by using a
simple decoupling procedure to truncate the chain of
Green’s functions. His result of the magnetization is rath-
er satisfactory over the entire region of temperatures, giv-
ing the exact limiting values in low and high tempera-
tures, and has been regarded as a “first approximation.”
Tyablikov’s decoupling approximation is known to be
equivalent to the random-phase approximation!’ in the
equation-of-motion approach.!®

Extension of the method to higher-spin cases (s > 1/2)
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was done by several authors.!* In particular, Callen'
elaborated the decoupling procedure of the higher-order
Green’s functions by introducing an appropriate parame-
ter in the coefficients (mass operators) in front of the
lower-order Green’s functions. Among other things in his
results, it is pointed out that his estimation of the Curie
temperature becomes almost exact in the large-spin limit
(s— o).

The defect of Callen’s theory for s =1 at low tempera-
tures, i.e., appearance of an unwelcome 7> term in the
magnetization, is explained by Tahir-Kheli.”® He showed
that this unwelcome term would disappear if one intro-
duced a suitable anomalous term in addition to the mass
operator multiplying the lower-order Green’s function in
the expression for the higher-order one. It is this addi-
tional term, as observed by Wortis,?! which distinguishes
the Heisenberg spin system consisting of SU(2) spin vari-
ables from ordinary systems consisting of canonical boson
or fermion variables, the latter satisfying the usual Dyson
equations and containing no such anomalous terms.

For the Heisenberg model in one and two dimensions
the spontaneous magnetization cannot be used as a mass
operator because it vanishes there (750).2> So one must
postpone the decoupling procedure one step (or more) fur-
ther to get nonvanishing mass operators, and hence in-
teresting results. This approach is called the second-order
Green’s-function approach and has been studied by several
authors.??

Returning to our spin system, the sequence of this pa-
per will be as follows. In-Sec. II, the Green’s-function
method (at zero temperature) is formulated for the
quantum-spin Hamiltonian system on a one-dimensional
lattice. This system is obtained from the original classical
system defined in a two-dimensional Euclidean rectangu-
lar lattice with spacings a,=a,a, through the transfer-
matrix formalism in the limit of putting the lattice spac-
ing a, in the (imaginary) time direction to zero.”* The
decoupling procedure is performed for the second-order
spin Green’s functions by introducing several parameters
(in the mass operators), which, in turn, are determined by
self-consistency requirements coming from the spectral
theorem!# and the spin kinematics. The resulting expres-
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sions for the mass gap and the spin-spin correlation func-
tion are checked to reproduce the known exact results in
the limit of large N° and in the region of strong coupling.*
In Sec. III, some discussion is presented on possible direc-
tions of how to improve the present method in the region
of weak coupling with /N not large, where our result seems
to become unsatisfactory.

II. GREEN’S-FUNCTION METHOD

A. Hamiltonian system

The Hamiltonian of our spin system is given by

H=3 43 2 Jij(x, t)2+ Z[Vn (x,0)]? (1)

i#j

where a site in the one-dimensional lattice is specified by
an integer x (=1,2,...,L), and the lattice spacing a is
put to unity. The spin variable n;(x,t) at the site x on
time ¢ has N components (i =1,2, ..., N;N >2) and satis-
fies the unit-length condition

> ni(x,On;(x,0)=1 . (2)
i
The J;;(x,t) stands for the generator of O(V) rotations of
n;(x,t) in the i-j plane. A dimensionless parameter f3 is in-
versely proportional to the coupling constant. The V is
the lattice difference operator, i.e.,
Vni(x,t)=n;(x +1,t) —n;(x,t) ,

and the periodic boundary condtion

(A()B(t') = lir% fow do[Gyp(e+i€)—G ypler—i€)Je—iot =)
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ni(L +1,t)=n;(1,¢)

is used.
The equal-time commutation relations are

[n;(x),n;(y)]=0,

[ (x),ne ()] = — 8, [8ip 11 (x) — 8 mi(x)] , (3)

[Ji(), Jia(0) = — i85, [ 81 T jy (%) — 83 jpe (%) —
+8;Jik(x)]

SijiI(x)

where the common time ¢ has been suppressed.

