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Vfe describe field theories for which the action is completely independent of the metric and con-
nection of the space-time manifold. The metric in our approach is no more a fundamental field
than a hadron field is a fundamental field in QCD. The fundamental fields in the action are O(5)
gauge fields and combinations of these fields are interpreted as the metric and connection so that
conventional general relativity is obtained. Remarkably, all renormalizable matter actions for sca-
lar, spinor, and Yang-Mills gauge fields can be made metric independent. Significantly, we find a
new elementary invariance of the action which implies the cosmological constant must vanish. Fi-
nally, we discuss the quantum theory resulting from these ideas.

I. INTRODUCTION

Suppose we consider a four-dimensional space-time
manifold with a metric g„and connection I ~p. On this
geometric manifold we define fields with total action S, a
polynomial in these fields. Our fundamental assumption
is that S is independent of the metric and the connection.

On the face of it this assumption seems physically ab-
surd. After all, the total stress-energy tensor 0& —a fun-
damental object in any field theory —is defined by the
response of the action to a metric variation,
5S=vg 8„+g"". If the action S is independent of the
metric how is it possible to include gravity? Remarkably,
these objections can be circumvented if one adopts a new
viewpoint.

The requirement that the action is polynomial in the
fields' and independent of the metric and connection im-
plies it is of the form

S= f t L@vxsd x (1)

Here e~" is the perInutation symbol, a tensor density
with e' = + 1, and L,& ~~ is a covariant tensor indepen-
dent of g&„and I &r and a polynomial in any other field.
We show that the action of all conventional renormaliz-
able field theories of matter can be reexpressed in this
form and that the conventional theory of gravity is com-
pletely recovered. Furthermore, we find an exact invari-
ance of the gravitational action that implies the cosmolog-
ical constant vanishes. The key to our construction pro-
cedure is the gravitational gauge field.

II. GRAVITATIONAL O(5) GAUGE FIELDS

We adopt the following conventions: the metric signa-
ture is Euclidean (we assume we can rotate back to Min-
kowski space) and Greek indices @=1, . . . , 4 refer to
space-time; upper case latin A = 1, . . . , 5 refer to O(5) in-
dices and lower case latin a= 1, . . . , 4 to an O(4) sub-
group of O(5); we also use the alternating notation on in-
dices [AB]=AB BA. —

We introduce the ten "gravitational gauge fields"

co&
———co&" which transform as the adjoint representa-

tion of O(5) and the five fields P" which transform as the
vector representation. The field P is assumed to be odd
under CP and if we assume that the action S, given by (1),
is CP even then S must have an odd number of P" fields.

The most general possible action that satisfies these cri-
teria and exact O(5) gauge invariance is

S = d4x

with

pvjNQBCDE( R ABR CDyE+ R AB CUE
+otÃp+veX+S0 ) ~

where the gauge field strength is

AB ~ AB AC CBR p ~ —U [pcs~] +co [p co~j

and

where E" is the O(5) antisymmetric permutation sym-
bol and the a; are polynomials in (P ) . If we drop the re-
quirement of the discrete CP invariance then we may add
to the action a term a4d' "R„P RgP which is even in
the P" field; but we do not do so here. The fact that the
action is necessarily restricted to only three terms is a
consequence of the requirement that it be independent of
the geometry of the manifold. The restrictive power of
this natural condition is apparent.

Before proceeding we will motivate our approach by re-
marking that the ten components of the O(5) gravitational
gauge fields co& will be subsequently identified as the six
components of the connection co& and the four com-
ponents co&' with the vierbein e&. Then the terms in the
action (2) can be identified as a topological invariant, the
Hilbert action, and the cosmological term. In this way the
relation to general relativity is established.

The magnitude of the vector P" is arbitrary. In the fol-
lowing we will impose the gauge-invariant constraint

yAyA ~2 (3)
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and a new gauge derivative V'& which acts as O(5) gauge
vectors g according to

P gA D gA+ y(AD yB)gB
P IJ ~2 P (5)

with obvious generalizations to gauge tensors. One can
check that

p yA ()

The Bianchi identity

~~"D Z"=Ov A,5

implies

& pvA5+BCDEyAp~ BC

It is easily checked that in the physical gauge R z„ is just
the O(4) field strength

ah ab ac ebR pv= B[pCt)v] +CO[I Ct)v]

which can be implemented as the equation of motion of
an additional O(5) scalar, a Lagrange multiplier. Alterna-
tively if we left the magnitude arbitrary (3) could follow
as an equation of motion and then the magnitude fluctu-
ates about this minimum. This is a different theory which
we do not consider here.

