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The nonperturbative connection between a canonical Fermi field and a canonical Bose field in two
dimensions is developed and its validity verified according to the tenets of quantum field theory.
We advocate the point of view that a boson formulation offers a unifying theme in understanding
the structure of many theories. This is illustrated by the boson formulation of a multifermion

theory with chiral and internal symmetries. Many features of the massless theory, such as dynami-
cal mass generation with asymptotic-freedom behavior, hidden chiral symmetry, and connections
with models of apparently different internal symmetries, are readily transparent through such
fermion-boson metamorphosis.

I. INTRODUCTION

One of the most interesting features of field theories in
two dimensions is the equivalence between theories con-
structed with fermions and theories constructed with bo-
sons. A theory in which the basic field operator satisfies a
manifest anticommutation rule may be intrinsically relat-
ed to a theory in which the field operator satisfies only a
commutation relation. A well-known example is the
equivalence between the quantum sine-Gordon theory and
the massive Thirring model. A soliton in the sine-
Gordon theory corresponds to an elementary fermion in
the massive Thirring model, while the topological quan-
turn number of the soliton corresponds to the charge of
the massive Thirring case. It is therefore obviously im-
portant to recognize those theories which are equivalent
despite their apparently different structures. Many such
equivalences have been established many more will
undoubtedly be discovered. It is the objective of this work
to develop a consistent scheme for constructing a canoni-
cal Fermi field in terms of a real canonical scalar field and
verify that such a procedure is valid and consistent with
the tenets of quantum field theory. We shall advocate the
point of view that a boson formulation offers simplicity as
well as a unifying theme in understanding the structure of
many theories, and that new features are readily trans-
parent through such a fermion-boson metamorphosis.

There are two ways of establishing equivalence between
two quantum field theories. One is to compare Green's
functions in the theories and adjust parameters. The other
is to construct an operator solution of the field equation in
one theory by means of a nonlocal expression of the opera-
tor of another. The first method presumes certain a priori
knowledge that the two theories are related, for otherwise
there is no guideline as to which two theories are to be
compared. An explicit construction of the fermion opera-
tor in a theory in terms of the boson operator of another
theory is known as the boson representation. In this
method, a theory of fermions is transformed directly into
a theory of bosons and equivalence follows as a conse-

quence. This latter approach provides not only interesting
connections between various models, but could also eluci-
date the features of a multicomponent theory in a nonper-
turbative and model-independent way.

We shall, first of all, develop the boson-representation
scheme in the simple free-field case. The validity of this
process is examined with special attention to the correct
anticommutation structure, Green's functions, cluster
properties, and Lorentz invariance of the constructed fer-
mion theory. Such a procedure is then extended to the
self-interacting fermion case, the massless Thirring
model. 6 The transition of this model to a free boson
theory and the subsequent metamorphosis of the massive
model to the sine-Gordon theory are straightforward in
the boson formulation. Of particular interest is the boson
formulation of a multifermion theory with chiral and
internal symmetries. It will be seen that dynamical gen-
eration of mass with asymptotic-freedom behavior occurs
when the theory undergoes boson transmutation and that
continuous chiral symmetry is naturally preserved in the
massive case. In many situations, the dynamics of the
system depends on the specific number of fermions and
that different models of the same system can have quite
different properties. An interesting application of the
boson-representation scheme will be encountered when
certain fermion theories are shown to be equivalent despite
their apparently different internal symmetries. Many
unusual and hidden symmetries of a fermion theory are
only obvious in the boson formulation. These develop-
ments have greatly extended the original scope of finding
equivalences between different theories to generating new
tools of investigation in two dimensions. The extension of
the boson-representation scheme to four dimensions is
then a logical and important generalization, one which
will be of potential utility in field theory.

II. ASPECTS OF BOSON REPRESENTATION

The equivalence between a fermion theory and a boson
theory has so far been a unique phenomenon in two di-
mensions. For a simple illustration, we note that the
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energy-momentum tensor for a free massless Fermi field
P(x) may be written in terms of its current operators

j"(x}=—,
' lim g x+—,y"g x ——

ylo 2 2
(2.1)

where only spatial coordinates are being explicitly
displayed, in the Sommerfield-Sugawara form as

(JJ +JJ —g Jkj) g = —g2
(2.2)

This has a familiar structure to the canonical energy-
momentum tensor for a free massless scalar field

T~"= ,'a~pa -y+ ,'a ya-~y g~ ,'—a„ya"—y. (2.3)

is also very similar to that of the canonical commutation
rule for the scalar field

[P( x), m( y)]=i5( x—y) . (2.5)

The two energy-momentum tensors in Eqs. (2.2) and (2.3)
and the two commutators in Eqs. (2.4) and (2.5) are identi-
cal, respectively, if

In addition, the commutator structure of the fermion
currents at equal times, given by

[j~(x),j"(y}]= ——'~"" @x—y},
Bx

(2.4)

i y"d~f(x) =0 (2.12)

for a free massless fermion when multiplied by the y ma-
trices

0
0 —i

1
0 i 1 0

O ~ &=
O ~

&'=
O —1

We may formally integrate Eq. (2.11) and obtain an ex-
pression for the Fermi field as

r

p(x)=exp inf[j. '(x')+y j (x')]dx' $0,

B„j"(x)=0 . (2.15)

The result is a statement of the current conservation con-
dition in the theory. As a consequence, the currents may
be expressed in terms of a scalar field P(x) as in Eq. (2.6).
We can now express the two-component Fermi field g(x)
directly in terms of the scalar field P(x) in the form

g+ (x)

(x)

C+exp iV m P(x) —f c)0(t)(x')dx'
r

C exp i V mP(x—)+f . BOP(x'}dx'

where go ——( () is a constant in the form of a spinor.
If we write the Heisenberg equation of motion for the

current operators j"(x),we find simply

J =~E BP. (2.6)
(2.16)

In this case, a single massless fermion has the same Ham-
iltonian as that for a single massless boson. Equation (2.6)
is one of the basic ingredients in establishing many
equivalences in two-dimensional cases.

