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We investigate the physical consequences of a new five-dimensional projective theory unifying

gravitation and electromagnetism. Solving the field equations in the linear approximation and in

the static limit, we find that a celestial body would act as a source of a long-range scalar field, and
that macroscopic test bodies with different internal structure would accelerate diffelently in the so-

lar gravitational field; this seems to be in disagreement with the equivalence principle. To avoid this
contradiction, we suggest a possible modification of the geometrical structure of the five-

dimensional projecti. ve space.

I. INTRODUCTION

A new interesting unified theory for the electromagnetic
and gravitational fields has recently been proposed by
Schmutzer. ' The starting point of his theory is the
minimal formulation of the laws of the gravitational in-
teraction in a five-dimensional projective space, endowed
with a nonsymmetric affine connection. After dimension-
al reduction, i.e., after the projection of the gravitational
equations on the four-dimensional physical space-time,
the field content of the theory is the following: a sym-
metric second-rank tensor, representing the metric of the
four-dimensional Riemann space, and related as usual to
the gravitational field; an antisymmetric second-rank ten-
sor, interpreted as the electromagnetic field; and finally a
massless scalar field, acting as the source of the vector
part of the torsion tensor associated with the five-
dimensional affinity, and interpreted as a new fundamen-
tal field of nature.

In this theory the electromagnetic and gravitational in-
teractions are unified, like in the old Kaluza-Klein
theory "(see also the work of Kalinowski which inves-
tigates the Kaluza-Klein theory with a nonvanishing
torsion '"'), in the sense that the Einstein and Maxwell
equations are both contained in a compact, five-
dimensional geometrical formulation. The additional sca-
lar field interacts universally with the electromagnetic
field, and is coupled also to the matter substrate; in the
presence of a nonzero scalar field the Maxwell equations
are modified; however, no variation of the gravitational
coupling constant is predicted.

In this paper we show that the direct coupling between
the electromagnetic and scalar fields implies, in particular,
that test bodies with different electromagnetic structure
would accelerate differently in a given external scalar

field. Therefore, since each macroscopic and astronomical
body is the source of a long-range scalar fidd produced by
its own content of electromagnetic energy, disagreement
with the high-precision experimental tests of the
equivalence principle performed by Dicke and Braginsky
appears to arise.

In Sec. II of this paper, after a short review, we present
the basic Lagrangian and the field equations of the five-
dimensional projective theory. Then, in Sec. III, we calcu-
late the acceleration of a neutral, macroscopic test body,
under the action of an external scalar field and, in Sec. IV,
we evaluate the scalar field produced by a celestial body
like the Sun.

Finally, in Sec. V, comparing the predictions of the pro-
jective theory with experimental data, we show that they
disagree; in order to overcome this difficulty, without
dropping the hypothesis of a unification in the framework
of the projective formalism, we suggest then a possible
modification in the geometrical structure of the five-
dimensional projective space.

II. FIELD EQUATIONS OF THE PROJECTIVE THEORY

We start by giving a short review of Schmutzer theory.
Our notations are as follows: capital latin indices run
from 1 to 5 in the five-dimensional projective space,
lower-case latin letters run from 1 to 4 and are world in-
dices of the physical four-dimensional space-time. More-
over x' and g;k are, respectively, the coordinates and the
(symmetric) metric tensor of four-dimensional space-time,
while X and gzz are coordinates and (symmetric) metric
of the projective space.

The four-dimensional projection of a vector V is given
by
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(2.1)

and the inixed metric (projection cosines) g,A is fixed by
Schmutzer according to the following postulate:

The projection of these equations on the physical space-
time leads to the four-dimensional field equations (see
Ref. 3 for a detailed computation), which can be deduced
from the following four-dimensional Lagrangian density:

g'A ——x'
A exp( —cr/2),

exp(cT) =S/Sp,
(2.2)

4 4~4 g (R4 3,k) g B ~ik ~42~,k+
16 ik + M

where Sp is a free constant with the dimensions of length
and

S =g~~x X (2.3)

V'.k
——V,k+ Ilk}V . (2.4)

The five-dimensional projective space, however, is en-
dowed with a nonsymmetric connection I zz, and the
general covariant derivative is