Imposing the normalization (3) has as an immediate
consequence that (t becomes a gauge artifact. Using the
Q(5) gauge rotation freedom we have P =M, P'=0. We
refer to this gauge choice as the "physical gauge. " This
does not completely fix the full Q(5) gauge invariance be-
cause we are still free to perform arbitrary O(4) gauge ro-
tations.

A second consequence of the normalization condition
(3) is that the a; in the action (2) are just constants. We
also note that P e „P"D&=P"=0.

In the physical gauge this theory retains an exact O(4)
invariance and it is convenient to introduce a few defini-
tions that will aid us in exposing this Q(4) gauge structure.
We define

AB AB 1 [A ]R ~v=R~v+ 2 E~ Ev

III. GEOMETRICAL INTERPRETATION

u,d —=V,E„'—I „„e.'=0 (12)

which defines the connection I ~ ', second is the metric
postulate

A~M gp =ape„ (13)

which defines the metric tensor. The consistency of the
tetrad postulate is easily checked;

y"~,d=o.
It follows from these postulates that the covariant

derivative of the metric vanishes,

The metric tensor has two related but distinct roles in
physics. First, it determines the overall geometry of
space-time —the arena of various quantum fields. Second,
it is a field in its own right. However the metric in con-
ventional field theory is unlike any other field in so much
as it is necessarily present in the action. In our approach
this distasteful dualism between the metric and other
fields is eliminated. The metric is not even present in ihe
action as a fundamental field —it is derived from the grav-
itational gauge fields. In some ways our approach resem-
bles that taken in the strong-interaction field theory.
Quantum chromodynamics, the gauge theory of the strong
interaction, in principle describes the dynamics of the
hadrons. Yet hadronic fields do not appear in the funda-
mental action. Hadronic fields are complicated represen-
tations in terms of the fundamental quark and gauge
fields that do appear in the action. From this modern
viewpoint it was a mistake to ever put hadronic fields in
an action.

The viewpoint we adopt here is similar except that we
apply it to gravity instead of the strong interaction. The
fundamental fields are the gravitational gauge fields while
the action is independent of the metric and connection.
But the metric and connection may be related to these
gauge fields and we do so by making two postulates.
These postulates are definitions.

First is the tetrad postulate

establishing the utility of the definitions.
ABIn terms of R & the action density W becomes

so we have a metric space; but the torsion tensor

(14)

pvi.s+BcDE( R ABR cDyE+ R AB c+yE

+&C~pEv&i. ESP ) (10)

with az ——a» aH a2 4a, /M, a——c=—a3 2ai/M-
+ 4a /Mi. The first term of (10) is the Q(5) topological

density and can be used to classify the field configurations
by an index n corresponding to a member of the set of in-
tegers z according to m.i(O(5))=z. One finds for its con-
tribution to the action

does not in general vanish.
The torsion tensor has 24 independent components and

is a reducible representation under the local Q(4) group ac-
cording to 24=4 +4 + 16. Introducing the vector 5,
the axial vector A„, and the 16-dimensional representation
tensor 6 i„which satisfies

Ga~ +Ga Z=O

Gatv+ Guava+ Gvaz =O

S&——128m a~Mn .

The other two terms in (10) are not topological densities
and require a further interpretation.

one can write the torsion tensor

~i. =&(i,S' I+&~..H'+Gi, , (15)



HEINZ R. PAGELS 29

where we use the metric to raise and lower indices. If one
puts matter into some geometrical gravity theories which
are elementary extensions of Einstein's theory one finds
the torsion does not vanish. Scalar fields, through their
angular momentum, contribute to 5; fermions, through
their axial-vector currents, contribute to A~,' gauge fields
contribute to G~ . Torsion will be a part of this gauge
theory of gravity as well, for requiring it to vanish would
imply arbitrarily restricting gauge degrees of freedom.