In order to develop a consistent scheme for constructing
a canonical Fermi field from a canonical Bose field, we
shall regard the current operators defined in Eq. (2.1) as
basic dynamical variables. The commutation relations be-
tween the current operators and the Fermi field at equal
times

where C+ are constants to be adjusted so that the spinor
components satisfy the canonical anticommutation rule
for fermions,

jP~(x),g (y)) =5(x —y)5~, p, o.=+,—. (2.17)

If we introduce the chiral components of the scalar field

1 +~ k ( )P+(x) = f [c' '(k)e
2m.

[j"(x),f(y)] = (g "+~"y')p—(x)&(x —y),
together with the Heisenberg equation of motion

(2.7)
+c(+)(k}eik x]e —a(k (

I2

(2.18)

[Pp,A (x)]= i BpA (x)— (2.8)

P"=fT "(x')dx' . (2.9)

The equation of motion for the operator P(x) is ob-
tained by using Eqs. (2.7)—(2.9). We find

dog(x)= im[J (x)+y j '—(x)]f(x),
B~@(x)= m[ij'(x) y+j. (x)]g(x),

(2.10)

(2.11)

which together give the Dirac equation

for any operator A (x) in the theory, determine the dynam-
ics of the system completely. The momentum operators
P" are the spatial integrals of the energy-momentum den-

sity, i.e., g+(x)
(x)

exp[+i v'4~/+(x)]

(2@a) exP[ —i&4~4-(x}] (2.19)

The quantity 1/a is an ultraviolet cutoff and a will be
taken to zero at the end of any calculation involving P(x).
According to Eq. (2.16), we also have the definition

P+(x) = —,
' P(x)+ f m-(x')dx'

It follows that

(2.20)

where k =(k +(L(, )'~ is the energy frequency of the bo-
son of mass p, c'+'(k) and c' '(k) are the creation and
annihilation operators, respectively, we may further
represent the Fermi field in the compact form
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P+(x)+(() (x)=P(x), (2.21)

which i' consistent with the decomposition in Eq. (2.18).

A. Anticommutativity

The chiral components of the scalar field do not satisfy
the usual commutation rules for the scalar field. If P and
m satisfy the commutation rule in Eq. (2.5), then it follows
from Eq. (2.20) that

( )~ ( )
1 i~417/+(x) iv 4wp+(p)

27Tcx

i ~4m. P+(y) i ~4m. P+(x)e + e
27Tcx

= —g+(y) g+(x), (2.25)

with similar results holding for other combinations of spi-
nor components. The homogeneous anticommutation
rules for the Fermi field

[P+(x),(t +(y)]=+—e(x —y), (2.22) {Pz(x),f (y)I =0 (2.26)

[0+(x»4-(»]= 4
. (2.23)

eA 8 8 Ae[A81

when [A, [A,B]]=0, we find

(2.24)

The term e(x —y) =(x —y)/
l
x —y l

is an odd step func-
tion and has an absolute value of unity. These commuta-
tor structures are important for establishing the correct
anticommutation rules for the spinor components of the
Fermi field. For example, using the operator identity

e e =:e +:exp[ & 0
l

AB
l
0 & + —,

'
& 0

l
A 2

l
() &

+-, &OlB'l 0&], (2.27)

where:3: denotes the normal ordering of the operator 3,
and

l
0 & the free Bose vacuum, we find

are therefore established.
To obtain the inhomogeneous anticommutation rela-

tion, it is necessary to examine the short-distance behavior
of the fermion two-point function. %'ith the use of the
identity

y+(x)y'+(y)=:e' " +" ' "
+"':exp{4~[&olp+(x)p+(y) 0& ——,'&olp+(x)p+(x) lo&

2&(x

——,'&ol(t (yIy (y)lo&]I. (2.28)

&0
l
P+(x)P+(y) —(t+ (x)

l
0&= ln

4m. x —y +ia

It follows that for x -y,
(2.29)

P+(x)(It+(y) = 1
~e + + e

i ~4m. fP+ (x)—P+(y ) ] iCX 2.30
x —y +ia

Similarly, g+(y)P+(x) is obtained as the same expression
in Eq. (2.30) with a replaced by —a. The resulting com-
bination

The exponential term in Eq. (2.28) is evaluated by consid-
ering the momentum-space expansion of the scalar two-
point function according to Eq. (2.18). The result is

momentum-space expansion of the Fermi field itself. A
direct calculation in the representation

g(x) = f [a( '(p)u (p) e
2m. —~ 2po

+b(+ )(p)U (p) eiP x]e —a ~P (/2

(2.32)

where a( '(p) and b'+)(p) are the annihilation and
creation operators for the spinors u (p) and U(p), respec-
tively, shows that this is indeed the case, since

I (x,y)=&0
l 1t (x)f (y) l

0&

P+(x)i'+(y)+g+(y)f+(x)

1 ECX= lim
a~O 27Tcx x —y +Eel

1 A=—lim
vr a~o a2+(x —y)2

EA'

x —y —ia

(2.31)

1 1=+
2+i x —y+ia (2.33)

I +(x,y, w, z) = &0
l g+(x)Q+(y)P+(w)Q+(z)

l
0& (2.34)

Higher Careen's functions for the Fermi field can all be
obtained through the corresponding scalar functions. The
four-point function

then has the desired inhomogeneous anticommutation
structure of Eq. (2.17).