The physical four-dimensional space is endowed with a
Riemannian geometric structure, and then the covariant
derivative is defined as usual by means of the Christoffel
symbols, i.e.,

lk = o(So/S )Slk= p(So/S )gl gk SAB

H k=boSSk=(b S /e So)Bk

(2.13)

(2.14)

where eo and bo are free constant parameters.
As 8;k satisfies the cyclic relation Bt;k J~

——0, one can
put Bik =M(k;) and it is tempting to identify Bk with the
electromagnetic field-strength tensor F;k, moreover, if ~;k
is interpreted as an electromagnetic induction tensor, as in
Ref. 3, then, from Eq. (2.14), the function

(2.12)

Here g =detg;k, R is the scalar curvature obtained from
g;k, WM is the matter Lagrangian density, and the two
antisymmetric tensors B;k and H;k are defined by

~+ I c~ ~ ~.
,~ —+cA C A A C (2.5) e=bpS /eoSo (2.15)

where

}—I = —Q —Q +Qc c c c c c (2.6)

where

SA ——XA /S,

—
2 (gAc —SASC)cT,B] (2.7)

(2.&)

SAB ——SBA —SAB ——(xBA XAB)—S '+SAo B SBcTA—.

Notice that, in this case, the scalar field cr is the source of
the vector part of the torsion, i.e., QA =QAB ———,

'
cT A. The

basic Lagrangian chosen by Schmutzer in the projective
space is

R +~M,
2XpSp

(2.9)

where g =detgAB, R is the five-dimensional scalar curva-
ture, Xo is a coupling constant, and WM is the Lagrangian
density of the "substrate" (i.e., nongeometrized matter
fields). Notice that in this paper we neglect, for simplici-
ty, the possibility of adding to Eq. (2.9) a cosmological
term.

By variation of the corresponding action, one gets the
five-dimensional Einstein-type field equations

GAB X gAB (2.10)

where G~z is the Einstein tensor and

2So 5~M
AB —g 5g

(2.11)

and Q„B ——I (AB) is the torsion tensor. Using the metric
postulate gz&~Ic

——0, one can obtain the explicit form of
the torsion tensor of projective space. In Schmutzer
theory, the result is

1 1

QABc Yl BA c+ 2 (gBc SBSc)cT,A

represent a sort of vacuum "dielectric constant, " induced
by the scalar field.

It is then rather natural, in the framework of this elec-
tromagnetic interpretation of the "projected" Lagrangian
(2.12), to eliminate the free parameters ep and Bp by im-
posing the boundary condition a~1 at infinity, and by
demanding that the motion equations contain the Lorentz
force term (see Ref. 3). It follows that

ep ——Sp(22r/Xp) '

bo ——Sp '(22r/Xp) 'i

e=exp(3cr) .

(2.16)

(R —cT cT k) g F Fike 3cT+~2,k 16~ ik M

(2.17)

Here E~ ——2Atk;~ and WM is the Lagrangian for the
matter fields interacting with gravitation and elec-
tromagnetism in the usual minimal way, and in general
also coupled to the scalar field cr, since WM is obtained
from the corresponding five-dimensional Lagrangian ac-
cording to the projective formalism. From independent
variation of g;k, Ak, and o. in the total action correspond-
ing to the Lagrangian (2.17), we obtain the field equations,
respectively, for the gravitational field

The last step is to identify, as usual, Xp X=SAG/——c, in.
order to obtain the Newtonian gravitational force in the
weak-field limit.

In conclusion, the five-dimensional projective theory of
Schmutzer reduces, in four dimensions, to a field theory
for electromagnetism interacting with a scalar field (plus
eventually other matter fields) in a curved Riemann space,
and it is described by the following "effective" Lagrangian
(henceforth we drop the superscript "4" as we consider
only four-dimensional quantities):
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Gik=&(~ »+&»+&ik»
for the electromagnetic field

H' »=.4~J', H' =exp(30 )F'

(2.18)

(2.19)

Pk (+ g e ) k J (
I
B I' —

I

E I')d'x
8~

+Y~(+ —ggb), k J T~d x (3.4)

and for the scalar field

~,k y & y. + P Fike3o.
Sm

where the gravitational sources are defined by

(2.20)

where Tp is the stress energy of the test body, including
all interactions but the electromagnetic one, and E and 8
are the electric and magnetic fields.

