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%"e consider the perturbative calculation of critical exponents in massless, renormalizable theories
having a nontrivial fixed point. In conventional perturbation theory, all results depend on the arbi-
trary renormalization scheme used. We show how to resolve this problem, following the "principle
of minimal sensitivity" approach. At least three orders of perturbation theory are required for
quantitative results. We give scheme-independent criteria for determining the presence or absence
of a fixed point in nth order, and discuss the conditions under which perturbative results might be
reliable. As illustrations we discuss QED with many flavors, and (P }q theory. In neither case do
we find a fixed point, in contrast to naive perturbative expectations.

I. INTRODUCTION

Consider a renormalizable theory, asymptotically free in
the ultraviolet region, which has an infrared fixed point
a =a*. (Or, alternatively, consider an infrared-free theory
with an ultraviolet fixed point. ) If a is small, it is tempt-
ing to think that perturbation theory will apply even up to
the fixed point, so that the physics in both ultraviolet and
infrared regions is perturbatively calculable.

There are two ways in which this idea might fail. (i)
There might be nonperturbative terms [e.g., exp( —a*/a)),
invisible in perturbation theory, which become large near
the fixed point, no matter how small a* is; or (ii) pertur-
bation theory might become internally inconsistent near
the fixed point. The first question cannot be addressed by
a perturbative analysis, and we shall have nothing more to
say about it: We assume here that such terms do not
arise. The second question, however, can be studied by
analyzing the structure of perturbation theory at or near a
fixed point. It is this issue that we propose to address
here. Our conclusion will be cautiously positive: Under
certain circumstances, it is perfectly possible that pertur-
bation theory yields believable results at the fixed point.

Central to this issue is the problem of the
renormalization-scheme ambiguity of perturbation theory.
While physical quantities are, in principle, independent of
the arbitrary choice of renormalization scheme (RS), this
invariance is inevitably spoiled by truncating the perturba-
tion series. Consequently, at any finite order, the results
of perturbation theory are ambiguous. For example, the
fixed point a* is supposedly the zero of the
renormalization-group P function, but the coefficients of
this function are RS dependent, except for the first two:
thus, at finite order, the position of the fixed point —even
its existence —can be altered by a change of RS. How,

then, can we tell whether a "fixed point, " found perturba-
tively, is likely to be real or spurious?

We stress that we are interested here in renormalizable,
and not superrenormalizable, theories. That is, we consid-
er the theory in the critical number of dimensions for
which the coupling constant is dimensionless. In many
critical-phenomena applications one is interested in a su-
perrenormalizable theory, and one employs the e expan-
sion, where e=d,„,—d. There is no scheme-dependence
problem in the e expansion: the results at each order in e
are independent of the RS choice. The point is that e is a
RS-invariant expansion parameter. However, there are
some critical-phenomena applications (e.g., Refs 3and .4),
as well as many high-energy physics applications, in
which one is interested in the renormalizable theory itself,
and mould like to employ perturbation theory. The prob-
lem is then that one's expansion parameter, the renormal-
ized couplant a, is RS dependent.

A philosophy for dealing with the RS-dependence prob-
lem has been given by one of the authors in Ref. 5 (hereaf-
ter referred to as I). The idea is that, since the exact result
is exactly RS independent, we want our approximate re-
sult to share this property, at least in an approximate
sense. That is, we should examine our approximate result
as a function of RS and ask where it becomes insensitive
to small variations in scheme. Only in this region does
the result have a chance of being believable. We mention
that this line of argument is supported by examples in I
and elsewhere.

The purpose of this paper is to develop the "optimiza-
tion" formalism of I to apply to the problem of calculat-
ing critical exponents, and other physical quantities, at a
nontrivial fixed point. This provides us with a framework
within which we can meaningfully discuss the questions
raised earlier. We find that the optimization conditions at
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the fixed point simplify to algebraic, rather than transcen-
dental, equations. A less-welcome result is that, in order
to obtain quantitative results at the fixed point, the for-
malism requires at least three orders of perturbation
theory. Because of this fact, we are unable to offer many
examples. We discuss two cases: (i) QED with many fla-
vors, where the conventional RS would indicate a fixed
point at third order. In our method this fixed point is
seen to be spurious, in agreement with the large-nf
analysis of Ref. 9. (ii) (P )4 theory, where we find that,
even though the first two terms of the P function have op-
posite sign, there is no indication of a fixed point in third
order. This is in accord with various nonperturbative ap-
proaches. '