B. Green's functions

in the boson representation is1, i~4m p+(x) i~4vrp+(y)—
&Oe + e

(2ma)
i v 4n P+(w) i ~4m P+(2)—Xe + e (2.35)

It is important that the fermion two-point functions
I +(x,y) obtained through the scalar two-point functions
are identical to those which would be obtained by using a

Through an identity similar to that in Eq. (2.27), the ex-
pression in (2.35) becomes
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, expI4~[&0
I 0+(x)4+(y) —0+'I o& —&010+(x)0+(~)—0+'I o&

(2ma)

+ &o
I y+(x)4+(z) —y+'

I
o)+ &o

I y+(y)4+(~) —(I)+'
I

o& —&o
I y+(y)0+(z) —0+'I o&

+ &o
I (( ( )y (.)—y, ' I o&]I, (2.36)

where the quantity &0 I P+ I 0) without explicit spatial coordinates denotes the vacuum expectation value of a two-point
function at the same point. The above expression takes the following form when substituted with the appropriate scalar
two-point functions:

1 (x —w +ia)(y —z+ia) 1 1 1

(2@i)z (x —y +ia)(x —z+ia)(y —w +ia)(w —z+ia) (2ni)2 (x —y+ia) (u —z+ia)

1 1

(x —z+ia) (w —y+ia) (2.37)

in the limit a~o. It can be seen that the last expression is simply the sum of products of the fermion two-point func-
tions. It follows that the decomposition

&0 I @+(x)p+(y)p+(~)f+( ) I
0)= &0

I @+(x)@+(y)I
0) &0

I g+(~)f+(z) I
0)

(x)g (z) Io)&0IQ (~)@ (y) Io) (2.38)

holds in the boson representation. A similar result is valid for I ( x, yw, z) when it is evaluated in the same way.

C. Cluster properties

A general n-point function I +(xq, . . . , x„) has the following decomposition into sums of products of all possible
two-point functions in the boson representation:

(2m.a)"~

n

(2')"~ exp 4m g ( —1)j '+'[&0
I P+(x;)P+(x ) —P+ I

0)]+ & + J +

exp g ( —1)J '+'in2ma&0
I g+(x;)g+(xj. )

I
0)

(2m.a)"~ (2.39)

Accordingly, we have obtained the cluster decomposition
property of the fermion Green's functions. The cluster
property is an important property for establishing the
uniqueness of the vacuum in a field theory. In the present
case, we have demonstrated that the Bose vacuum, as well
as the Fermi vacuum, are unique in their own Fock
spaces. The two vacuums are nonetheless mapped into
one another since under a chiral transformation, the Fer-
mi vacuum will be shifted by a constant phase, while the
Bose vacuum by a constant parameter.

i [M~",q] =x&a "g x "d"4+ .' [y"—,X"14, — (2.40)

m&"=+~I —x "I~ (2.41)

Mo' =x f To'(y)dy —fy T (y)dy,

where

(2 42)

is the angular momentum density. The only nonvanishing
component of the angular momentum tensor in two di-
mensions is

D. Lorentz invariaace
To"=(d,P ) +g "(d P ) (2.43)

Another point which deserves attention is whether the
construction outlined so far gives the Fermi field a
genuine spinor character, as required by its -transformation
property under proper Lorentz transformations. Such a
criterion is given by the commutator

are the energy-momentum tensor components expressed in
terms of the chiral components of the scalar field. To es-
tablish the condition stated in Eq. (2.40), it is necessary to
consider the normal-ordered form of the exponential con-
nection in Eq. (2.19). For the spinor component f+, Eq.
(2.40) takes the form
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~ 0
i [M ', f~]= —

I~2 J [(alp+(y)) —(alp (y)), :e +:]dy
(2Ira) '~

' „;Jy[(a,p (y))'+(a, y ( ))', :
' '" +'"':]d .

(2ma)'~

The commutators in the above integrals are evaluated with the use of the operator identities

[A, :e:]= [A,8](A:e:+:e:3),
A:e:=:Ae:+(0~MB ~0):e

(2.44)

(2.45)

(2.46)

and the once-differentiated commutation relations from Eqs. (2.22) and (2.23). The first integral in Eq. (2.44) may be
written as

—1/m. f lwx —y)[:alp+(y)e +:+:e + alp+(y):]dy

2vri J—5(x —y)[(0
~
alp+(y)p+(x)

~

0)+(0
~
p+(x)alp+(y)

~

0)]:e +:dy, (2.47)

(0
~
alg+(y)P+(x)

~

0) =- 1

(o~y (x)ay (y)[0)= l

(2.48)

(2.49)

The first integral in expression (2.47), when multiplied by
the factor ix /(2+a)'~, is simply the term

E. Bilinear forms

Certain bilinear quantities of the Fermi field transform,
however, as sixnple local densities of the Bose field, even
though the connection between the Fermi field and the
Bose field. is nonlocal in character. For consistency, we
find that the canonical Hamiltonian for the Fermi field
transforms directly into the canonical Hamiltonian for the
free scalar field through the connection in Eq. (2.19):

0

(2~a)I" ' (2.50) 1 (aA»)'+ —.
' (ale)' (2.55)