We note that the metric, connection, and torsion are re-
lated in the usual way for metric spaces. The connection
may be written

where the Christoffel symbol is

I pl l 2 g ( @8Ã(T +~ASpO' CTRpk),

Our choice of definition for the metric and connection,
(12) and (13), is not gratuitous. These definitions, if used
in the field equations for the gravitational gauge fields,
imply the metric and connection satisfy the Einstein equa-
tions with a cosmological term. This is Inost easily seen if

~ab
we go to the physical gauge. Then R„(co) is the Q(4)
field strength given by (9) and

(16)

where e& is the vicrbcin. Using e ' ' =e' ' the action
density (10) becomes

~=Mal' ~su'~'"(a R 'Q ' +M a R '~'ea&

The original action has been completely reexpressed in
terms of the metric and connection and in this way the re-
lation to general relativity in the first-order formalism is
established. Notice, however, that unlike conventional re-
lativity, our assumptions on the original O(5)-invariant ac-
tion do not permit dynamical R -type terms in the action.

Sometimes one encounters statements to the effect that
if instead one considers for the gauge group the Wigner-
Inonii contraction of the O(5) group to the Poincare group
then the cosmological term is absent. Such statements are
misleading. They generally ignore the full O(5) gauge in-
variance which implies a possible third term in the action
(2), a term which upon performing the Wigner-Inonu con-
traction survives and can be identified with the cosmologi-
cal term. Furthermore, for topologically nontrivial field
configurations the action is infinite in the contraction lim-
it. The Wigner-Inonu contraction is considered in detail
in Appendix A and we do not consider it further here.

The equations of motion may be obtained by variation
of the action (10) with respect to the ten independent O(5)
gauge fields e&,~&J and the four independent components
of the vector field P'. After this variation is carried out
we express our results in the physical gauge. The result
may be expressed in terms of the currents T"', T"'J, and S'
defined by

m= I (r"'S~„'+r""S~'J+S'Sy;)Z x . (23)

+M'a, e„'e~~'„e,") .

The definition of the Riemann tensor is

(17)

T = —2a Me" e '"S'
CKII (24)

—4M'~8(g)'"~ -p 24M'a,-(g)'", (20)

where wc have used e" e,b,depend
——2ee~"eb~ where e is

the determinant of the vierbein,

and the scalar curvature is 8 = 5~ "~A",
z (I ).

The first term in (20) is just the topological density for
the Gauss-Bonnet integral; the second term is the Hilbert
action if we identify the gravitational constant ~ as

(21)

and the third term is the cosmological term. A~g with

A=24M uc .

A '„'p ( I ) =8pI " 8 I "p+I, —I "p —I pI ~g

Using thc vicrbcln ep and its illvcrsc e ~ to raise and lower
indices, using the tetrad and metric postulates and (16),
one can show by direct calculation

R „'„(co)=R,~„(I )e'e"'.
The action density (17) becomes

Sd & Ij.vA, 5&abed ga b c ~g ab c4gg
I v&ÃS —a p

(25)

where D„ is the O(4) gauge field derivative and 8 &,(co) is
the O(4) field strength. Equation (25) just defines the tor-
sion; from the tetrad postulate (12) we obtain the relation

2e'T"'~+M (DsT +S )=0 . (27)

A,5 bUse is made of the O(4) Bianchi identity e" sD R ~s=0
in proving this result. This result implies that if the first
two equations of motion are satisfied then so is the equa-
tion for S'. But this comes as no surprise since we used
the Q(5) gauge freedom to fix the field P'=0. Thus its as-
sociated equation of Inotion is redundant.

In the absence of matter the sources all vanish. Then

(26)

The equations of motion (24) are not all independent.
We see directly from (24) that the sources are related by
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one finds that the torsion vanishes, S„'„=0. This condi-
tion enables us to solve for the connection purely in terms
of the metric and the standard source-free Einstein equa-
tions with a cosmological constant are obtained. In the
presence of matter the torsion does not in general vanish
and the equations for e& and co&~ are completely indepen-
dent.

Next we consider the coupling of matter. Our funda-
mental criterion is that the matter contribution to the ac-
tion must not only be O(5) gauge invariant but also be in-
dependent of the metric and connection. Remarkably, all
the renormalizable matter-field theories can satisfy these
requirements.

