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Light-cone gauge in Yang-Mills theory
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A prescription for massless Feynman integrals in the light-cone gauge n„A„'=0, n =0, is sug-
gested which leads to well-defined and exact, but Lorentz-noninvariant, integrals. As a result the
Yang-Mills self-energy is likewise Lorentz noninvariant, but remains transverse in agreement with
the Ward and Becchi-Rouet-Stora (BRS) identities. It is also shown that the assumption of Lorentz
invariance of the integrals, coupled with the validity of the Ward (BRS) identity, leads to a nonlocal
Yang-Mills self-energy.

I. INTRODUCTION

The light-cane gauge is one of the latest of physical but
noncovariant gauges to find favor among theoreticians. It
belongs, like the axial and planar gauges, to the class of
general axial gauges characterized by an arbitrary but con-
stant vector n„. For the axial and planar gauges, n& need
only satisfy n &0 arel—atively harmless condition com-
pared with n =0 in the light-cone gauge. The constraint
n =0 hides, as we shall see, new technical problems that
endow the light-cone formalism with some unexpected
properties.

In Yang-Mills theory, with the Lagrangian density

G„' (q)=
-gab

(2~) "(q~+ie)

quan v +qvn px '6„——
n

20!q qpqv

(n.q)

leads to integrals of the form

d q f(q, qp, rt~, q p)

+EG q —p +EEq n
(4)

p& being an external momentum. Our aim is to prescribe
a definition of these integrals, and then to evaluate them
consistently and unambiguously.

II. PROBLEMS W'ITH PREVIOUS
LICiHT-CONE (xAUCxE PRESCRIPTIONS

It is not difficult to see that the usual principal-value
prescription

I.vM ———
~ (Fp„) (n.A')—

2(x

the light-cone gauge is specified by

n.A =0, n =0,
where A& is a massless gauge field and a the gauge pa-
rameter. The corresponding propagator (we
+ ———metric and employ dimensional regularization
with a space-time of 2' dimensions)

q-n
1— =- P.V.

q n
T

1 1:—2 hm -+
o q n+ip q-n —ip

(5)

leads to problems when n =0, both in Minkowski and
Euclidean spaces. In Minkowski space, both poles of
(q.n+ip) ', namely, qo (q n——+ip.) /no, lie on a line
parallel to the Imqo axis. Their location prevents a Wick
rotation to Euclidean momenta without encircling one of
the singularities so that the conventional prescription (5)
is, clearly, of no help unless the use of Euclidean space
could be avoided. In Appendix B we perform a sample
calculation of several integrals in Minkowski space using
the conventional P.V. prescription (5). We find that this
method leads to integrals which are inconsistent and
which give a Yang-Mills self-energy which contradicts the
Ward identity and Becchi-Rouet-Stora (BRS) identity.

A similar conclusion holds if one assumes, at the very
outset, that q n =n4, q4+n. q is defined over Euclidean
space, and then tries to apply (5). The reason is that
n =0 implies n4 ——+i

~

n ~, so that (q.n) ' is already
complex and nothing is being gained by adding ip, as in
(5): the denominator of (q.n+ip) ' remains ill defined.

These comments may help explain why the convention-
al light-cone prescription(s) available in the literature lead
to poorly defined integrals such as

1f dxx"-'(1 —x)-.=r(~ 1)r(1—~)zr(O) .

III. DIFFERENT APPROACH

We should now like to describe the following different
prescription for (q n )

' in the light-cone gauge.
Remembering that nq ——+i

~

n
~

in Euclidean space, we
first write (q.n) '=( qn+i

~

—n
~ q4) ', where the

m.inus sign has been chosen. The second step is to ration-
alize the denominator,

(q n+t —)n (q„)
(q.n)~+ n ~q~2
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q n

q. n+1
~ n~q4

(q.n) +n q +p
in the integrand of (4).