The second integral in (2.47) may be evaluated by choos-
ing an explicit representation for the 6 function, such as
the one in Eq. (2.31). This brings the integral to the form

We shall regard these two Hamiltonians as being separate-
ly derived from their corresponding free-field Lagrangians
via the canonical method. In this respect, we may then
state the formal equivalence of the Lagrangians for the
Fermi field and the Bose field:

1

(x —y+ia)
1 i~4m/+(, x)

(x —y —ia) I 0r"a,4 (2.56)

(2.51)

By a contour integration, we find the integrand in the
above develops a vanishing residue, and accordingly, the
integral itself vanishes. A similar evaluation of the corn-
mutator in the second integral in Eq. (2.44) gives the same
expression as in Eq. (2.47), except this time the integrands
are multiplied by the extra spatial coordinate y. The in-
tcgrand 111 (2.51), whcll multlpllcd by y, dcvclops a residue
of unity. Accordingly, the second integral in Eq. (2.44),
when multiplied by the factor —i ( /2a)'~, gives the
terms

xalg+(x)+ —,p+(x)= —xa g+(x)+ —,g+(x) .

The results of Eqs. (2.50) and (2.52) show that for g+,
i[M ', Q ]=x a'P —xa P

while an analogous calculation with g gives

i [M ', P ]=x a'P —xa P

(2.53)

(2.54)

Equations (2.53) and (2.54) are then the two components
of Eq. (2.40). They show that the Fermi field indeed
possesses a spinor structure in the boson construction.

It should be pointed out that a direct application of the
connection formula at the Lagrangian level would not af-
firm such an equivalence. Other bilinear expressions in
two dimensions are

(2.57a)

i Py g++sin1/4m. P,-
1

(2.57b)

(2.57c)

(2.57d)

These equivalences have important consequences. Bilinear
terms appearing in the Lagrangian of a fermion theory
may now be written in terms of the corresponding expres-
sions involving the Bose field so that the fermion theory
may be considered as an equivalent boson theory. This
provides not only interesting equivalences between
theories in two dimensions, but could also lead to a
simpler version of the same theory, such as the well-
known equivalence between the massless Thirring model
and ihe free Inassless pseudoscalar theory, ' and the
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equivalence between massless quantum electrodynamics in
two dimensions and the massive scalar free-field theory. B,g(x)=in. 1+— j'+ j g(x) .

1+g /m
(3.7)

III. THE THIRRINCy MODEL

We extend the construction of the Fermi field in the
free-field formulation to interacting theories and to
theories with multifermions. The only self-interacting
theory in two dimensions involving a single fermion is the
massless Thirring model, described by the formal La-
grangian

Together they give the equation of motion for the rnass-
less Thirring model

(3.8)

The currents in Eq. (3.2) are again conserved, and may
therefore be expressed in terms of a scalar field P(x) in the
form

~=

iver"B„it

(A—'—"0)(P)'pf) .P (3.1) j"(x)= e"'B„p(x) .
rr

(3.9)

It is known in this model that a consistent definition of
the interacting currents j"which are compatible with the
relativistic requirement is given by'

~0pj"(x)= g "+
1+g/n.

For Eq. (3.9) to be compatible with the commutator in Eq.
(3.4), we find that

[P(x),Bog(y) ]= — i 5(x —y) .
1+g/m.

(3.10)

This would only coincide with the canonical commutation
relation of Eq. (2.5) for a free scalar field P(x) if

1 . — e EX —lim P x+—,y"P x ——
4~ O 2 2

(3.2) P(x) =
(1+g/vr)'

(3.11)

where there is no summation over the index p. To be
more precise, one should regard the coupling between the
fermions as a nonlocal function of the spatial coordinates,
whose Fourier momentum increases at a slower rate than
the ultraviolet cutoff of the theory so that in the cutoff
limit, the current operator behaves as if it is a simple jux-
taposition of the canonical Fermi fields. The equal-time
commutation rules between the currents and the Fermi
field in the Thirring model are

Op

[j"(x),f(y)]= —g "+- — y' p(x)5(x —y), (3.3)
1+g/rr

The canonical conjugate for P(x) is, however,

P(x) =(1+g/~)'~ BOP(x) . (3.12)

With this definition, P,Fr have the canonical commutation
structure of Eq. (2.5).

If we integrate Eq. (3.7) and express the currents in
terms of P(x) according to Eq. (3.9), we arrive at the fol-
lowing representation for the Fermi field:

g+(x)
(x)=

[j"(x),j (y)] = —— 5(x —y),
E"

1+g/m Bx
(3.4)

exp[+i V'4m/+(x)].
(2~~)'~~ exp[ i&4' p —(x)] (3.13)

while the energy-momentum tensor expressed in terms of
the interacting currents is

7'""= 1+— (J"J"+j j" g""J—u ) . —
2

(3.&)

The time and space derivatives of the Fermi field follow
from the Heisenberg equation (2.8). They are

5

By/i(x)= in 1+——j + + —j' g(x), (3.6)
1+g/m.

P+(x) = —,
' P(x)+ f P(x')dx' (3.14)

The chiral components P+(x) satisfy the same commuta-
tion rules as those of P+(x) given in Eqs. (2.22) and (2.23),
therefore the Fermi field has again the correct homogene-
ous anticommutation structure of Eq. (2.26).