B. Green’s-function method

Now let us briefly recall the basic principles of the
Green’s-function method.'*'> Let us introduce the fol-
lowing double-time retarded Green’s function for opera-
tors A(¢) and B(¢'):

(A )B()Y)=6(t —t'){[4(1),B(")]) , @)

where 0 is the step function and ( - - -+ ) stands for the ex-
pectation value with respect to the ground state of the
Hamiltonian H.?® The time development of this function
is given by

%«A(t);B(t’)»=8(t——t’)([A(t),B(t)]>
+i{[H,A(t)];B(t")) . (5
The time-correlation functions {(A(¢#)B(¢t')) and

(B(t')A(t)) can be expressed in terms of (A (¢);B(¢')))
by the spectral theorem !+ 152

(6)

0 . ,
(BhA0)=—1lim [ do[Gplw+ie)~Guplo—ie]e =,

where

1 b i ’
Guplo)=>— I~ dte—gaw;Baypeion-— ()

Theorem (6) can be proved by using the spectral represen-
tation.

Thus, if one can get the Green’s functions by solving
Eq. (5), the correlation functions can be obtained through
Eq. (6). Equation (5), however, generates a chain of equa-
tions involving higher-order Green’s functions, which is
generally endless. Therefore, in this method, one has to
replace this infinite-dimensional set of equations by some
finite one approximately in order to get some concrete re-
sults. A typical procedure for this replacement, i.e., a
decoupling procedure, is presented for our spin system in

the next subsection.

C. Decoupling procedure

Let us consider the function {7;;n; )), where abbrevia-
tions n; =n;(x,t) and n; =n;(x',t’) are used, and the sum-
mation convention over the repeated index (i) is also em-
ployed. Its first-order equation of motion is

ijnj;ni' »

O ((pom L
E«ni,ni »— «J

———[§(N—1)((rz,,nx », 8

where J;j =J;;(x,t). Because our system is known to have
the ground-state singlet under the global O(N) rotation,>
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i.e., {n;)={J;; ) =0, any decoupling procedure to truncate
the sequence of the Green’s functions should be postponed
one step further. The equation of motion for (Jy;n;;n{ )
appearing in Eq. (8) is

%«J,.jn,-;n,f NW=—i(N —1)8,,:8(t —1t')
+ i«Jiijknk;niI »

—EE(N

+B«nA;

D«Jynisn M
—miigngni ), 9)

where ;=n;* +n;” and n;/* =n;(x £1,1).

Now let us describe (J;;June;ni ) and (n;7;n;;n; ),
both appearing in Eq. (9), in terms of the lower-order
functions (n;;n; ) and (Jj;n;;n; ), approximately. For
(JyJjni;n; N, the following substitution is proposed:

(JTwnini R—>C KT njni N +Cr{nin ) (10)

with the introduction of yet unknown parameters C;,C,
which might have S and N dependence but not have
space-time dependence. Equation (10) simply states that
our approximate space of the Green’s functions is a linear
one. By substituting Eq. (10) into the spectral theorem
one gets

([ Tjnisni 1) =Ci{[Jyn;ni 1Y+ Collni,ni 1) . (11)

At equal time, by using the commutation relations, this
equation reduces to determine C; as

Cy=i(N-1). (12)

The parameter C,, on the other hand, will be determined

later self-consistently [see the argument below Eq. (24)].
For (n;7;n;;n; )), let us propose the following substitu-

tion:

]

«Jijnj;nil W=L —1 f—‘:o do 2 GJn(k’w)eik(x—x‘)—iw(t—r’) ,
k
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Kmnjngn; W—Di(njfn;)nyn N
+D,nitsni N, (13)
where the parameters D; and D, may depend on N but
are assumed not on B and space-time. The S indepen-
dence of D, , is suggested by the appearance of the S3-

dependent factor (nn;) on the right-hand side of (13).
Again the use of the spectral theorem with Eq. (13) gives

(ninjinjn;' >=D1<njinj><n,‘nil >+D2<n¢'ini’> . (14)

At equal time, by setting x =x’, this reduces to give a

condition (recall n;n; =1)
1=D,+D, . (15)