V. MATTER COUPLINGS

We consider separately scalars, spin- —, fermions, and
Yang-Mills fields and show that their O(5)-invariant
matter actions, which are independent of the geometry,
reduce to the conventional field theories in flat space.

where V(P cr ) is a fourth-order polynomial. So the con-
ventional, renormalized scalar theory can be cast into the
required form.

B. Fermi field

where a=1, 2, 3, and o' are the Pauli matrices. These
five matrices satisfy

[yA yB] 2gAB (34)

To include ferinions we must consider Sp(4) instead of
O(5) and introduce the Sp(4) Hermitian 4&(4 matrices

0 o' 1 0a
V a 0 ~ 7 0 1

(33)

A. Scalar field (35)

+2eM'e&('e ")D a'D o'] .p 0' (29)

In the flat-space limit eI"=8", ep ——5p, D =0, etc., and
one finds

For simplicity we consider a single scalar field cr; the
generalization to include internal symmetries is trivial.
The single scalar field is introduced as an O(5) vector o"
so that cr=P"cr /M In the. physical gauge cr=o . The
other four components o, we will see, are identified with
the derivatives 4Me„o'=dzo. The action we obtain for
the kinetic form of the scalar field will be in the first-
order formalism. We do not consider the most general
possible action, it being sufficient to show the convention-
al theory is obtained from at least one action.

Consider

S = dxe""e e"ee Vo oX 6 p, v A, 5

(28)

SB ——f d x e" e" e„"e,D (P cr)D o.

In the physical gauge, introducing the vierbein as in (16)
these actions become

Ss ——f d x 6eM (oeD o e "d. ocr ), —

Ss, ——f d x[6eM (ere "D cr"+e "d oo" Mo"o"). . —

D„g=(d„+ , co„(r" )f—

which satisfies

(36)

i [D„,D„]g= ,
' cr""A—p,P . (37)

It is useful to introduce the Hermitian matrix y6 which
is defined by

satisfying

PBCDEyA B C D E
4.f

(38)

M [~6,~A]+ 2&A, ——
~M [y„H'] =y(")"),

This matrix, in the physica1 gauge, is y6 ——y . It generates
chiral transformations according to

W =&1'56@ . (40)

The chira1-invariant action for the Fermi field is now
easily written down as

transforms like the adjoint representation of O(5). Spinors
transform in the fundamental four-dimensional represen-
tation of Sp(4) and their Sp(4) gauge derivative is

Ss, —Ss, ——f d"x 6M ( dzo&+2M&a~—), (30)

where o~=e~'o'. This is just the first-order form for the
scalar-field kinetic energy. Variations with respect to 5o.

&
implies o.

z——B&o./4M and we see that the conventional ki-
netic energy term of the scalar field is

SKE ~ d4X &pvA5+BCDEqt Ap yyB&CQ&E=6M 'V p &v X&S.

In the physical gauge and Aat-space limit

S~ = l d X

(41)

S, '=, (S,,-S,, )= f d'x-,'(a,o)'. (31)
the conventional result. Yukawa couplings to the scalar
field or mass terms may be accommodated by writing

The potential term for scalar fields may be written

S = f 1 xe" e V(P" cr)e"ee e .P (32)

SY d 4X e pvks+BCDEI ApeC+yEqty
24m' &p, v&X 5

(43)
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where I can stand for O(5) invariants such as either cr .P"
or mF, the fermion mass. The generalization to include
internal indices for the Fermi field is obvious.

C. Yang-Mills fields

Denoting the gauge field transforming as the adjoint
representation of G, the Yang-Mills group, by A& [we put
an overbar over the gauge group index to indicate that it is
not an O(5) index] the field strength is

(44)

where C are the Lie structure constants of G.
In order to include Yang-Mills fields in our formalism

we will introduce a tensor 6 transforming as the ad-
joint under G and the adjoint under O(5)

GAMIC GBAC (45)

Using Q we can reduce the number of O(5) components
of 6 from 10 to 6 by the construction

tions with matter fields including R z that vanish in the
flat-space limit. The action for the matter fields is more
complicated than that with just the gravitational gauge
fields for which our constructive criteria led to a unique
action of only a few terms. It remains an unsolved prob-
lem if there exist constructive criteria that might limit the
form of the action of matter fields as was the case for the
gravitational gauge fields.