The two-point functions in the interacting case are very
similar to those in the free fermion theory. Analogous to
Eq. (2.28), we find, for g+,

@+(»@~(y)=:.' "~'"' ' "~":exp[4~[&014+«)0+(»
I
o& —&0

I 4+'I 0&]] .
2~&

Here the scalar two-point function is given by

&014'+«)4+(y) I
o &

—
& o

I
0'+'

I
o &

(x) ", , P(y)—y f vr(x')dx' —y f m(y')dy' 0 —0 ——y f ~(x')dx'P(x)
QO y OO y —OO

(3.15)

o),
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where y=(1+g/m)'~ . The corresponding scalar function in the free-field case is obtained from above with y= 1. By
comparing the interacting and the free scalar two-point functions, we find

(0
l p+(x)p+(y) p+—

'
l
0& = (0

l p+(x)p+(y) p+—
'

l

0&+— Qp 2

ln
2a +(x —y)

(3.17)

Thus if (0
l g+(x)g+(y) l 0&0 denotes the free-fermion

two-point function, then the corresponding two-point
function in the massless Thirring model is given by

(olf ( )f (y) lo&

=(ol@ (x)4'(y) lo&, a +(x —y)

I

mass term mug is added to the massless Hamiltonian
from Eq. (3.5), the resulting theory is the massive Thirring
model. Such a mass term has the effect of introducing an
interacting term to the free boson Hamiltonian in Eq.
(3.23), since according to Eq. (2.57a),

(3.24)

1 lO!

2m' x —y +i~

with A, =(g /m)/(1+g/~). Similarly,

A

a +(x —y)

(3.18)
T = —,'(Bop) + —,'(5)p)—

which is derivable from the sine-Gordon Lagrangian
1/2

The Hamiltonian in Bose form is therefore given by
1/2

cos P, (3.25)
4m

1+g/

W= —,
' 8 (hi3"P+2 p

&CX

4m
cos

1+g/m.
(3.26)

A

a +(x —y)
(3.19)

Ig+(x), g+(y) Jdx= —~ m'a a2+(x —y)2

The requirement that the anticommutator obtained from
these two-point functions be proportional to the 5 func-
tion implies

It is well known that the sine-Gordon theory possesses
time-independent solutions of finite energy called soli-
tons. ' In the semiclassical analysis' these solutions cor-
respond to a particle in the quantum theory. Such a dual-
ity between the massive Thirring Inodel and the quantum
sine-Gordon theory is readily made transparent by the
boson-representation method. In particular, the method
shows that the massless and the massive Thirring models
have quite distinct structures.

=Z I 5(x —y)dx =Z .

Qn evaluating Z, we find

(3.20)

IV. A U(%) CHIRAI. -INVARIANT THEORY

We are ready to consider a multifermion theory in two
dimensions with chiral and internal symmetries. A theory
which is invariant under both the U(X) internal-symmetry
transformation and the continuous chiral transformation
is the chiral Gross-Neveu model, ' with Lagrangian

I (2A, +1)
2'~[I (A, + 1)]' (3.21)

where I (n) is the I' function of positive argument n The.
inhomogeneous anticommuation relations in the Thirring
model can be summarized by

I g~(x), g (y) I =Z5(x —y)5~ (3.22)

T~= —,
'

(Bop) + —,(5)p) (3.23)

in which Z denotes the effect of rescaling as a result of
fermion self-interaction.

If we substitute the expressions for the currents in terms
of the field P(x), we find the Hamiltonian from Eq. (3.5)
is simply that for a free massless boson

(4.1)

This Lagrangian is formally identical to the U(N) Thir-
ring model'

This equivalence between the massless Thirring model and
the free massless scalar field may further be confirmed by
examining the form of the n-point functions, cluster
decompositions, and the Lorentz structure in the Thirring
model. They follow in a straightforward way and are con-
sistent with the free fermion results.

When a Hamiltonian density representing a fermion

X2—1

4r" 2f A'P24
8=0

(4.2)

through the following Fierz identity generalized to the
symmetry group U(N):
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b=1 a=1
2 1 gA ~A

gy~ ri gy„X . (4 3)
A 0

Here p,p, g, g are anticommuting spinors; A,
" a« the

SU(N) matrices with normalization Tr(A,"A, ) =25, and
A, =(2/N)'i I. From the above identity, we can see that
the chiral Gross-Neveu model has an intrinsic U(N) struc-
ture, and that a minus sign should necessarily appear in
the interacting part of the Lagrangian (4.1).

We shall refer to the two versions in Lagrangians (4.1)
and (4.2) as the U(N) chiral-invariant model. Both ver-
sions have been separately investigated. ' The model is
asymptotically free and exhibits dynamical mass genera-
tion without the breaking of its continuous chiral invari-
ance. The spectrum of the model has been studied non-
perturbatively by diag onalizing its Hamiltonian; it is
found that there are both massive and massless excita-
tions, with the latter being a decoupled scalar boson.

l

Many of these features can be simply understood by ex-
amining the Bose form of the theory. Many new and
unexpected properties, such as hidden duality and chiral
symmetries, and the interconnections between some U(N)
model and the O(2N) Gross-Neveu model, are only tran-
sparent by considering the equivalent Bose theory. We il-
lustrate the main aspect of the boson formulation of this
multicornponent theory and investigate its dynamics and
behavior in a general way.

We define the relativistic isospin currents in the U(N)
model as

j '"(x)= g "+ ~Op

1+g/m.