In Minkowski space, we first write

and then add a sma11, but real number p, p &0, to ensure
positive definiteness of the denominator. Our prescription
in Euclidean space amounts, therefore, to replacing
(q.n )

'
by

(—1noq4+n. q)(q.n)
no q4 +(n q)

For a consistent evaluation of the integrals it is important
to add a small number A, , A, &0, just as in the Euclidean
case discussed above:

q.n+ inpq4-= —lim-
o (n q). +no q4 +A,

(q n) '=(noqo —n. q)

noqo+n q

no qo —(n q)
(Sa)

Note that the n4 vector remains fixed here, i.e., np ——n4.
A somewhat different prescription, but also not a princi-
pal value, has been used by Mandelstam.

IV. SAMPLE CALCULATION IN EUCLIDEAN SPACE

and then add +is, @~ 0, which places the poles in the
second and fourth quadrants of the complex qo plane.
Our prescription in Minkowski space amounts, therefore,
to replacing (q n) '

by

As a sample calculation let us evaluate one of the basic
integrals,

f d q I [(q —p) + l E')q 'll I

noqp+ Q q= lim
no qo —(n. q) +iE

(Sb)
in the light-cone gauge. Using dimensional regularization
and omitting henceforth the ie in [(q —p) +is], we get in
Euclidean space

It is "safe" now, in the case of a typical integral, to com-
bine the various propagators according to Feynman, pro-
vided the same +i@ is used in each propagator. If so
desired, one could then evaluate the integral entirely in
Minkowski space by first finding the residue(s) in the
complex qp plane and then using dimensional regulariza-
tion to integrate over the remaining (2co —1) components.
This procedure is discussed in detail in Appendix A.

On the other hand, a Wick rotation in (Sa) with qo=iq4
leads to

q ( q n +lfloq4)I=i lim
(q —S»'[~0'q4'+(n. q)'+1 ')

Since the integrand is not Lorentz invariant, it is necessary
to divide the region of integration according to

and to employ exponential parametrization for the two
propagators:

I =i lim f"d~dp f d'" 'q exp(-E, ) f— dq4[exp( —E2))(q.n+lnoq4)
p~p 0 CO

(10)

E1=~I '+PI'+Pq' »q p+~(n—.q)'

E2 (13+ano )q4 213q——4p4, Eo ——pq ——»q. p+a(n q)

Instead of using formulas (A9) and (A10) in the second paper of Ref. 4, we integrate over q4 and q space with the aid of
the following integrals:

f dq4exp( —E2)=(m/3)' exp(+p p4 2 '), /I: p+no a—, (1 la)

dq4q4exp —E2 ——p4 m
' 3 exp + p4 2 (1 lb)

f d " 'qexp( —Eo)=m '/P' "A '/exp Pp -—2 aP(p n)
(1 lc)

d 2' 1~~.~ —
( E )

rg 1/2P2 ra~—.~g —3/2 P~ 2 —P( P
q q-n exp — 0

——~ p. n exp p (1 ld)

I=iW( p n~inop4) J.im f dad pp' "(p+ano')-'—
p~p 0

Xexp ap Pp +isp +— ——o.P(p. n) +P 1u4

(p+ano )
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Integrating over parameter space and keeping only the
pole term as co~2+, we readily obtain

~2n

nopo+n pI= I,~2n

where I denotes the divergent part of

(12)

d q
+lE' q —P +lE'

im."I (2 co—)( —p )" [I (co —1)]
I (2' —2)

The same result (12) is obtained in Minkowski space, as
shown in Appendix A. The right-hand side of (12) may
be rewritten as

I= I, n =0 (13)
Pg 7l

by using the notation n„=(no, n) and n„'=(no, —n). We
note in passing that for the special value of the momen-
tum p„=(p0,0,0,p3), with n„=(no, O, O, n3), Eq. (13) actu-
ally reduces to I=2p (p n) 'I, .which is Lorentz invari-
ant. Similarly it may be shown that

(14a)

q

q —p +l6'q n

qqp
q +is q —p +iraq n

d

+LE q —P +EE q Pl

I n&0
n

"I, n &0, (16a)
n

=0, n &0.

We see that there exists a remarkable similarity between
the basic integrals in the light-cone gauge and those in the
axial gauge.