II. FORMALISM

A. Conventional approach

Consider the critical exponent y* of some particular
Green's function (correlation function) I = I (p;,p, a (p)).
Here p; denote the physical externa1 momenta, p is the un-

physical arbitrary mass scale introduced in the renormali-
zation procedure, and a (p) is the renormalized coupling
constant (couplant). 1 has an anomalous dimension de-
fined by

y(a) —=~ dI p dZr
I dp Z dp

I =Zi (a (p),p, cutoff)I b„,(p;, cutoff) .

We shall loosely call Zr the "wave-function renormaliza-
tion constant, " though strictly it is a combination of
wave-function renormalization constants appropriate to
the particular I in question.

The critical exponent y is the value of y(a) at the fixed.
point a =a', where a* is a positive zero of the P function,
P(a) being defined as

da p dZa

dp Za dp

where

a (p) =Z, (a (p),p, ,cutoff)ab„, (cutoff) .

{IfP has more than one nontrivial zero we shall be in-
terested only in the one closest to the origin, since we
presuppose our theory to lie in the perturbative domain
0&a &a';„.)

Since y* is a physically measurable quantity, it must be
renormalization-group invariant. This means that, if one
could somehow obtain y(a) and P(a) exactly, the value of
y(a) at a positive zero of P(a) would always be the saine,
irrespective of the particular scheme used to renormalize
the results. " However, the various intermediate quantities
l,y(a), P(a),a* are not invariant. [For example, with a
different coupling-constant renormalization a'=Z,'ab„,
=(Z, /Z, )a = f(a), the position of the fixed point is
moved to a ' =f(a').]

In the nth order of perturbation theory, the naive pro-
cedure for calculating y" is to first calculate

y'"'(a) =y,a +y,a'+ +y„a" (5)

P'"'(a)= —ba (1+ca+c2a + . . +c„ ia" ') (6)

B. The RS-invariant anomalous dimension

The quantity we propose to consider is

which describes the behavior of I under a homogeneous,
infinitesimal scaling of its momentum arguments. As we
shall show, A'r is RS invariant, even away from the fixed
point. Potentially a physically measurable quantity, W& is
really of more direct interest than y(a) itself. What we

from Feynman diagrams, then to find a' as the smallest
positive root of P'"'(a') =0, and finally to evaluate y'"'(a)
at the fixed point a =a*. In the calculation one can em-
ploy any renormalization scheme {RS). The difference be-
tween two RS's corresponds to a different choice for the
finite parts of the coefficients zi" and z,"in

Zr ——1+zr'a+zr'a + . +zr"'a",

Z =1+z'"a+z,' 'a + . +z,'"'a" .

While, in principle, the value of y should be independent
of the RS choice, this invariance property is spoiled by
series truncations in (5) and (6).

There are two effects here. First, away from the fixed
point, y(a) is not a RS-invariant quantity: it depends in-
trinsically upon the wave-function renormalization. This
dependence turns out to be proportional to P(a), and so, in
principle, it will go away at a =a*." However, the re-
quired factorization property is lost when the series is
truncated. Second, the absence of coupling-constant RS
dependence in y* is due to a subtle cancellation between
the RS dependence of a* and the RS dependence of the
coefficients of y and P. [Except for yi, b, and c, all the
coefficients in (5) and (6) are RS dependent. ] Again, this
cancellation mechanism is disrupted by the series trunca-
tions.

The resulting RS ambiguity makes perturbative results
difficult to interpret. For example, in one RS one might
find c„ i ~0, whereas, in another scheme, c„»0. So,
in nth order, one may find a P-function zero in one
scheme which is simply absent in another scheme. This
illustrates the seriousness of the RS-dependence problem.