(4.4)

Due to the isospin structure, the equal-time commutation
rules between the currents and the Fermi fields becomes

~Op[i""(x),4'(y)] = g'"+
1+g/m

gA

2
5(x —y), (4.5)

[jA,p(x)» jB,v(y) ] 5(x y)5AB
e 8

1+g/m Bx

~ifABC
1p, 1v+,i 0(x) (g'"g'"+g'"g'—"iii(x) 5(x —y),

( I+g/~)' (4.6)

whereas the energy-momentum tensor is

N2 —1

TpV 1 + g g (JA,pJA, V+JA, VJA, p
7T 2 A =0

g""i ~i"') . — (4.7)

BJ"'"(x)=0, d =1, . . . , N . (4.11)

They can therefore be expressed in terms of N scalar fields
P (x) in the form

t

nondiagonal matrices A,". The diagonal currents jd" are
conserved, i.e.,

The equation of motion is obtained by combining the time
and space derivatives j '"(x)= O' Bp (x) . (4.12)

—1 5

Bog = i@1+—— 'g j ' + j"
1+g /m.

The fields»I)'(x) and their conjugates Fr'(x) are related to
the canonical scalar fields p'(x) and their conjugates m'(x)
by

r

g
%2—1

dip'=i m 1+—
A=0

gA
x

5
jA1+ V AO

1+g/m

gA
x

(4.8)

(4.9)

~,( )
P'(x)

( I+g/m. )'i
F'(x) =(1+g /m. ) 'i2m'(x),

where

[»I)'(x),n (y)]=i5(x —y)5'b .

(4.13)

(4.14)

(4.10)

into the Dirac equation

Ã2 1 A

iy"a„y'= g gy"ji"
A =0

The isospin currents j '" can be divided into two
groups: one consisting of all the currents formed from the
diagonal U(N) matrices A, ; the other, of those from the

exp[+i V'4nP+(x)].
(2~~)'~~ exp[ i v'4m p (x)—]

(4.15)

It follows from Eqs. (4.9) and (4.11) that the Fermi fields
can be represented according to

g+(x)
gp(x) =,

( )
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where the chiral components of different fields

()[+(x)=— +y f r/ (x')dx' —+e' Q2 1 00 2

(4.16)

N

+ g z
cosV4m. (P' —(t ) .,~b ) 4m a (4.24)

[ltd+(x), g+(y) ]= +—~(x —y), (4.18)

are mixed by the Klein factors Q', which are themselves
defined by the various axial charges q' by

Q'= f n (x')dx'= —v m f j"(x')dx'
= —V +q (4.17)

The term e' in Eq. (4.16) is antisymmetric, i.e.,
e' = —e; e' =1 whenever a, b are cyclic in order Th.e
addition of these Klein factors enable the different chiral
components to satisfy the following commutation rules:

Thus the U(N) chiral-invariant model is equivalent to a
system of ¹ oupled sine-Cxordon theories in the boson
representation. In subsequent developments, we shall en-
counter several interesting consequences when the theory
is examined in its boson version, according to the La-
grangian (4.24).

V. DYNAMICAL MASS CiENERATION WITH
ASYMPTOTIC FREEDOM AND CHIRAL SYMMETRY

An unexpected and important consequence of boson
representation is that it can provide a mechanism for the
generation of mass in an interacting theory. Under the
continuous chiral transformation

[gati+(x), P+(y)] =—, (4.19)
[exp(i&r')],A'. , (5.1)

for any combination of +,—.These in turn guarantee
the anticommutativity property among the N types of fer-
mion, i.e.,

Igz(x), ltd (y) I =Z5(x —y)tl' 6z (4.20)

N=]"g [-,' (a,4')'+ -,' (a,y')'], (4.21)

From the structure of the isospin currents, the Hamil-
tonian obtained from Eq. (4.7) can again be separated into
the part containing the X diagonal currents j '" and the
part containing the N(N —1) nondiagonal currents j"'".
Such a decomposition is particularly useful in the boson
formulation since according to Eq. (4.12), the contribution
from the diagonal currents is simply the kinetic part of
the Harniltonian, i.e.,

r

1+ g [( d, O)2+( d, l)2]
2

P being an arbitrary parameter, a quantity such as the
mass term mPi)/ will not, in general, be invariant. In the
U(N) theory, it can be inferred from the connection for-
mula in Eq. (4.15) as well as the Hamiltonian in Eq. (4.23)
that 1/a has the dimension of a mass. The original mass-
less fermion theory has become a theory of massive in-
teracting bosons. We shall understand this generation of
mass in the following consideration.

In the boson Hamiltonian, all interaction terms have the
form

cosV4m(P' —P ),
4~ a

(5.2)

which are linear combinations of exp(+iv 4m (t)' ) We.
may normal order such exponential fields by bringing the
creation operator to the right of the annihilation operator,
for example,

eipy(x) el')) (x)eip(() + (x)e —(p~/2)[y + (x), lp (x)] (5 3)

whereas the contribution from the nondiagonal currents
gives the interacting part. Due to the special structure of
the SU(N) matrices, these nondiagonal currents can be
grouped into exactly N(N —1)/2 pairs. The result is

1+ g ~ g [(Jn,O)2+( l)n2]
2 ~

N

z costa(P' —P ) . (4.22)
, 4m2a2

The entire U(N) Hamiltonian in Bose form is then given
by

N=]"g [—'(~ok')'+ —'(~ (t')']

where the positive- and negative-frequency parts are

[i]) '+ '(x), i))
' '(x) ]—— ln

1

2' 2
(5.5)

The number c =0.577 is Euler's constant and p denotes
the physical mass of the boson. It follows from Eqs. (5.3)
and (5.5) that the exponential field, and hence the sine and
cosine fields, is related to its normal-ordered form by

y(+)(X) C(+)(k)e+ik x —a(k
~
/2

~2m. —- V'2ko

(5.4)