V. THE YANG-MILLS SELF-ENERGY

Using the new prescription and the integrals (13) and
(14), we find that the infinite part of the Yang-Mills (YM)
self-energy in the light-cone gauge reads

"qq„n„*—I,
+l6' q —P +lE q Pl Pl P1

d 2c&q =0 (14b)
+l6 q —P +l E q'Pl

for the divergent part of the integrals on the left. It is in-
structive to recall, at this stage, the results in the axial
gauge:

II~„(p)=c' I (2—a)) 3 (p ~~„p~~~)++, (p~n +p

2+ —[2p n&n„—p n(n„p&+n&p, )]—— (n&n*+n„n„*)
p.nn n n n' (17)

5"a f7f p

+glib~
Pl P

where q'=q —p.

+ —
q

2'
n(p —q) nq

f dZcc ~ ()
1

7t 'q
(20)

where c' =imCvMg . 5' and 5' CvM f"f '. D——espite
overall Lorentz noninvariance, the self-energy is seen to
contain the traditional —", (p 5& —pzp ) term and the fac-
tor [2p n„n„pn(pz—n„+p„n„)]which is reminiscent of
the YM self-energy in the planar gauge. Moreover, it is
easy to see that (17) is transverse,

p„II„'„(p)=0, (18)
in agreement with the %'ard identity

&
gab gf abc

n„n pG„"—„(p) ~p, + —-4 &'„(p)=0, (19)(2~)' ' (Z~)'
which follows from the Lagrangian (1). Here G„",„(p)
denotes the bare propagator to one-loop order and Bc„(p) is
the Fourier-transform vacuum expectation value of A& (y),
and which is a tadpole term, vanishing in dimensional reg-
ularization.

Alternatively, the BRS identity gives

p„lI„'„(p)~ f d "q n„G„'„(q)n. (p —q)
1 I=-a f d'"q — —

q s"n. (p —q) n q

VI. DISCUSSION

In summary, a prescription for (q n) in tlie hght-cone
gauge n.A '=0, n =0, has been suggested leading to exact
and well-defined, albeit Lorentz-noninvariant, integrals.
The I.orentz noninvariance manifests itself through the
appearance of terms proportional to p.n* and n.n' as
found, for example, in the one-loop Yang-Mills self-
energy (17).

This Lorentz noninvariance, which may be traced back
to the momentum-space integrals (13) and (14), is an unex-
pected peculiarity of the light-cone gauge. It is intimately
connected with the fact that, in the light-cone gauge, ex-
pressions like (p.n) /n p cease to be meaningful invari-
ants. As shown explicitly in this paper, the appropriate
replacement, in the light-cone gauge, of a term like

p n/n is p n/. n n.
We are the first to admit that a Lorentz-noninvariant

quantity like the self-energy (17) may be somewhat unset-
tling. But if one insists on a Lorentz-invariant set of in-
tegrals (as assumed in the literature) and assumes, more-
over, validity of the Ward (BRS) identity, one arrives at a
self-energy II„' which is nonlocal. The details of this
analysis are explained in Appendix C.

I,ei us also mention the following two technical features
of the light-cone gauge. The first is that differentiation
with respect to n& under the integral ceases to be a useful
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tool, because the components of n& are no longer indepen-
dent. The second point concerns the parametrization of
massless propagators. It seems that in Euclidean space
exponential parametrization is superior to Feynman s con-
ventional method of combining propagators. Although
Euclidean- and Minkowski-space methods lead to the
same results, our experience has been that calculations in
Euclidean space [using the prescription (7)] are generally
less complicated than those in Minkowski space, especial-
ly for integrals involving three or more propagators.