%'e return to the case of pure gravitational gauge fields
without matter. Are there any invariances of the action,
given by (10), other than O(5) invariance'?

In order to answer this question we examined field
transformations that depend on an infinitesimal O(5) vec-
tor a"(x). We separate a" into longitudinal and trans-
verse parts according to

A
A =A'T +CKL

TABC GABC+ y[AGB)DCyD
M

so thai

yATABC ()

(46)

(47)

B. 8
P aT ——0, aT ——a—

M
8. B

M

(51)

Then T has the same number of components as the
field strength and we can apply the first-order formalism.

We find

)( FA (g )TABA~CgyE
4M

5

(48)

upon reduction becomes

(49)

where T&„e&e T . Va——riation of (49) with respect to
6T& and eliminating T& implies the equivalent action is

SvM ———, I d xI'q (A)I'p (2) (50)

the usual Yang-Mills action.
If the fermions or scalar fields transform as an irreduci-

ble representation of 6 they can couple to the Yang-Mills
gauge field. This coupling is accomplished by changing
the covariant derivatives Dz and Vz to include the gauge
coupling of the Yang-Mills fields. Abelian gauge fields
can have a mass term and still be renormalizable and such
terms can also be easily written in this formalism.

We conclude that all renormalizable field theories can
be included into this formalism. The representations we
found satisfy the criteria of metric and connection in-
dependence of O(5) invariance. Upon using the physical
gauge and the geometrical interpretation of gravitational
gauge fields, we showed that in the flat-space limit these
representations reduced to the familiar ones. These ex-
pressions are not unique. One can certainly construct ac-

(53)

We find no invariance for the longitudinal variations un-
less Ac =A~ =0.

For the transverse variations there are several possibili-
ties:

5ip =MaT,

5gco~ = (jk D~ cx T
AB [A 8]

53cop =Ex(ID~/ =(AT Ep

[C AB] 2 f'CE AB]
@[~64')@) ——M ay R gp

(54)

where [ABC] means antisymmetrization in all three in-
dices. We note that the combination 6(+62—63 is just an
infinitesimal gauge transform with gauge transformation
parameters 0" =P("aT . It is straightforward to calculate
the change in the action S due to these variations. The re-
sult is

Next we consider all possible variations in the field vari-
ables 5'„and 5P" which are proportional to a", but
which do not require the introduction of a metric. We
may independently consider the longitudinal and trans-
verse variations.

Since P 6P"=0, 5$" cannot depend on the longitudinal
parameter aL and for Lo& we have

(52)

The change in the action is

I d 4 pvA5+BCDE,
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5)S = —
4 a~L, (—2aH+3M ac)L2,

52S = 4 cxHI ) +3M gr 2,

53S = —2a~L, ,

o4S'=acM Lz+ —,
' a~L, ,

where

(55)

ed p, v ed
RiJ ——e, eJR pv,

edim lmR,J ——
4 e e,~~Rr,

Z kji kTpij
p

we obtain from Appendix B, (23) and (59),

Tpe Tkij(g ek+ & pe er 1 pe er)
P cJ 2 j ri 2 i rj (60)

M4 / d4x &PviMEABcDE A~ Bc~ DEX E' ~T pv

M2 f d4 pvks+BCDE A g BCQQ

and aH and ac are parameters appearing in S as coeffi-
cients of the Hilbert action and cosmological term, respec-
tively. It is evident from these relations that additional in-
variance beyond simple gauge invariance may be present.

For example, we note that (55) implies

5'S = ( 4 acM 53+aIr52 ——,aH54)S =0 . (56)

This invariance depends explicitly on the parameters aH
and cue. Invariances that depend explicitly on Lagrangian
parameters are not expected to survive renormalization;
yet as a classical invariance of the action it might be in-
teresting to investigate (56).

There are invariances that imply that either the Hilbert
action is absent, a~ ——0,

If the sources satisfy this equation then the cosmological
term vanishes.