To cope with the RS dependence we proceed in two
stages. First, we eliminate all dependence on the wave-
function renormalization Zr by shifting our attention
from the anomalous dimension y(a) to a closely related
quantity, Wr, which is RS invariant even away from the
fixed point. We can then apply the optimization" pro-
cedure of I to deal with the coupling-constant RS depen-
dence present in perturbative approximations to A'r.
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are doing, in fact, is simply to go back one step in the usu-
al RG procedure.

The relation beween &r and y follows from dimension-
al analysis, the only subtlety being the p dependence of a.
(For an elementary, pedagogical discussion of these issues,
see Ref. 12.) Ignoring a, I" depends only on the ratios
p;/p, and so we have

-I (p;,p, a)
a =rixea

Allowing for the p dependence of a we can convert this
into a total derivative, as in Eq. (1), and so obtain

P(a) dlA'r ——y— I da

We see that, at the fixed point, A r and y coincide.
The RS invariance of A'r is easily seen using (2):

b and c; are the P-function coefficients appearing in (6),
and A the p-independent Inass scale which enters through
the boundary condition on the P function. A given set
Ir, c; J corresponds to a particular choice of the finite
parts of the coefficients z," in (7), and so defines a
(coupling-constant) RS.

In the nth order of perturbation theory A'~ has the
forID

A'r"'(a(")) =y,a (1+r)a +r2a + . . +r„,a" '), (14)

where r; are obtained by Feynman-diagram calculations in
a given RS. The critical exponent y' is given by

s(n) ~(n)(a+(n))Q

in this approximation, where a*'"' is the smallest positive
root of

I~bare

dA
( "-)= I- 8ZI ~bare bare

0 " (a *'"')= —&a"(1+ca'+ c~a'2

+ ''+ca —)a (16)
The point is that the renormalization constant Z&, being
momentum independent, simply cancels out in Wr. Thus,
even though I itself is an intrinsically RS-dependent ob-
ject, its scaling behavior, as measured by A'I-, is RS in-
dependent and hence meaningful. To stress this simple
point we express ii as a theorem.

Theorem. The normalized derivative (Q/I )(dI /dQ)
=d(lnI )/d(lnQ) of any multiplicatively renormalized
function j. with respect to its external momentum argu-
ments (or any combination thereof) is RS invariant.

The proof follows from Eq. (11). [In gauge theories,
however, one must check that MI- is gauge independent;
i.e., independent of the bare gauge parameter, a possibility
not excluded by the proof in (11).' ]

The superscript (n) is used to denote "the nth-order ap-
proximation to. . . ." For brevity we shall often drop this
qualifier on a*, important though it is.

Due to the truncation, y '" is RS dependent; by per-
forming the above calculations in different RS's one will
end up with different values of y'"'. To deal with this
RS dependence, we must identify the RS dependence in r;
and in a*(")separately. The former follows from the self-
consistency condition that the A'r 's in different RS's can
differ only by terms which are formally higher order in a,
i.e.,

C. Qptamazataon

du(„")(a)
O( an+ ))

d(RS) (17)

We have now eliminated the problem of wave-function
renormalization dependence; it cancels out, order by order,
in A„. The second stage of our program is to deal with
the coupling-constant RS dependence of perturbative ap-
proximations to A'~. As explained in the Introduction,
our strategy is to study the RS dependence of the approxi-
mant and seek the point at which it becomes least sensi-
tive to RS variations; i.e., we are looking for

am~'
=-0,

Rs=.) ( Rs
(12)

7=b ln
A

which we shall call the "optimization condition. " Our
analysis thus follows the spirit of I. However, since we
are primarily interested in y —the limiting value of
A'I- —we can take advantage of certain simplifications
which occur at the fixed point.