Choosing a local inertial frame, such that the Christof-
fel symbols vanish at the location of the body, to first or-
der in 0. k Eq. (3.4) reduces to

~k= ——
g gjik

(2.21) Pk ——3o k(S', —8' ), (3.5)

,a&k= —
2&

(~, ,~,k —2gk~, .~' ),
34'

& k = (F'P'k+ .g »F.b+—') .
4m

The electromagnetic current of matter is given by

&~MJl
&—g 5A'

(2.22)

(2.23)

(2.24)

where 8', and 8' are the total electric and magnetic en-
ergies of the test body.

Finally, defining the coordinates of the center of mass
as' '

g»=PO 'f &-—g T ox"d'x, (3.6)

we get, in a local inertial frame, in first approximation,
~ ~ ~ ~

Pop» mgk =Pk,——where m is the mass of the test body.
The acceleration is then

and finally the matter contribution to the scalar field is 4 =- —~,k(&.—@' (3.7)
1

v' —g 5rr
(2.25)

It must be noticed, from Eq. (2.20), that the scalar field
can be produced by the electromagnetic field even if
matter is decoupled from o. (i.e., 8=0).

Moreover, the Maxwell equations (2.19) are modified by
the scalar field, which induces an electric current density,
but no magnetic current.

In the following sections we will investigate some physi-
cal implications of the basic Lagrangian (2.17) and of the
field equations (2.18)—(2.20).

III. TEST-BODY ACCELERATIONS

In order to calculate the acceleration of a neutral and
macroscopic test body in a given external scalar field ac-
cording to Schmutzer theory, we will apply the method
developed in Refs. 8 and 9, where the same computation
was performed, in the framework of a different theory.

The four-momentum vector of a test body is

IV. THE SCALAR FIELD
OF AN ASTRONOMICAL BODY

In this section we will compare the scalar field o. pro-
duced by a celestial body like the Sun with its Newtonian
gravitational potential y.

We have to solve Eqs. (2.19) and (2.20). We suppose,
for simplicity, that matter is not coupled to o directly, but
only indirectly through its own electromagnetic field, that
is, we put 5=0.

We get, in this way, an estimate of the scalar field
which may be regarded as a sort of lower limit for o., since
an additional matter contribution would produce a
stronger scalar field. To first order in o., Eqs. (2.19) and
(2.20) decouple, and become (c= 1)

F'".
k
——4'', (4.1)

Therefore, according to the unified theory of Schmutzer,
an external scalar field induces different accelerations on
test bodies with different electromagnetic content.

V —g Tkdx (3.1)
o'";k =GF-kF'"- (4.2)

where T;k is its total stress-energy tensor including also
the electromagnetic contributions, and the integration is
performed over the volume U of the body. Neglecting
second-order derivatives of o, as in Refs. 8 and 9, we start
with the interaction Lagrangian of the projective theory

—g' P Pi'»~3~+~
16 P r (3.2)

where Wp is the test-body Lagrangian density. Using the
matter-response equations

(3.3)

we get, from (3.1),

V'~=2G( IB f' —fE I'), (4.3)

where the electric and magnetic fields are solutions of the
ordinary Maxwell equations.

The solution of Eq. (4.3) is given by

do(x)= — f (
I
B I' —

f
E I'),' fx —x'I (4 4)

where V is the volume of the source. As we are concerned

In the weak-field approximation, we suppose that g;k and
o. are uncoupled; then the equation for the scalar field, in
the static limit, reduces to
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with the field far from the body, expanding the solution
(4.4) and considering only the first term of the expansion
(to a good accuracy, in the case of a spherical source), we
obtain

o(x)= (5', —8' ),46
(4.5)

g e
—3o/2[qyk(q )~g q)

2
(4;k+~~~k—4)1'"@+2me 'VW j

(4.8)
(a is the electromagnetic coupling constant). Performing
the o. variation, and using the Dirac equations
5W~/5/=0=6M~/5$, one gets

—20'gp2'
In the static limit Eq. (2.20) for a Dirac particle, neglect-
ing the electromagnetic contributions, becomes, to first or-
der in o.,

Vo= — mfP—
3

and the solution is

(4.11)

Therefore each nucleon, for example, contained in a mac-
roscopic body, gives a contribution to ihe scalar field pro-
portional to its mass.