Fundamentally, the Hilbert action and the cosmological
term are distinguished by the two tensors R „' and
T„' =e„'e ] which, although they have the same
index symmetries, R & satisfies the Bianchi identity

es) beca~s~ of the pres~~~e of tors
Riemannian geometry there is no torsion and no way to
distinguish the cosmological term from the Hilbert action.
But in general, if torsion is present, cosmological symme-
try is not empty. We note that in the absence of matter
the equations of motion imply the torsion vanishes. For
this reason it is important to extend the cosmological in-
variance to the matter action as well (something we have
not done).

The astute reader might note that it is possible to gen-
eralize the transformation (59) as

5,S =0 (57) 5 e~ =Dpcx

or the cosmological term is absent, ac ——0,

5S =(52——,
' 64)S =0 (58)

+M ace„'e~ke5), (17)

then the effect of the cosmological symmetry in the action
is equivalent to

ea D &a

[ij e] [rj'e]
QQp[ e ~]

= —R g(x

(59)

or both (leaving only the topological invariant). These are
the only interesting consequences besides (56) that follow
from (55). Since we want to retain the Hilbert action but
remove the cosmological term, in conformity with its ex-
perimental absence, we will require 5S=O. We refer to
this invariance as "cosmological invariance, " since it elim-
inates the cosmological term.

If we go to the physical gauge in which the action den-
sity has the form (17),

M& pvks~bcd(a ~ ah~ cd+M4a ~ ab ced&T p zS 0'lI pvea, e5

(61)
S'~'"e' = —Z '"a'l+ I e'e]a')[. .]=- .. @ s'

with I to be determined by the requirement that 5'S=O.
One finds I = —6M (ac/aH) and (61) is equivalent to
the previous parameter-dependent transformation (56).
However, as we remarked before, parameter-dependent
transformations do not survive renormalization. Further-
more, and more to the point of arguing for the naturalness
of cosmological invariance, we see that only with I =0
does the transformation (61) satisfy

&~ ev
A.pv5 ijemD p v 0

6ak (62)

VII. QUANTUM THEORY

a consequence of the fact that R &„but not T&„satisfies
the Bianchi identity. We conclude, on the basis of those
observations, that cosmological invariance is a natural in-
variance although only detailed calculations in the quan-
tum theory can ultimately decide the question of the ab-
sence of anomalies.

It is easily checked that 5S=O implies the cosmological
constant ac ——0. The equation (59) for the 24 variations
5cog is not explicit; but (59) is 24 independent equations
that can be explicitly solved for 5coz. This is done in Ap-
pendix B.

Using the Noether procedure we can find the conserva-
tion law on the sources implied by cosmological invari-
ance. Defining

Here we will make a few speculative observations about
the quantum theory. The action for the pure gravitational
gauge field is the most general that is consistent with the
stated symmetries and metric independence. In order to
quantize the theory it is first necessary to remove the
gauge degrees of freedom (since these are not to be quan-
tized). The gauge fixing can also be done in a rnetric-
independent fashion. We need ten independent conditions
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since there are ten gauge degrees of freedom; four of these
ten are fixed by the physical gauge condition P =0. The
remaining six conditions A'J = —A J'=0 can be of the form

g ij ir, viLs+rstl &J+&Q +& +Ip A, 5

where the four-vector q defines this axial gauge or

gsJ ~pvA, 5 [~g,A)I ~

in the Lorentz-type gauge.
In view of the fact that no terms can be added to the ac-

tion without violating metric independence we would con-
clude that if a metric-independent quantization procedure

l

exists then the effective quantum action and the classical
action are identical, the theory is trivially renormalizable.
However such a strong conclusion only follows if the
quantization procedure is also metric independent. In the
canonical formalism, since it is based on the existence of a
Hamiltonia, a component of the stress-energy tensor, the
procedure is explicitly metric dependent. In the path-
integral formulation the metric does not explicitly enter.
Yet the path integral is only rigorously defined on a
space-time lattice or Euclidean simplex and such a sim-
plex depends on the metric.

If the path integral for the gravitational gauge fields
given by

Z(J)= I d[itP ]d[co„j5(i'')5(A'J)exP —S+ I d x e& see„" J is

can be rigorously defined without invoking metric con-
cepts then it can only depend upon the topology charac-
terized by some indices. Conceivably it could be done ex-
actly.