The symbolic equation (12) can be given a concrete
meaning. As shown in I, the RS may be parametrized by
the set, of vazlables I x,c2,c3, . . . , c„)j, where

Here (RS) stands for the set of parameters tr, c; I. Thus
(17) leads to the following equations (see I) [for later use
we quote the results for the general case in which y(a)
starts at ordel & though for the present we are consider
ing only P= 1]:

=P
87

Br2 8r2=(P+ 1)r) +I'c,
87 BC2

—=(I' +2)r2+ (P + 1)r)c +I'cz,
87

r3(8+1)r(, —
BC2 BC3

etc. They may readily be solved, and the results can be
summarized as saying that the combinations



RENORMAI. IZATION-SCHEME AMBIGUITY AND PERTURBATION. . .

pi r——r—i /P,
P+1 Ppz=rz+Pcz—

2P P+1ri+ c

P
p3

——r3+ —c3
2

P+2 (P+1)(P+2)cz+ P 3Pz 2P
rz—

(19)

the fixed point, the r dependence of the couplant a disap-
pears, since it tends to the constant value a*. One has to
proceed to at least third order to see the beginnings of the
cancellation mechanism and to extract a meaningful re-
sult.

In third order we have

e(3) e(1+ gs+r A@2)

with (2—:a* being the root of

1+ca*+cza* =0 . (25)
etc., are RS invariant; the p; arise as constants of integra-
tion and hence are independent of I r,c;].

To find the RS dependence of (2* we simply need to ask
how the root of (16) changes if we vary one of the coeffi-
cients cJ. Differentiating, we find

—= —a' j+ '/[«*+2c2a*
Bcj

=y,a* [1+(2r,+c)a'], (26)

g(3) „ha*'
Bcz

= —y)a'3+y((l+2r)a*+3r2a ) (3) (27)

The approximant y*( ' depends on the two RS parameters
r and c2. Explicitly, using (18) and (20), we have

g(3)

+ ~ + (n —1)c„ ia*" ']
ej+2/B(n)

B(n) P{n)

da e

= —b(2*(1+2«'+ +nc„ ia " ') .

(20)

(21)

Our optimization condition is that these variations should
vanish in the "optimum scheme. " Equating (26) and (27)
to zero, together with the fixed-point condition (25) and
the constraint that p2 as given in (19) is a RS-invariant
combination, we can obtain the "optimized" values of the
scheme-dependent parameters r &,rz, cz,a, which are

I Ic+
Q

y ' )=y)a*(l+ria )

with

(22)

(23)

We can immediately see the difficulty with second order.
The only scheme dependence resides in r~, since both y&
and. c are RS invariant. The scheme-dependence cancella-
tion mechanism has not yet got going, and the approxi-
mant is a monotonic function of scheme: there is no sta-
tionary point where it is locally insensitive to scheme
changes. This is analogous to the situation in first order
in the general case away from the fixed point, where the
only scheme dependence is in a("(r). In second order one
normally has a (partial) cancellation between the r depen-
dences of a and r&. The trouble is that as one approaches

Note that it is not possible to assign an order in a* to any
quantity; the condition p™(a')=0 involves equating dif-
ferent powers of (2, and by using it we can alter the ap-
parent order in a' at will. The two parts of Eq. (20) illus-
trate this phenomenon.

It can easily be verified that the above result also fol-
lows from the general formula

()Q a ~J+z—:Pj(a)= bP(a) f d—x
[p(x) ]'

given in I, in the limit (2 ~a* in which p'") ~(a —a')B'").
Armed with these results we can now analyze the RS

dependence of the approximant y*'"' in (15) and (16). At
second order we have

1rz= —2 pz+-

cz = —Trz =3 pz+ 4a*

where a * is given by the quadratic equation

~ +cQ +3PzQ =0 . (29)

Putting all this together we can write the optimized result
for y, provided that a exists, as

g{3) g 7 1

yop( =y)(T ( 6+ 6« (30)

The practical procedure can be summarized thus: first
one needs to compute A'r and p to third order (this is the
hard part). This can be done in any RS that one finds
computationa11y convenient, though, of course, it must be
the same RS for both calculations. The coefficients y~
and c are already RS invariant, and from the others one
can compute the RS-invariant combination p2 of (19). It
is then trivial to solve (29) for a ', and hence to evaluate
y*.,',"from (30).