The commutator in Eq. (5.3) is easily evaluated; the result
for small value of a is given as

cos&4m(P' —P ),
~~b ] 477 cx

(4.23)
2 2 2 2 2 t /8m —1

ipse(„) c a c a' p 2. i(x).
4 4

(5.6)

while the corresponding Lagrangian is Accordingly, a cosine interaction term will acquire the
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proper mass parameter p . Introducing the sine-Gordon
coupling ao via g =ao/4~P, as well as the renormaliza-
tion factor

1 —P /8mcpa
4

(5.7)

we define the renormalized sine-Gordon coupling

Qp=Z Qp .—1

The interaction in (5.2) then has the form

(5.8)

ap ap
2p2

cosp&=
p2Z

2 2

4
:cospp:

x:cospp:, (5.9)

{A) 1 —const/g

ln(A/m )
(5.10)

with I being the dynamically generated mass. To see
such behavior in the boson representation, we observe
from Eqs. (5.7) and (5.8) that the renormalized sine-
Gordon coupling can be written as

where' =c p /4.
An important property of the U(N) fermion theory is

the dynamical generation of mass with asymptotic-
freedom behavior. Typically, the bare coupling constant g
in such a theory vanishes as the ultraviolet cutoff A is tak-
en to infinity according to

By keeping the renormalized sine-Gordon coupling a, and
the dynamically generated mass ~ fixed, we obtain the re-
lation

(n /—g)( 1na„/32m —1ng)
~ =Ae A= 1/a (5.13)

B =(P'+4'+ +y")WÃ,
B =(Q' —P )/v 2, (5.14)

B =[/'+ +P (N —1)P —]/[N(N —1)]'/

which shows the asymptotic behavior of g as a function of
the cutoff, analogous to Eq. (5.10).

It would appear that the emergence of an explicit mass
parameter in the boson version would have destroyed the
chiral symmetry of the massless theory. This is, however,
not the case for the U(N) theory. The effect of a continu-
ous chiral transformation on the bosons is a translation
p'~p'+p/Mm. Since all interactions in the massive
theory are of the form cosv 4~(P' —P ), the boson Hamil-
tonian is actually invariant under all continuous chiral
transformations. Dynamical mass generation in the
model is thus possible without the breaking of its chiral
symmetry and is further independent of the number of
fermions. This conclusion can be compared with the re-
sult from a 1/N expansion study of the model in which
chiral symmetry is intact only when X goes to infinity. '

We may always perform an orthogonal transformation
A'J on the N Bose fields such that

2/8w —1a„=4mp g(a a )~ / ', p2=
1+g/~

For small values of g, p is approximately 8m. , and

a, =32m g (a a )

(5.11)

(5.12)

The above transformation, when applied to Lagrangian
(4.24}, allows a massless boson to decouple from the
remaining theory of X —1 interacting massive bosons.
The new Lagrangian is

W=y' ,'a„B a&B +-y'g ,'a„B a&B—+g, , co~s4~( 'A'B A-~B —)
k=2 2 4~2O, 2 (5.15)

-k
Each B, k =2, . . . , X, is a linear combination of the
Bose fields P' such that the interaction part of Lagrangian
(5.15) remains automatically invariant under continuous
chiral transformations on the original Fermi fields P'. An
interaction term involving the field B ' would not possess
such an invariance. This requirement therefore demands
that 8 ' can only appear as a kinetic term and hence a
massless boson.

We have shown that dynamical mass generation
without breaking the continuous chiral symmetry of the
U(N} theory, in addition to asymptotic-freedom behavior,
is tenable', contrary to naive expectation. The result is
therefore consistent with Coleman's theorem' that there
is no spontaneous symmetry breakdown in two dimen-
sions. We shall find in the next section that the boson for-
mulation has an unexpected utility in uncovering this
chiral symmetry.

VI. SOME Q(2%) MODELS AS U{X)THEORIES

%'e now illustrate with several examples some unusual
metamorphoses of the U(N) models via their boson for-
mulations. We shall, first of all, consider the U(2) model
involving two massless fermions. The transformation
(5.14) in this case results in the following boson Lagrang-
ian:

W=y —'8 B 8"B

+ y , d&B d"B + 2
cosv'8m. —B

4m a

Here B is the massless decoupled field and B the sine-
Gordon scalar field.

It is expedient to present the massive Thirring model
again in the form
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I

W=iX&~a„X —g k~k„—m yy,P (6.2)
2

W=@ g ,' d„B—d"8

where k& are the currents. If we construct the Fermi field
g in terms of a canonical Bose field 8 according to

X+(x)~"'= x ()

4

y g ,'a„—8a~8
I =3

~3 ~4+ 2
cos&4n. B costa. B

2 cx
(6.9)

exp[+i v'4m 8+ (x)]
(2~~)'~~ exp[ i~4—m 8 (x)]

(6.3)

where 8(x)=8(x)/(1+g'/m )'~, and use the correspond-
ing bilinear equivalences as in Eq. (2.57), then we see the
Bose form of the Lagrangian (6.2) is straightforwardly

r

,' a„Ba"—B+ cos~4n 8 .
7r &A

(6 4)

This sine-Gordon Lagrangian will be identical to the
sine-Gordon Lagrangian (6.1) from the U(2) model when

l

/MAL

By/ hf +
2 Q g MgM

@=1 @=1
(6.10)

By definition, a Majorana fermion has the self-
conjugating property

In this case, we obtain two decoupled massless bosons B '

and B,and a pair of interacting bosons B and B .
We shall at this point introduce the O(4) Gross-Neveu

model' of four interacting Majorana fermions g~, with
M denoting their Majorana character. The Lagrangian is
of the form

2

B=v 28, g'=, m'=
2 '

4m+
(6 5) gM AC, C ='Y (6.11)

W=y g ,
' B„P'dl'P'+ —Q 2B„n d"n"—

a=1 6=1

+ [ cos&4~(P' —P )
4 ~2

+cosv'4m(n' —n )] . (6.6)

Here P', n are the corresponding Bose fields of the Fermi
fields g', X . The Bose and the Fermi fields are related by
their connections as that in Eq. (6.3). It is obvious that
there is no coupling between the fields P' and n .