Our action S, however, has the characteristic problem
of almost all gravity theories —there exist field configura-
tions for which the Euclidean action S is unbounded from
below. Then the path integral is undefined because the ex-
ponential diverges. In our theory this problem is aggra-
vated by the fact that one cannot even add R -type terms
in the action to bound it from below.

One point of view that might be adopted is that the ef-
fective gravitational gauge field quantum action is the
classical action. That effective action is also metric in-
dependent and is consistent with our previous remarks.
However, once one includes matter this can no longer be
the case. The constant a~, in the effective quantum ac-
tion now becomes a field-dependent function of O(5) in-
variants like P cr, T" T" arising from the matter
sector. Such functions, however, are metric independent;
hence if they are computed in one metric they are known
for all metrics. Then one could in principle compute the
effective quantum action in perturbation theory. One as-
sumes a suitable background metric and uses this to deter-
mine to some order in perturbation theory the unknown
field functions appearing in the metric-independent effec-
tive quantum action. This is analogous to calculating a
I.orentz-invariant quantity in a special frame of
reference one has, in fact, done a frame-independent cal-
culation. This procedure warrants further investigation; it
has the promise of becoming the basis of a renormalizable
theory of gravity.

VIII. CONCLUSIONS

Our fundamental assumption that the action is indepen-
dent of the metric and connection, and O(5) gauge invari-
ant implies a very restrictive form for the gravitational
gauge field action. The O(5) gauge fields admit of a
geometrical interpretation consistent with conventional
general relativity. All the renormalizable matter theories
can be included in this formalism. A simple "cosmologi-

cal invariance" has been found that requires the cosmolog-
ical constant to vanish.

All of the equations we have written down are far more
simple in the elegant notation of Cartan's calculus of exte-
rior forms. We have avoided this notational convenience
because most physicists are unfamiliar with it.

Several important problems which this work raises
remain unsolved. The cosmological invariance we found
is only a partial solution to the "cosmological term prob-
lem" because we have not yet extended this invariance to
matter fields. The matter fields can produce a vacuum
energy which adds to the conventional cosmological term
a constant. Yet the fact that the invariance exists at all in
the gravitational gauge fields is encouraging. Simple
models including matter ought to be examined.

The cosmological invariance is local. Does this imply
that for a larger gauge symmetry than O(5) and its associ-
ated gauge field theory the cosmological invariance is
automatic —no cosmological term will appear if the larger
gauge theory is interpreted geometrically? The cosmologi-
cal invariance might have a gauge theory interpretation in
the context of a larger gauge group.

A major problem, and an intriguing one, is whether or
not a metric independent quantization procedure exists or
if this even makes sense. If so, then the usual problem of
quantum gravity might be circumvented. Trying to quan-
tize gravity is like trying to quantize a spin-2 hadron —it
is the wrong problem. We made a few speculations about
solutions to this problem in the last section.

A strong virtue of gauge theories of gravity is that they
imply that gravity, like the strong and electroweak in-
teractions, is also basically due to gauge fields. gravity is
no longer the "odd man out. " This opens the door to total
unification of all interactions on an equal footing. Metric
theories of gravity do not have this property. The sim-
plest group that has O(5) &&SU(5) as a subgroup is SU(9)
and this provides a possible toy model. One may extend
the idea of this paper to local supersymmetry by gauging
0 Sp(1,5) and that may lead to yet further unification.

While such ideas are clearly speculative, in light of the
current status of quantum gravity theory, any new outlook
seems worthy of investigation.
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APPENDIX A

Here we consider the Wigner-Inonii contraction of the
O(5) gauge group as applied to our action (2). If the gen-
erators of O(5} are L" = L"—and the parameters
8" = —8 " then the contraction is accomplished by set-
ting

P'=AL', 8'5=Ra',
lJ=I lJ glJ= glJ

and letting the contraction parameter A, —+0 with P', I.'J,

o.', and O'J held fixed. This implies we should also rede-
fine our finds according to

cia~ =i(,ep, f =A,Q

5 5
ioie =co~,

and R &„ is the O(4) field strength. The first term in the
contracted action is the Gauss-Bonnet topological density.
It is singular as A,~O but does not contribute to the equa-
tions of motion. However, field configurations with index
n &0 contribute an infinite action as A,~O.