As we noted before, in a random RS we may or may
not find a fixed point, depending entirely on the scheme
label c2. Now, however, we have in (29) a RS-independent
criterion for whether third-order perturbation theory indi-
cates a fixed point, or not. Equation (29) has a root if
p2 (c /21. A positive root a * exists in the following two
cases:
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case (i): pp &0 alld c arbitrary,

case (u): 0&p2&c /21 and c &0.
(31)

~ + i6ca + ~(p2+ 4c )a +4a p3=0 (35)

fixed-point condition (33), and the expressions (19) for the
invariaIlts p2 aIld p3 we find, after some algebra, that

D. Fourth order and genersIizations

To illustrate the method further we briefly consider
fourth order, where we have

y*' '=yia'(1+ria +rqa* +r3a* )

with a' =a'( ~ being the root of

1+CD +C2Q +C3Q* =0.

(32)

(33)

We now have to consider three RS labels; z, c2, and c3.
Differentiating, and using (18) and (20) gives

+(4)
=yia* [1+(2ri+c)a +(3r2+2ric+c2)a* ],

B (I

+(4)
= —yia* (1+2ria*)

Bc2

If a * is too large, the perturbation approach becomes un-
reliable. If we require that a & 1, then we must have, for
case (i) p2& —(7+4c)/12; and for case (ii) c & ——,

' and

p2 & (4
(
c

i

—7)/12.
One may compare this with a naive guess which uses

only the RS-independent terms in (5) and (6):

V*=Tia*,
P(a')= ba' —(1+ca*)=0 .

In tins case, c & 0 indicates a nontrivial fixed point. In the
optimization approach, however, c negative is neither a
necessary nor a sufficient condition for a fixed point. Qn
the other hand, the naive guess y'=yi/

~

c
~

would be jus-
tified if p2- —c /4.

~I' yla (1+ria+r2a + (37)

for general values of P. [We assumed P= 1 until now, ex-
cept when specifying the invariants p; in (19).] The
third-order result is

g(4) —g p 249 13 —g 1 1

yop( =yia i zs6+ 64ca + (6(p2+ 4c )a

These two equations are the analogs of Eqs. (29) and (30).
They determine the optimized fourth-order result for y'
in terms of RS-invariant, calculable quantities.

It is straightforward to continue to still higher orders,
though we are unable to give explicit formulas for the
general, nth-order case. General expressions for Grill)~
and Bri/Bcj are given in I, but no explicit formula for the
nth-order invariant p„ is known.

I.et us suppose that we do find a solution to (29), (35),
etc., and so obtain a result for y*,~,

"', in some particular ap-
plication. Under what circumstances can we believe the
result? As usual with any approximation method, one can
examine how much the results change from one order to
thc Ilcxt. Only 1f thc I'csults appcaI' to bc setting dowIl
can one have confidence that one is getting reliable results.
We emphasize that this is an essentially numerical matter;
comparing the numerical result of y*'"' with that of
y '"+", so as to obtain a numerical estimate of the error.
It would be dangerous to use formal considerations based
on "orders in a," since, as we mentioned earlier, that
concept is meaningless.

We conclude this section by quoting the formulas for
the general case in which Wr(a) has the form

+yi(1+2r, a*+3r2a* +4r3a* ) g(4) (34)
(2P'+ 3P +2), (P +2)

(38)

g(4)

BC3

+yi(1+2ria +3r2a* +4r3a* ) (~g(4)

gp

yopi = [(2P +3P+2)+P ca'], (39)

Requiring these expressions to vanish, together with the
which generalize Eqs. (29) and (30), respectively. The
fourth-order result is

P (24P'+77P'+ lOOP +48) P (4P'+6P +3) . P (P +2)
24(P+1)' 4(P+1) (P+1)

y*p, ' —— [(72P +231P +300P+144)+12P(4P2+6P+3)ca +24P(P+1)p2a ],
48(P+ 1)'(P +3)

(41)
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where

P
P2 —P2+ 2(P+1)' . (42)

where x—:—q /m . We shall make use of the calcula-
tions of de Rafael and Rosner, ' performed in the on-shell
scheme. Following their work [cf. their Eq. (2.14)] we
may write

We should emphasize that our procedure is no more
and no less than the infrared (ultraviolet) limit, in a fixed-
point theory, of the optimization procedure of I. That is,
we can imagine calculating the quantity Ar at a finite en-

ergy scale Q and optimizing the approximation by the
method described in I. In the limit Q~O (Q~ ao ), given
that we have a fixed-point theory, one would obtain a lim-
iting result which coincides with the one obtained here.
The important point is that the optimization conditions
greatly simplify at the fixed point, becoming algebraic,
rather than transcendental, equations.