Next, at equal time, by setting x'=x+1, Eq. (14) reduces
to

(n,-njnjinii)=D1(njinj)(n,-in,~)+l)2 . (16)

Then, in this equation, by considering the limit of strong
coupling (B—0) where the nearest- nelghbor correlatlons
bv1ous1y become vanishing (nj n;)—0, (n,njnj n)

—N 1), D, can be determined as
1
Dy=—. 17
2=y (17

It is noticed that, in the weak-coupling limit S— oo, Eq.
(16) gives the same information as Eq. (15), because the
nearest- nelghbor correlations ~ become  maximum
((mnjnifn)—1, {nn;)—1). Hence the expressions
(15) and (17) for D, , can be used consistently throughout
the entire region of .

D. Mass gap and spin-spin correlation

Once the decouphng procedures (10) and (13) are intro-
duced, {J;n;;n; )) and hence ((n;;n; )) can be solved in
closed forms Let us denote the space-time Fourier
transform of these functions as G, (k,0),G, (k,»):

GJ,,(k,w)=(21T)"1f_°° d(t —1t") 2 « Un],n’ »e—xk(x—x )+io(t — t)

x —x'=0

where the momentum k takes values k =2mm /L,
m=-—L/2—-1,...,-1,0,1,...,L/2, and G,(k,w) is
given by the replacement J;; n,——»n, in Eq. (18). Equation
(9) is solved for G,,(k,w) as

(N — 1) /27 +iy(k)G,(k,0)

k
G, k,0)= ot (N_1)/28 , (19a)
y(k)=C,/B+2B(1—N~Y)(cosk —f) , (19b)
f=(nin;) . (19¢)

Then this expression of G, is substituted in Eq. (8) to
give the following simple structures of G,;

(18)
[
R
G, k)= —"— |
(k,w) T E (k)] (20a)
E(k?=[(N —1)/2B8)?—y(k)/B, (20b)
R=—(N-—-1)/2uapi . (20c)

Now there are two yet undetermined parameters, C,
and f= (n, nj) In the following they are determined
self-consmtently by invoking the spectral theorem (6)
agam For {n;n} ) it glves an expression for the spin-
spin correlation function®®

(n;n{ )———ﬂz

zk(x—-x’)—iE(k)(t~t’) . 21
E(k) @b

At equal times, by setting x =x’', Eq. (21) reduces to give
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N-—1 1
=2 —_— 22
2BL % E (k) 22)
Next, by setting x'=x *1, it gives
N-—1 cosk
==y = 23
F="8L 2B @3

To see the meaning of these equations, the mass gap m is
introduced through

E(k)?=(1—N~"1)2—2cosk)+m?. (24)

The reason why m is called the mass gap, i.e., the energy
difference between the ground state and the first-excited
state, comes from the expression (20a), because the poles
of the Green’s functions in the @ plane generally represent
the energies of the excited states of the Hamiltonian.'#!
Then Eq. (22) serves as the gap equation which determines
m as a function of B and N,m (B,N). Next, Eq. (23) deter-
mines f as a function of m (3,N). Finally, the relations
(24), (20b), and (19b) determine C, as a function of
m(B,N).

For later convenience the expressions for the consisten-
cy equations (22) and (23) in the infinite-volume limit
L — o« are given by

1/2
1=W—(%;JL—V5K(V‘&) , (25)
_1y1172 2
f:_%E(ﬁ)+l+% , (26)
where
=m?/(1-N""), a=(1+p?/4)"", 27)

and K(Va) and E(Va) are the elliptic integrals of the
first kind and the second kind, respectively.?’

Before investigating the behavior of m (3,N), two com-
ments are in order. First, there appears in the dispersion
relation (24) an extra factor (1—N ~!) in front of the usu-
al expression (2—2 cosk) of spin-wave propagations in the
crystal. This effect of wave-function renormalization has
been omitted in the study of the variational method.'?
Second, Eq. (21) gives a simple expression for the spin-
spin correlation {n;(x,y)n;(x’,y')) in the original spin sys-
tem (where x and y are integers labeling sites in the rec-
tangular lattice) in the limit of ag—0 (Ref. 24) not only
for spins on the x axis but also for spins in general posi-
tions (ys£y’). It is given by the replacement

t—t'—>Fi(y —y'lag fory —y’'20in Eq. (21).