The second and third terms can be identified with the
Hilbert action and cosmological term. While it is true
that a contribution to the cosmological term arising from
the second term of (2} vanishes as I,—+0 the third term of
(2) contributes a nonvanishing cosmological term as A,~O.

The action we obtain is fully Poincare invariant. It is
obviously O(4) invariant. Under translations we have

5ep =Decl

5$ '=Ma',
so that 5y& ——0 and the action is trivially translationally
invariant. We see that P' is a complete gauge artifact
under translations and so we can fix the gauge with

P '=0. Hence y& ——e&. But now the translational freedom
has been fixed. Either the translational freedom is absent
(if we fix the gauge) or invisible (if we do not).

%'e conclude, in summary, that the Wigner-Inonu con-
traction (i) produces a singular action proportional to the
topological index, (ii) does not eliminate the cosmological
term, and (iii) the translational gauge invariance is either
absent or invisible.

and as A, ~O, ez, co'j, P', and P are held fixed These.
fields are then representations of the Poincare group.

In what follows we will not fix the gauge so that the
full ten-parameter gauge-group invariance is maintained.
This will be instructive. We may substitute the fields with
the A, contraction parameter into the action (2}. We also
define the constants a; appearing in (2) to be

ai ——ai/1, ai=az/A, iz3 a3/k2 2 4

APPENDIX 8

The cosmological invariance transformation is

5e~ =Dpo!

yjed5 ij e pjedR ij e~ I e&l s &+

(B1)

with a; held fixed as A,~O
The first term of the action (2) requires some care be-

cause it is singular in the contraction limit and one can
lose full gauge invariance if it is not treated correctly. In
order to treat it correctly one can either write the action in
the form (10) and carry out the contraction (in which case
the gauge invariance is retained directly) or expand the
field P according to

T

and here we will solve the second equation for 5cog. We
make use of the inverse vierbein e'"ej& ——5'j and define
e "5co& 5cog, e ——"e"R &~=Rl'k", and also the dual

lm & &1mrs rs

Then (Bl) reads

+1d +kd *ed e5o~k 5~1 R kl~

/=M 1— =M — $ +.
2M

so that

substitute into the action (2) and then take the A,~O limit.
If this is done the action density becomes as A,~O

pekl + ld R edge~k = st& ~

This is equivalent to

&pvkS&abcd i pvks abcdR ah~ cd
56)d +5dcok —5d5cok =R

z&
Q'.

ab c d a b c d+ b2R pa'u's+b3xI, x waxed

where the b; are linear combinations of the a; and

from which follows upon contraction and elimination

(B2)

y„'=e„' — D„(co)P '
Ijt p

which is the explicit solution. We remark that a standard
identity relates R to R.
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'Permanent address.
~Without the restriction to polynomial actions we could allow

actions of the form

d 4
(

pVA. 5~pCTTQ
/Lvk, 5cxpg 7 )

1/2

with L independent of the metric and connection.
A related development is found in S. W. MacDowell and F.

Mansouri, Phys. Rev. Lett. 38, 739 (1977). These authors
consider only an O(4) subgroup of O(5). Related articles are
P. C. West, Phys. Lett. 76B, 569 (1978); A. H. Chamseddine,
Ann. Phys. (N.Y.) 113, 212 (1978).

This term, upon reductions described in Sec. III, is a torsion-
torsion interaction of the form S„'Qqqe" s with S„'„the tor-

sion tensor.
4Theories of this kind have been described by A. Zee, Phys. Rev.

Lett. 42, 417 (1979). See also L. Smolin, Nucl. Phys. 8160,
253 (1979).

5Such a gauge choice can produce singularities in the O(5) gauge
fields if they have a nontrivial topology.

These are reviewed in F. W. Hehl, Paul von der Heyde, G. D.
Kerlick, and J. Nester, Rev. Mod. Phys. 48, 393 (1976).

A review which describes this is T. Eguchi, P. B. Gilkey, and
A. J. Hanson, Phys. Rep. 66, 213 (1980).

Reviewed by A. Zee, in report to the 1983 Coral Gables Confer-
ence (to be published).

9See the remarks by H. Pagels, in report to the 1983 Coral
Gables Conference (unpublished).