II(x,a) =(A ~+B&lnx)a +(Az+B2lnx)a

+(A3+B3lnx+C3ln x)a + . (49)

and also the constraint

if we neglect terms that vanish in the ultraviolet limit—q /m ~oo. Reference 14 gives numerical values for
all these coefficients (except for A3, which we do not
need), and derives the relationship to the P-function coef-
ficients:

b =2B)& c =B2/B)& c2" B3/B——(+A2 &

III. ILLUSTRATIVE EXAMPLES

A. QED with many flavors

As a first example, we consider QED with nI integer-
charge fermions, in third-order perturbation theory. The
coefficients of the P function are

2C3+B)B2——0 .
Evaluating

~n=1'~&(I+&~&2 +&p~'+ ),
one finds from (48) and (49}that

2
y) ———2B) ——

3 nf,

(51)

(52)

2b = —Tn),
3c 4

(43}
B2/B) ———A )

—B)lnx,
r2" =(A

&

—A2 —A &B2/B)+B3/B) )

(53)

which are RS independent, and

c2~ ————,', (112n/+9),

c2 = —9, (22n/+9),
(44)

in the on-shell' and minimal-subtraction (MS) ' schemes,
respectively. Naively, one would look for a fixed point as
a positive root of the equation

1+ca*+c2a* =0 . (45)

Sion ———2 I in[1+ II(x,a)]j,d lnx (48)

In either RS one would find such a root, since c2 is nega-
tive. Moreover, for large n/, the root is given by

a*=( ', ny)
' —(on-shell),

(46)
a*=( ,", ng )

'~ —(MS),

and so a' becomes small for large n~. Thus, one would be
tempted to conclude that there is a nontrivial ultraviolet
fixed point in the perturbative regime, when n~ is suffi-
ciently large.

We now show that, according to our method, this fixed
point is a spurious one. For this purpose we consider the
inverse photon propagator

( qg&„+q&q„)—f 1+II(—q /m, a)]+gq q, , (47)

where a=e /4n =a/n, and g is the gauge parameter.
The self-energy function II is g independent. We define
the corresponding RS-invariant anomalous dimension as

+2(A&B, B2+C—3/B, )lnx+B, ln x .

From these results it is straightforward to construct p2, as
defined in Eq. (19) (with P= 1). The lnx terms all cancel,
leaving

p2 ——2' q+2c2 —232 —
4 c

Using c,c2", quoted above, together with'
53 ) ———,ng,

Az ——[ —,', —g(3)]n/,

where g(3)= gP n = 1.202. . . , one obtains finally

p2 ————"+[2g(3)——'„' ]n/

=—1.453+0.487n) .

(54)

(55)

MS l. 5
3 nyL —

9 nf + 4

9 nf L +( 27 nf g n/)L +—„n/
+ [2g(3)——",, ]n/ ——,', ,

where L =In(p /Q )+in4m —yE, where yE is the Euler
constant, and p is the arbitrary unit of mass. Construct-
ing p2 [Eq. (19)] from the MS quantities, one observes that
the L, terms cancel, leaving exactly the same result as
quoted in Eq. (55). This explicitly verifies the RS invari-
ance of p2.

As a check on our results we have also constructed p2
from the minimal-subtraction (MS) scheme calculations of
Ref. 15. These give
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Since c = —, &0, a fixed point exists only if pz(0, ac-
cording to the discussion near Eq. (31) of Sec. IIC.
Therefore, for n~ & 3 we find no fixed point. (For nf = 1

and 2 we find a'=0.917 and 1.395, respectively. Since
these values are rather large, our perturbative approach is
not reliable, and the reality of these fixed points is doubt-
ful. ) For large nf, since pz becomes large and positive, our
fixed-point criterion, Eq. (29), becomes increasingly em-
phatic that there is no fixed point. This is in sharp con-
trast to the naive expectation of Eq. (46). The spurious
fixed point (46) is merely an artifact of an inappropriate
RS choice.

Our view is confirmed by a recent analysis of the large-
nf limit in QED, which shows that there is indeed no
fixed point at large nf.