Finally, it remains to be seen what the implications of
the present prescription will be for QCD, especially with
respect to the evaluation of ladder graphs in the leading
and next-to-leading log approximations.
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APPENDIX A

In this appendix we apply the new prescription (Sb), in Minkowski space, to the integral

d~q
[(q p)

2—+is] q n.
~

~

d~q(q n+noqo)

[(q —p)'+is][np qp' —(n q) +i~]
'2

1 OO= lim f dxA ' f d' 'q f dqo(n. q+noqo) qo —,+———
0 OO

(A2)

A =x+(1 x)np, B =—xpp, d=B AC, —

C=xpp —x(q —p) —(1—x)(n q)
(A3)

B f d2co —1Q d —3/2

J =A f d~ 'Qn. ( +Q)d —3/2

The qp integral has double poles at qp =(B+~d+ie)/A;
it suffices, therefore, to evaluate the integral at the double
pole qo, closing the contour above the real qo axis.
Hence,

d =aQ +2bn Q+g(n. Q)2+f;

dqo(noqo+n q)
—~ [(qp B/A) d—/A +ie—/A]

e

i+A ~o& n qA

y 3/2 y 3/2

so that

im f' f 2„, noB nqA
y 3/2 g 3/2

(A4)

a=Ax, b =(1—x)An. p, g=(l —x)A,

f=(1—x)[A (n. p) —xnp~pp2] .

We analyze the two J integrals separately.
In order to evaluate J~ we employ the representatio~

d 3/ =[I ( —', )] ' f daa'/2exp( —ad)
To integrate over (2' —1)-dimensional q space it is con-
venient to define (q —p )—:Q, in which case

"oB n. (p+Q)A
P g3/2 y3/2

(A9)f d al/2 f d2cu 1Q& nd—
I (-', )

e

f dx(Ji+J2), The Q integration is then readily performed with the aid
of the formula
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d qexp[ a—q 2—Pp q —y(q n.) ]=

and yields

(a+yn )'~ a a(a+yn )

noB~-'"a b2~ 2f daa' "exp af—+
I ( —', )(a +gn )' (a +gn )

2ir" 'noBa '
daa' "exp( —aG), G =x(l x)N—, X =(n p) —no po (A10)

2 Bm 'l (2— )(N ) (1— )"
(Al 1)

From (A6) integration over x gives

in.
0

x ] = Opo& I —co

dx (1—x)"
X [x+(1—x)no ]"

nopo(iii )" iver"I (2 co)—
2

no
(A12)

The computation of the second integral J2 is similar to
that of Ji and yields

2n 'I (2—co)p. n(K )"
J2 ——

g ciP+ 1

addition, violate the Ward and BRS identities. It suffices
to consider the three basic integrals

q —p +iraq n

2COq

+l6' q —P +lE' q 7l

d qq&

q +lp q —p +EE' q n

We adopt the following notation, frequently employed in
calculations in QCD:

+ +
q

—=qo+q3, n —=no+n3,

X [A (1—x)"-'—n '(1—x)"-'], (A13)

so that

iver" n. p I (2—ai)(Ã2)"
J2 ——

2no
(A14)

From Eqs. (A6), (A12), and (A14) we finally obtain, for
the divergent part of the integral (Al),

2 + — ~ 2 ~ 2 2 2
q =q q —q j. ~q~ =qi +q2

q n =2 '(n+q +n q+ —2nj. qi),

no —2-'(n++n -),
n 3

——2 '(n+ n);-
d "q =

I

J
I

dq +dq d " qi, I
J

I

=Jacobean .

(82)

(q p) q n— . cog(2 )(+2)co—2
2

no

I, Q)~22p 'pl

n.n*

(A15)

(A16)

The choice n& =(n n onion, n )=3(1,0,0, 1) implies n =0,
n+ =2, and n z

——0, and will be used throughout this ap-
pendix.

1. The integral f d qI[(q p)2+i@—](q n)]

Applying the prescription (81) we first write

This result is identical to the expression in the main text,
Eq. (13), obtained with the Euclidean prescription.