Since the matter contributions must be added to our
previous estimate (4.7), it is justified then to regard Eq.
(4.7) as a lower limit for the macroscopic scalar field pro-
duced by the Sun.

V. RESULTS ANI3 CONCLUSIQN

Combining the results of Secs. III and IV, it follows,
from the projective theory of Schmutzer, that test bodies

wherer=
~
x~.

Therefore, according to the theory of Schmutzer, the
scalar field produced by a macroscopic body is propor-
tional to its own content of electromagnetic energy.

In the case of the Sun, for example, the energy due to
its macroscopic magnetic field is negligible compared to
its microscopic internal energy, and the dominant contri-
bution to Eq. (4.5) comes from the nuclear electric ener-
gy. Equation (4.5) then becomes

o(x)=4( 8'„,/M)y(x), (4.6)

where M is the mass of the Sun, 8'„, is the total nuclear
electric energy, and p=GM/r is the gravitational poten-
tial. For the Sun one can estimate 8'„,/M=10, and
then the scalar field of the Sun is

o.(x)=4X10 "y(x) . (4.7)

It must be stressed that we have considered only the elec-
tromagnetic contribution to o.. To evaluate the matter
contributions, we may consider, for example, the case in
which the source of the fields is a Dirac particle. In this
case the four-dimensional matter Lagrangian of the pro-
jective theory is (R=c= 1)

of different electromagnetic content would accelerate dif-
ferently in the solar gravitational field. Consider, for ex-
ample, aluminum and platinum: the internal magnetic en-
ergy is negligible compared to the nuclear electric energy,
and the 8', /I ratios are

(8', /m )~)-1.7&(10

(8', /m)p, -4.5 && 10
(5.1)

Therefore, combining Eqs. (3.7) and (4.7), it follows that
an aluminum and a platinum test body would fall in the
solar gravitational field with accelerations differing by

~ ~ 4 ~ g,
V'(k)p~ —(k @i=3

m p, I A)

=3.4& 10 Vy, (5.2)
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where y is the solar Newtonian potential. However, the
experimental tests of the equivalence principle, performed
by Dicke and Braginsky, show that the accelerations of
aluminum and platinum, in the solar gravitational field,
do not differ by more than 1 part in 10" or 10' of Ty.
Therefore the projective unified theory discussed in Sec. II
disagrees with experimental data. This difficulty of
course disappears if one rejects the identification of the
antisymmetric tensor B;k, in the projective Lagrangian,
with the electromagnetic field. However, we think that
one should not reject the interesting possibility of con-
structing a unified theory for gravitation and elec-
tromagnetism in the framework of the projective formal-
ism, provided that Schmutzer theory is suitably modified.
To this purpose, we notice that a similar situation arises in
gauge theories when we try to couple torsion to ihe elec-
tromagnetic field without breaking gauge invariance. It is
well known that the coupling is possible only with a vec-
tor or an axial-vector torsion tensor; however, in the vec-
tor case, an experimental disagreement occurs like the
one discussed in this paper, while in the axial case, a viola-
tion of the equivalence principle is predicted' '" only in
the case of polarized test bodies, and then no disagreement
is found with Dicke-Braginsky experiments.

Since the experimental disagreement, in the projective
theory, is due to the interaction of the electromagnetic and
scalar fields, and since the scalar field is the source of the
vector part of the projective torsion, we suggest then to
modify the geometric structure of the five-dimensional
space, formulating the unified theory in a projective space
endowed with a totally antisymmetric torsion tensor, so
that the torsion vector is vanishing, and the electromag-
netic field will be eventually coupled not to a scalar but to
a pseudoscalar field, as done, for example, in Ref. 10 for
the four-dimensional case.
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