17
C 9

=, ' +4/(3),
(57)

B. (P4)4 theory

Our second example is the massless P theory in four
Euclidean dimensions. We define the couplant to be
a =A, /16m, where X is normalized such that the in-
teraction Lagrangian in 4—e dimensions is
= —(A((4'/4!)P + counterterms. With this definition, the
p-function coefficients are given by'

b= —3,

point. To this end we consider the minimally subtracted
four-point function I' ' at the syrnrnetric point of its
external momenta p; (i = 1,2,3,4)

p; p, =g'(&;, —
4 ) . (58)

The corresponding RS-invariant anomalous dimension (8)
is given by

A'r ———2Q lnl ' )(Q /p, (z), (59)

where I ' '—= (A, /4!) 'I ' '. The coefficients of the ordi-
nary anomalous dimension

) p inl ( ) y( )g+@( ) z+ (4) 3+ . (6())
dp

are known

3(4)

(4)
r2 =6

) 3"'= —[ ",'+»P3)]-
(61)

To obtain the coefficients rI and r2 in the expansion of
Ar [see Eq. (14)]& one needs to compute the "correction
terin" —p(a)d lnI /da [see Eq. (10)]. This requires the
order-e' (order-e ) terms in the first- (second-) order dia-
grarns, which can be obtained from the explicit expres-
sions for the one- and two-loop diagrams in Ref. 17. We
obtain

where the value of cz has been calculated in the MS
scheme. The negative value of c might seem to indicate,
at second order, a nontrivial fixed point at a*=—,', =0.53.
However, we shall see that in third order there is no fixed where L =1n(p /g ) + ln4~ —yE, and

(62)

y ' yZ (1—yZ)+y (1—y)(Z +3/4)
o (1 y) o Z(1 —Z)

=—2.410 .
(63)

pz= 3z4 rr +6Jz+8g(3)—9 ~ 79 (64)

Since this exceeds c /21=0. 17 we conclude, from the
analysis leading to Eq. (31), that there is no sign of a fixed
point in the third order of perturbation theory. This is in
agreement with various nonperturbative approaches to
(P")4 theory, which also find that the theory has no fixed
point. '

IV. CONCLUSIONS

We have applied the principle-of-minima1-sensitivity
criterion to deal with the RS ambiguity in perturbative

Computing p2, we observe the expected cancellation of the
I, terms, leaving

calculations of anomalous dimensions at a nontrivial fixed
point. Our analysis gives a criterion, involving only RS-
invariant quantities, for whether finite-order perturbation
theory indicates a fixed point or not. We see no sign that
perturbation theory becomes internally inconsistent as one
approaches the fixed point. (Of course, it could be that
nonperturbative terms become large, but there seems no
reason to suppose that this is inevitable. ) Consequently,
we believe that there may exist theories, free in the ultra-
violet (infrared), for which perturbation theory remains a
reasonable approximation even in the far infrared (ultra-
violet). A potential candidate for such a theory is QCD
with 16 massless flavors, ' An example of an infrared-
free theory with an ultraviolet fixed point is P in three di-
mensions, at least if the O(N) symmetry is sufficiently
large. '9
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Our analysis shows that, while important simplifica-
tions occur at the fixed point, one unfortunately needs at
least three orders of perturbation theory before meaning-
ful results can be obtained. This fact prevents us from ap-
plying the method to the interesting cases mentioned
above. Our examples have been of a somewhat negative
character; showing that one does not expect a fixed point
in large-n~ QED or in (P )4 theory. However, these exam-
ples are of some interest in that more naive perturbative
ideas might well have led to the opposite conclusion.

Undoubtedly, with improving techniques and increasing
computer power, many more higher-order results will be-
come available in the future. The method developed here
will then be important for interpreting these results, and
disentangling the physical content from the RS artifacts.

ACKNOWLEDGMENTS

This work was begun while one of us (P.M.S.) was a
CERN fellow. J.K. would like to thank the CERN theory
division for their hospitality during his visit. One of us
(J.K.) was supported in part by the Bundes'ministerium fiir
Forschung and Technologie. S.S. was supported in part
by the Verbundforschung des Bundesministeriums fiir
Forschung und Technologie. This research was supported
in part by the University of Wisconsin Research Commit-
tee with funds granted by the Wisconsin Alumni Research
Foundation, and in part by the Department of Energy
under Contract No. DE-AC02-76ER00881.