APPENDIX B
where

=—I) +I2, e—+0+,
[(q p) +i@]q n— . (83)

The purpose of this appendix is to demonstrate that in
the light-cone gauge n =0, naive use of the prescription I]———,

' lim
~p 0 p —q +i@ q n+ip

(84a)

q-n
1 1 1=
2 11Il1 +,p)0

&~o q.n+ip q.n —ip
(81) I = llm2 2

~.p o [(q —p) +i@](q.n —ip)
(84b)

leads to integrals which are internally inconsistent and, in Hence,
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r, =~&~ hm f d'" -'q, f dq+ f6)p~o [(q —p)+(q —p) —( qz —p j ) +iE](n+q +2i p)

=~J~ lim f d qj f dq+I~
6,p~O

where

dq" [Q+(q —p }—Qi'+i&]«+q +»v)
The last integral has poles at q = —2ip/n+, and

(85)

~Q, '~p -Q+

is+-

+ if Q+) 0.
(86)

Closing the contour aboue the real q axis, we readily find

n+(p
~

Q+
~

—Q~ ~iA, )

where A, =@+(2p
~

—2~i IJI] ——
n+

—2~&
~

J
n+

Q+
~

In+) &0. Substitution of I& into (85) gives

lim f d "
Qz f dQ+(p

~

Q+
~

—Qz +iA, )
0+ —OO

hm f d2"—'Q f"
A,~o+ xp —Q j +lA,

(87)

The procedure is similar for I2, except that we close the contour below the real q axis, evaluating the integral at the
pole

q =(p Q++Q. —ie)~Q+, Q+»,
and adding an overall minus sign for closing the contour in the opposite (clockwise) direction:

i d2co 2~—lim „~d
o+ xp +Q& iA, —

1 1+
xp +Qg —i~ xp —Qg +iA,

I I = 2™lJ—
I hm f d2~ 2Q1 ( 2)2 (

—)2+2

n p A~oo (Q 2)2

This integral, like (87), is divergent. Nevertheless, we proceed, imposing a cutoff A. Hence, from (83)
A

I~+I2 —— lim lim f d Qz f dx
n /~0+ A~ oo 0

(88)

(89)

Consider next the prescription (81) for

q +is q —p +i@ q.n

1 d kdx =I& +I2,
(k ~A 4ie) n [k ~p-(1 —x)]

I2 I(
~ ~ p, A =x——(1—x)p (810}

with

where we have omitted the iA, . It is not necessary, for our subsequent discussion, to evaluate the integral (89) explicitly.

2. The integral f d "q [(q +is}[(q p) +is]q.n[—
1 OO OO dk

I~ ——~J
~

lim dx d" kz dk+
~ p o —" —~ (k +A +i@) In [k +p (1—x)]+2ip]

(811)
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The k integral, being characterized by a double pole at
k =( —k~~A ~ie)/~k+~, k+&0, has the value
(contour is closed aboue)

—2&l

n+[~k+ ~p (1—x)~A —k~2+ii]2
so that

dx f d ky
lj.m

x(l —x) i A, —

(813)

n+

d k2mi~J.
~ l. f' dx

P 'o+ 1 x k — (1— )p —'A,

Substituting this expression into (811) and remembering
that only k+ & 0 contributes to the integral, we get

d2coq

q +LE q —p +is q.n

4iW
~

J
~
P(2 —m)P(co —2)P(co —1)(—p')"

n+p I (2co —3)

(814)

The curious double pole at ~=2 has already been men-
tioned in the literature.

where the iA, is no longer needed and has been dropped.
Hence,

Ij ——2iW~ J ~( —p )" 'P( —1)P(2—m)P(co —2)
n+p I'(2co —3)

(812)

Our next task is to evaluate Iz, for which we close the
contour below the real k axis. At the double pole
k =(k~ —A ie)/k+—, k+&0, the k integral has the
value

+2+i
n+[k+p (1—x)~k~ A i~,]— —

Thus,

where

=I)„~I2„,

1 d kI»=p~ dx(1 —x)
(k +A +iE) n. [k+p(1 —x)]

(k +A +i@) n. [k ~p(1 —x)]

3. The integral f d2"q q„[(q2+ie)[(q p)2~—ie]q nj '.=I„
We proceed as in Sec. II, using again

I(q ~i@)[(q p) ~i@]—I ' = f dx(k ~A+i6)
k~+p„(1—x)=q~, A =x(1—x)p

in which case

d k[k„+p„(1—x)]
I~ —— dx

+3 +i@ n. k+p 1 —x

(a) The integral I». Apart from the additional factor p&(1 —x), this integral has already been evaluated in Sec. II
above [cf. Eq. (810)],with the result that