E. Large-N limit

Let us take the limit of N— o« with N /B fixed in our
gap equation (25). It reads

1= N‘/B_K(\/‘) (28)

which agrees with the gap equations (19) and (23) of Guha
and Sakita® obtained in the collective field theory (with
B=g~!). It can also be checked that our spin-spin corre-
lation (21) agrees with their result (17) at equal times.
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F. Strong-coupling region

In the region of strong couphng (B~0), by using the
asymptotic form?’ of K (V'a) in Eq. (25) for large values
of mass gap (m >>1), m is expanded in powers of (3 as

N—-1 2 2
m==———"pf+—"—
26 N p N3N —1)
the first two terms of which agree with the result of the
strong-coupling expansion.#?® This agreement is an ad-
vantage of the present method over the variational method
of Ref. 12 whicHh fails to give the first term.

B+0B), 29

G. Weak-coupling region

This region (B~ ) can be examined by taking the
mass gap small (m <<1). The leading expression for m is
given by

—27B/[N(N —
Here one may recall the analysis of the nonlinear O(N)
o model defined in a two-dimensional continuum by the

weak-coupling renormalization-group method,! which
gives the following expression for a mass in the model:

myc~exp[ —27B/(N —-2)] . (31)

m ~expf D12y . (30)

The discrepancy between the above two expressions (30)
and (31) is not appreciable for large values of N (N >>1),
but is remarkable for N not large. Some discussion on
this point is given in Sec. III.

In connection with the mass gap mvyy given by the
variational method of Ref. 12 [Egs. (3.27) and (3.30)], let
us point out here that Eqgs. (30) and (31) satisfy the ine-
qualtiy m > myp > mwc at B~ 0.

H. Intermediate region

Fox et al.® studied the present system of N=2 and 3 by
a Monte Carlo method. Among other things, they es-
timated the mass gap myc through the falloff of spin-
spin correlation using rectangular lattices (a;/ag>1).
Below our values of m given by Eq. (25) are listed together
with some of the values of mpc in Tables 4 and 2 of Ref.

8 and the values of my)y of Ref. 12 [Egs. (3.34) and
(3.38)] for comparison:
N =3

B mmc mym m

0.6 1.422 1.79 1.30

1.0 0.49 0.70 0.49

1.45 0.107 0.23 0.16
(32)

where the asymmetries of lattices used for mpyc(N =3)
are a,/ay=(16,8,4) from the above, respectively.”’ The
values of m and my); correspond to the limit a,—0, of
course. For the discussion of the asymmetry dependence
of myc see Ref. 8:
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N=2
B myc mym m
0.4 0.925 1.52 0.89
0.65 0.311 0.58 0.31
0.8 0.114 0.31 0.16
(33)

Equations (32) and (33) show that the values of m are
closer to my;c than those of myys are for every value of B
at which comparison is made. This shows that the present
method has an advantage over the method of Ref. 12 in
these intermediate regions.

III. DISCUSSION

Let us begin by considering the validity of the decou-
pling approximation of Sec. IIC in the weak-coupling re-
gion (B~ « ). In Sec. II G the discrepancy is observed be-
tween two mass gaps m and mwyc at B~ oo with N not
large. Because the mass gap m, if given without any ap-
proximation, is expected at S~ o« to have an expression
very similar to mwc,>° that discrepancy seems to indicate
that the present approximation is not satisfactory at
B~ o with N not large. Two possible directions are
pointed out below to improve our approximation there by
recalling the development in the Heisenberg model (see
Sec. I).

(1) One way is to introduce additional ‘“anomalous”
terms in the expressions of higher-order Green’s functions.
This procedure is inspired by the works of Wortis,?!
Tahir-Kheli,?® and Haas and Jarrett.3! Putting it explicit-
ly, suppose we add the terms Q;6,,8(t—t') and
Q3 8,.8(t —t') to the right-hand sides of Egs. (10) and
(13), respectively, where Q, , are assumed to be functions
of B and N only. The space-time structure §,,.8(t —t’') is
chosen in accord with those considered in the above
works, and implies including the unit operator into our
approximate ring of the Green’s functions. Note that this
modification does not affect the values of C;,D,D, given
in Sec. II because the added terms have no discontinuities
on the real w axis.