E. C. G. Stuckelberg and A. Peterman, Helv. Phys. Acta 26,
449 (1953); M. Gell-Mann and F. Low, Phys. Rev. 95, 1300
(1954); N. N. Bogoliubov and D. V. Shirkov, Introduction to
the Theory of Quantized Fields (Wiley-Interscience, New
York, 1959).

K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240
. (1972); K. G. Wilson and J. Kogut, Phys. Rep. 12C, 75
(1974).

E. Brezin, J. Phys. Lett. (Paris) 36, L51 (1975) and references
therein.

4R. P. Van Royen, Phys. Rev. B 13, 4079 (1976); M. J. Holwer-
da, W. L. van Neerven, and R. P. Van Royen, Nuovo Cimen-
to 52A, 53 (1979); 52A, 77 (1979); P. C. Bemelmans, H. N.
Gortz, R. P. Van Royen, and J. C. Wachelder, Nijmegen Re-
port No. THEF-NYM 82.10, 1982 (unpublished).

5P. M. Stevenson, Phys. Rev. D 23, 2916 (1981); see also Nucl.
Phys. B203, 472 (1982).

W. E. Caswell, Ann. Phys. (N.Y.) 123, 153 (1979); J. Killing-
beck, J. Phys. A 14, 1005 (1981); J. M. Rabin, Nucl. Phys.
B224, 308 (1983); S. K. Kauffmann and S. M. Perez, Univer-
sity of Cape Town report, 1983 (unpublished).

7P. M. Stevenson, Phys. Rev. D 24, 1622 (1981); Nucl. Phys.
B231, 65 {1984).

J. Kubo and S. Sakakibara, Z. Phys. C 14, 345 (1982); see also
S. Sakakibara, Mainz Report No. MZ-TH/83-04, to appear in
the proceedings of the VI Warsaw Symposium on Elementary
Particle Physics, Kazimierz, Poland, 1983 (unpublished).

A. Palanques-Mestre and P. Pascual, Barcelona Report No.

UBFT 83-0417, 1983 (unpublished).
B. Freedman, P. Smolensky, and D. Weingarten, Phys. Lett.
113B, 481 (1982); J. Frohlich, Nucl. Phys. B200 [FS4], 281
(1982) and references therein.

~See, for example, D. J. Gross, in Methods in Field Theory,
edited by R. Balian and J. Zinn-Justin (North-Holland, Am-
sterdam, 1976); A. Peterman, Phys. Rep. 53, 157 (1979).

~2P. M. Stevenson, Ann. Phys. (N.Y.) 132, 383 (1981).
~3We remark that the quantity exp[ — y(a(p'))dp'/p']I,

sometimes claimed to be "RG invariant, " is only p indepen-
dent, and not fully RS independent.
E. de Rafael and J. L. Rosner, Ann. Phys. (N.Y.) 82, 369
(1974).

~5K. G. Chetyrkin, A. L. Kataev, and F. V. Tkachov, Nucl.
Phys. B174, 345 (1980); W. Celmaster and R. J. Gonsalves,
Phys. Rev. D 21, 3113 (1980).

~6A. A. Vladimirov, D. I. Kazakov, and O. V. Tarasov, Zh.
Eksp. Teor. Fiz. 77, 1035 (1979) [Sov. Phys. JETP 50, 521
(1979)].
D. Amit, Field Theory, the Renormalization Group, and Criti-
cal Phenomena (McGraw-Hill, New York, 1978).
A. Zee, Phys. Rev. Lett. 48, 295 (1982). Note that this work
does indeed make the assumption that perturbation theory is
valid in both ultraviolet and infrared regions.
P. K. Townsend, Nucl. Phys. B118, 119 (1977); T. Appelquist
and U. Heinz, Phys. Rev. D 25, 2620 (1982); R. D. Pisarski,
Phys. Rev. Lett. 48, 574 {1982).