4imp„~ J
~

lim dx
p ' 0+ k~2 —p x(1 x) iA— — ,

4iWp„~ J
~

( —p )" I (2—co)
(1 x)~

n+p 0

4im
~
J

~
( —p )" I (2—co)[I (co —1)]

n+p I (2' —2) PI

(816)

(817)

(b) The integral I2„. Application of the principal-value prescription (81) leads to two integrals:

I2„——I2,„+I22
where

1 d kkp
I22p I2»~po —p A'=x(1 —x)p

(k +A +i@) [n.[k+p(1 —x)]+ipoI
We demonstrate the method of evaluation for I2]&. Recalling that

(818)
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k„=(ko,k), kp, k3) = k++k- - k+ —k-
J&k

we define

Ip)~
——(H), Hg, H3),

where

H, =T'~J
~

lim f dx f d k, f dk+ f =H)+ +H'(
~p ~O 0 00 OO D

H~=~J~ lim f dx f d" kzkj f dk+ f
O

+

H3 ——T'~J~ lim f dx f d" k, f dk+ f =HI+' H, —
F~PO~O OO oo D

D:—(k+k —k~ +A +i@) [n+[k +p (1—x)]+2ipoj .

Proceeding as in Sec. II, we obtain

—2&l k+ (0,
n+[

~

k+
~
p (1—x)+A —k z +iA],

(819)

(820a)

dk k
—oo

so that

2~ip (1—x)
n+[ ~k+ p (1—x)+A —kq +iA]~, (820b)

while

»m f ",f d'" 'k, [ln(aA+b) —(lnb) —1]A
n+(p )' ~-o+ ' (1—x)'

a =p (1—x), b =A' —k, '+iA, , k=e+2po
~

k+
~

/n+, (821)

—i~"
I
J

~
&(2—co)( —p')" '[I (co —1)]'

H) n+r(2~ —2)

Adding Eqs. (821) and (822) and taking the limit co~2+, we finally get

1 n+

M(b) = '
lim f f d " kz[ln(aA+b) (lnb) —1]~—

n+(p )' ~ o+ ' (1—x)'

The component Hz in (819) vanishes, since

(822)

(823)

(824)

kgkg

kz —p x(l —x)
=0, (825)

while the computation of H3 =—H''~+' —H'~ ' is similar to that of H& and yields, as m —+2+,

+i~
~

J
~
1(2—co)3= n+ +M b (826)

Substituting (823), (825), and (826) into (819) we find

Iqq& ——(M(b) —
~

J
~

I/n+, O, O, M(b)+
~

J
~

I/n+),
where, as usual, I—:div fd q[q (q —p) ] '=im 1 (2 co);-

Izz„——(M( b) —
[
J [I/n+—,O, O,M( b)+ [

J
[
I/n+—) .

Finally from (815), (817), (818), and (827)

(827a)

(827b)
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(828)

q'(q —p)'

p ~n (M —2
~

J ~I/n+) —n (M+2
~

J ~I/n+)
n p

I, +I,„= p„~ M —2 g I n+, O, O,M~2 J I n+,d "qqp 4im
~

1
~

f'(2 —co)

q'(q —p)'q n. ~ ~ n+p

where M =M(b)+M( b—) W. e see that the right-hand side of (828) is not Lorentz invariant.
The basic integrals (89), (814), and (828) are internally inconsistent. This can be seen, for example, by multiplying

(828) by n& (recall that n p=n+p /2, n+=2, n =0):
6f

q'(q —p)'q. n

=2I /7
/
+n0( —4/ J /I/n+)=2I

/

J
f

2I /7—f
=0; (829)

the answer "zero" contradicts the well-established value of

q im I (2—cg)[I (cg —1)]~(—p~)"
q (q —p) 1 (2' —2)

Other inconsistencies emerge when some of the other
integ rais are computed exactly, such as

f d qq„q„[q (q p) q.n] —' and f d "qq [qz(q
—p)'q. nl '.