The effect of these terms is described completely by the
foll(/)\wing replacement of R appearing in Egs. (20) and (21)
by R:

R—>R=R+Q2m)~Y—B"20,+05 +05). (34)

Therefore, for example, one can reproduce the expression
(31) of My by choosing Q1,05 so that they give

R=(N—-2)[N(N—-1]"?R (35)

at B~ 0. Of course the introduction of Q,,Q5 should
preserve the satisfactory features of the method in Sec. II
in the large-N limit and in the strong-coupling region (see
Secs. IIE and IIF). It requires, therefore, Q; and Q5 to
behave so that R approaches R in the limits of N— « and

of B—0.

It is of interest to point out the similarity in the re-
quired behaviors of our additional terms (Q;,Q5) and of
the additional term in the three-dimensional Heisenberg
model. In fact, for the latter, Tahir-Kheli?®° estimated it,
referring to the results of other techniques (Dyson’s spin-
wave method, high-temperature expansions, etc.), as fol-
lows: at high temperatures and for large spins it is negli-
gible; and at low temperatures it is significant for s =+
and relatively unimportant for higher spins; near the Cu-
rie temperature T¢ it is important except for large spins.

The similarity becomes obvious if one recalls the fol-
lowing plausible correspondences'®?’ between these two
spin systems: N<s§; B~0cT~w; B~ T ~Tc.?
These similar behaviors may be taken as one of the indica-
tions of mutual relevance between these two systems, and
of the usefulness, to some extent, of the Green’s-function
method to our system as well as to the Heisenberg model.

One unsatisfactory point in this direction of improve-
ment is that it seems rather hard to determine the addi-
tional terms completely within the framework of the
Green’s-function method, namely, to determine them
through some (approximate) principles over the entire re-
gion of B and N without recourse to the results of other
independent analyses valid for some particular regions of
B and N.

(2) Another direction is to postpone the decoupling pro-
cedure one step (or more) further. It again means to en-
large our ring of the Green’s functions, and will introduce
extra parameters which will serve to express more accu-
rately the structures embodied in the Green’s functions.
For the Heisenberg model, particularly in low dimensions,
some studies®> have been made in this direction as men-
tioned in Sec. I. Each of them employs its own approach
to get some interesting results, yet involving more or less
unsatisfactory points. Generally speaking, higher-order
decoupling schemes require more sophisticated principles
and elaborate manipulations to introduce and determine
decoupling parameters and the physical reasoning to em-
ploy them becomes less simple and intuitive. For this
reason and others, no explicit attempt in this direction is
discussed in this paper.

For further possible directions, to get some ideas of
them, it may be useful to refer to recent developments of
the Green’s-function approach to the Heisenberg model®3
again.

Now let us discuss some indications of the usefulness of
the Green’s-function method in studying another interest-
ing system, the four-dimensional SU(N) lattice gauge
theory.> Thanks to its great flexibility, owing mainly to
associated decoupling procedures, it seems quite probable
to get closed expressions for, say, glueball masses over the
entire region of N and gauge-coupling constant in a simple
self-consistent manner. Because in the large-N limit
gauge-invariant correlation functions are known to obey
the factorization rule,* a simple decoupling procedure is
expected to give rise to good results in this limit. Howev-
er, at the same time, such a simple decoupling may prob-
ably give unsatisfactory results at weak gauge couplings
with N not large, because the lattice gauge theory is
described again by the variables having compact domains
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and satisfying SU(N) algebra. In considering such a prob-
lem, if any, the discussion given above for the present spin
system is expected to be helpful. Some investigation of
lattice gauge theories by the Green’s-function method is
undertaken and expected to be reported in the future.

Note added in proof. After the completion of this work
the author received a private communication from Dr. A
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Patkés on a possibility that some values of myc given in
Ref. 8 may need some corrections.
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