If we perform an orthogonal transformation L such
that

8 = , (P'+P n' n), ———
8 = —,'(P' P+n' —n), —

8 = 2(P' P —n'+—n ),—
then

(6.7)

Hence the SU(2) chiral-invariant theory is none other than
the well-known massive Thirring model. The Fermi field
g is now a nonlinear composite of the original Fermi
fields P', g via their bosons.

It is of interest next to consider two independent U(2)
theories represented by their separate Lagrangians
W(P', f ) and W(X',X ). The Bose form for these sys-
tems, according to Eq; (4.24), is therefore two independent
sine-Gordon theories:

(kM+CM»
2

(gM + l gM )
2

(6.12)

we find the O(4) Lagrangian can be written in its own
identical form with only two fermions, i.e.,

~= X F "~.k'+ — X F4' (6.13)
I =3 2 I =3

L

By using further the connection

g'+(x)
1

exp[+i V 4mB '+(x)]
g' (x) (2 )~~2 exp[ iV 4m 8' (x)]—

i =3,4, (6.14)

in the Lagrangian (6.13), we obtain the Bose form of the
O(4) model, ' which is precisely the interacting part in the
Lagrangian (6.9). The U(2) chiral-invariant theory is thus
connected with the O(4) Gross-Neveu model by the local
isomorphism SU(2) XSU(2) =O(4).

Another relevant case to consider is the U(4) chiral-
invariant model of four massless fermions f, a =1,2, 3,4.
The Bose form for this model is

4
w=)" g —,

' a„y'a~y'
a=1

and hence it is a real two-component spinor. If we con-
struct two complex fermions from the above four Majora-
na ones according to the combinations

P=B +8, n n=B —8— —(6.g)
cos~4n. (P' —P ) .

~b ] 4m a
(6.15)

We arrive immediately at the following equivalent La-
grangian for (6.6), i.e.,

If we perform the same transformation L on the set of
bosons P, i.e.,
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8 = ,'(y-'+y'+P'+4'),

(6.16)

we find the following equivalent theory represented by

W=y 2d„B—d"B

l =2

ous chiral transformation performed on the U(4) fermions
again has no effect on the discrete chiral symmetry of

the O(6) case.
We deduce from the above that the O(2N) models

which can be obtained from the U(N) cases actually pos-
sess an additional hidden continuous chiral symmetry
since their fermions are nonlinear composites of the corre-
sponding U(N) ones via their intermediate bosons. It is
only obvious that a number of models of apparently dif-
ferent internal symmetries and interactions are related
when they are formulated in this way. The existence of
hidden duality symmetry in the U(X) models and triality
symmetry in the O(8) Gross-Neveu model can be easily
discovered in the same context.

+ g z 2
cosv 4n. 8 cosV'4ir8

22ma

(6.17)

In this case, we have a single decoupled massless boson 8 '

and three massive interacting ones, B,B, and B . The
interacting theory here has the same type of structure as
the Bose form of the O(4) model, except that it has one ex-
tra degree of freedom. It is therefore the boson theory of
the O(6) Gross-Neveu model. This equivalence is clearly
the realization of the isomorphism SU(4)=O(6).

We have realized that the specific form of the interac-
tion cos&4n(P' —P") involving the difference of any two
Bose fields in the U(N) models is crucial for preserving
exact continuous chiral symmetry. What happens to this
symmetry when these models metamorphose into the
O(2%) cases? In generating the O(4) model, it can be seen
from transformation (6.7) that the bosons 8 and 8 have
the desired combinations involving the differences of two
Bose fields, i.e.,

8 ' = ,'(P' P—)+—,'(n' n—') . — (6.18)

Thus the O(4) model is actually invariant under indepen-
dent chiral transformations on the sets of U(2) fermions
q andy'.

A similar situation exists in the generation of the O(6)
model from the U(4) case. Each of the bosons 8, 8,
and 8 in the O(6) model, according to transformation
(6.16), is a linear combination of the four U(4) bosons P',
with equal numbers of plus and minus signs. A continu-

VII. CONCLUSION

The boson formulation of a multicom. ponent theory
which we considered has led to some surprising develop-
ments. Along with the simplicity in understanding a
given theory, we have been able to extend it as a possible
guide to investigations in two dimensions. Some of the
utilities of the boson formulation may be mentioned.
They are used

(a) to find a direct boson equivalence of a fermion
theory, thus relating various fermion and boson models
which would otherwise exist independently;

(b) to relate apparently different fermion theories
through the intermediate representations of bosons;

(c) to provide a mechanism for a dynamically generated
mass; and

(d) to uncover unusual and hidden symmetries by per-
forming transformations on the bosons.

Thus it is evident that a boson formulation can provide
an alternate scheme for understanding fermion theories
and that it has attained a wider role than the original
scope of merely establishing equivalences between various
models.
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