Another problem with the integrals (89), (814), and
(828) is that they lead to a Yang-Mills self-energy which
no longer satisfies either the Ward identity or the BRS
identity, as may be verified by explicit calculation.

APPENDIX C

Our aim in this note is to show, for n =0, that under
the assumptions of Lorentz invariance of the momentum
integrals and validity of the Ward (BRS) identity, the
Yang-Mills self-energy to one loop becomes a nonlocal
function of the noncovariant vector n„and the external
momentum pz.

The basic integrals needed to evaluate the YM self-
energy are (dq =—d "q)

(C2a)

f dq[q'(q p)'q. ]n'=—D
p n

f 2

dq q„[q (q —p)zq. n] '=p„E +n„GP p.n P
( . )2

(C2b)

(C2c)

Inserting the integrals (C2) into the one-loop self-energy
we obtain

6fq

q —p +is q.n

q +lE' q —p +l6' q'n

2 I

q q~
2 I

~

7

dq q& (Cl)
(q +«)[(q p) +ie]q n- '.

where the ie terms will not be shown explicitly in the sub-
sequent discussion. On dimensional grounds, i.e., in terms
of the available vectors p&, n&, and under the assumption
of general Lorentz invariance the above integrals must
possess the form

2f dq[(q —p) q n] '=A P
p'n

CvMg ~ 3 (p ~~ ~~i )I gp +~~ gEp~J

n„n„(A D —26)—(p„n„+p„np)(2G + 3D —A 2E)+4-
n 'p n p

(C3)

Agreement with the Ward (BRS) identity implies that
II&„(p) in (C3) must satisfy

p„IIp„(p)=0, (C4)

I

or

E =I (n =0), (C6)

which leads to the following condition among the four
coefficients:

3 ~D —2E —2G =0. (C5)

The coefficient E may be determined by multiplying (C2c)
by np,

dq q&n„ f z z E+n Gp /(n. p)~=I, ——
q (q —p)~q. n

so that (C5) becomes

2G =3 ~D —2I . (C7)

As usual, I denotes the divergent part of the basic integral

f dq[q (q —p) ] '. We note that multiplication of (C2c)
by p& merely reproduces (C5) and so does not lead to a
second condition among the four coefficients.

Replacing 26 in (C3) by the right-hand side of (C7) we
readily find



1708 GEORGE LEIBBRANDT

II„'„(p)=—,
'

CvMg 5' "
, (—p 5p„p—pp )I 8—(p D5„Ip—„p„)

+ 8 (D I) —p„n„+p„n&— nznp V V p ~ p p V

= —,'CvMg25'b ", (p2—5„„p„p—)I 8p —D 5„„— (p„n +p„nz)+ z n&n„
n 'p (n.p)

+ 8I p„p —(p„n +p„n„)+
n p n.p

np+V (C8)

with p„ll&„——0. The self-energy will be local only in the
event that D =I. Qn the other hand, Hp will be nonlocaI,
in the light-cone gauge, if the divergent part of (C2b) ei-
ther vanishes, D =0, or if D&I. The argument, therefore,
hinges decisively on the integral (C2b).

As far as locality is concerned, it can only be achieved
if D=I. Unfortunately this value for D leads to the
wrong expression for the YM self-energy, namely,
II„'„=—,

'
(p 5„„—p„p„)IC—vMg 5', according to (C8).

Hence, D =I must be ruled out.
A value such as D =0 is certainly more plausible as the

integral (C2b) appears to be both UV and IR convergent,

I

at least by power counting. (It might be useful to recall in
this connection that the corresponding integral in the axial
gauge n &0 has also been shown to have a vanishing
divergent part. ) Gf course the problem in the light-cone
gauge is that invariants such as (p n ) /n p are no longer
admissible, as has already been pointed out by Crewther
and Konetschny.

To summarize, if we assume a Lorentz-invariant set of
integrals as well as validity of the Ward (BRS) identity we
are led to a nonlocal Yang-Mills self-energy. This would
have rather unpleasant implications for the renormaliza-
tion program in the light-cone gauge.
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