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Acceleration radiation in interacting field theories
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Using the path-integral formulation of quantum field theory, we generalize the result that an ac-
celerated observer sees a thermal spectrum to a large class of interacting field theories.

I. INTRODUCTION S =J d"x [—,'P ——,'(VP)' —V(P)] (2.1)

It is widely believed that an observer accelerating uni-
formly in the vacuum of a relativistic quantum field
theory behaves as if he were in a thermal bath at a tem-
perature T =a/2m where a is the observer's proper ac-
celeration. ' This result is easily shown for free field
theories. For interacting field theories the proofs have re-
lied on the claim that Green's functions which are period-
ic in imaginary time are thermal. Although the converse
is certainly true the proof that periodicity necessarily im-
plies thermality is somewhat obscure to us. We will there-
fore present a more direct (although somewhat formal)
proof for a large class of interacting scalar and fermionic
field theories.

We consider a. relativistic quantum field theory in flat
space-time with coordinates (x,y, z, t). One can describe
the physics of an accelerated observer by transforming to
Rindler coordinates

x =r coshaq, t =r sinhag

defined on the Rindler wedge

with V(P) a polynomial function of P. In Rindler coordi-
nates for the half space r ~0,

x~ ——r coshag, t =r sinhag, (2.2)

the action becomes

S+ —— ar.dr dg dxzr&0 2(ar)

'2
1 BP
2 87

2

where xz denotes the x2, x3 coordinates. A Legendre
transformation of the action yields the momentum II~
canonically conjugate to P in Rindler coordinates:

0 & r & Do, —ao & g & ao .
The line element in these coordinates is given by

Gs = —0 r cE'g +t& +Gp +Qz

1 BP
ar Og

(1.2) and the Rindler Hamiltonian

(2.3a)

An observer at fixed r,y, z measures a proper time
d~=ardg and has a proper acceleration 1jr. The ob-
server at r =1/a measures dv =dg and has a proper ac-
celeration a. The Hamiltonian for a quantum field theory
in Rindler coordinates will generate translations in g.
Thus for the observer at r =1/a, it will generate transla-
tions in proper time. The Rindler Hamiltonian is thus a
physical Hamiltonian for the observer at r = 1/a ac-
celerating with a proper acceleration "a."

In Sec. II, we consider a scalar field theory and show
that any Green's function calculated by the Rindler ob-
server using the Rindler Hamiltonian at a temperature
T =a /2n. is the same as the corresponding vacuum
Green's function of the Minkowski observer at T =0.
This result is extended to fermion field theories in Sec. III.
In Sec. IV, we consider a theory with spontaneous symme-
try breaking. We show that even if there exists a critical
temperature above which the symmetry is restored, no
phase transition is expected as a function of acceleration.

II. SCALAR FIELD THEORY
I.et us start by considering a scalar field theory with an

action
FIG. 1. Under the transformation (2.9) the region Ro is

transformed into the region R.
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(II ) 1 apH =f drdx~(ar) +-
r&0 2 2 Br

2 (0~($(x(,t)) ~ P(x„,t„)),~0)

+ —,'(V'gP)'+ V(P) . (2 3b)
Tr[e -"(4(r„rl, ) 4(r„,rl„))„]

Tr(e ~ )

(2.4)

Since g translation corresponds to a boost in Minkowski
space-time, this Rindler Hamiltonian is simply a times the
boost generator.

We wish to show that in the Minkowski observer's vac-
uum state, the Rindler observer sees a thermal spectrum
with a temperature T =a/2m. . We shall do this by show-
ing that all vacuum Green's functions between space-time
points within the same Rindler wedge in Minkowski coor-
dinates are the same as the (real-time) Green's functions of
the Rindler observer in thermal equilibrium at tempera-
ture T =a/2n, i.e., we shall show

ZR(P) Tr( PH— (2.5)

for arbitrary p. The functional integral form for Z is
given by

with pa =2'. Here ( ), and ( )z denote time and g order-
ing, respectively. (r, ri ) represents the same space-time
point as (x~, t~) but in Rindler coordinates,

~

0) denotes
the Minkowski vacuum state, and Tr denotes a trace.

Let us start by considering the partition function

P (II')' 1 a 1, . „aZ (p)=NO f DII Dp exp —f dr f dr dxj (ar) +— +—(Vqp) + V(p) +iII

(2.6)

Here No is a normalization factor, and the functional integration is to be done over fields P satisfying the periodic boun-
dary conditions p(r=0)=p(r=p). The II integral is Gaussian and the result is obtained by setting

H
—t ay
ar B~

Thus

Z"(p) =N, f Dp exp —f dr f dr dx~ . — +(ar) — + + V(p)
P ay 1 ay (~A }'

p(r=o) =p(~= p) o r&o 2 (ar) ar 2 Br 2

(2.7}

:—E& D exp —SE (2.8)

We now perform a change of variables

x, =r cosa~, t, =r sinai. . (2.9)

We must emphasize that this is simply a change of integration variables and not to be interpreted as a change of coordi-
nates. If we want the transformation to be single valued, we must have pa &2m. . The region r &0, 0(r&p is
transformed into the shaded region R shown in Fig. 1. One finds

Z"(p)=N& f Dpexp —f dx, dt, dx, (2.10)

When pa =2m. , the region R is the full x„ t„xz space, the periodic boundary conditions become consistency conditions
at a~=2m, and we have

(&4p)Z (p)=N~ fDpexp ' —fd"x + V(p) =N~ fDp exp[ SE] . —
2

(2.11)

This is simply the Euclidean generating functional for the theory in the inertial coordinates. We thus have

Tr(e ~ ~ ~~ )=N2 lim Tr(e ~r) —N2eT~ OO T~ OO

(2.12)

where Eo is the energy of the Minkowski vacuum. The free energy at p=2m. /a in Rindler coordinates is thus intimately
related to the ground-state energy of the Minkowski vacuum.

We can now show the equality (2.4) of the Green's functions. Consider first

~=T [ -' "ll'(-, ) . ll'(-.„)y(-.„,) - ~ ~ y(-*.)] (2.13)
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with all the operators defined at g =0. Following the steps leading to (2.8), we find

X =No fDQDII~exp —f dw f dr dxz (ar) + — +—(VzP) + V(P)
gn (11')' 1 ay

5J(ri, 0) . . 5J(r„,O) 0 I'&0 2 2 Br 2

+ iII J(—r, ~)II (r, r) .
a1-

XP(r„„o) . ~ y(r, o) (2.14)

Upon perforxning the Cxaussian integration over II, this leads to
2

K =N, fDP exp —f dv f dr dxz +iJ +ar — +—(Vig) + V(P)
gn P 1 BQ . 1 BP 1

5J(r, O) 5J(r„,0) 2ar Bz 2 Br 2

XP(r„+i,O) . $(r,O) J (2.15)

We now perform the change of variables (2.9) with Pa =2~. We use the fact that J is only relevant at ~=0 and that

ay 1 ay
Bt g =0 ar Bw =0

IC =Ni fDP exp ~ —d"x — +iJ + — + V(P)
5" ay .-' 1 (Vy)'

5J(ri, 0) . . 5J(r„,O) 2 Bte 2 2

XP(r„+i,O) . . P(r, O) (2.16)

with J=J/ar. Now

5J( r, g)
a(x, t)
B(r,g) 5J(x,y, z, t)

where
i
B(x,t) /B(r, g )

i

=ar is the Jacobian of the transformation to Rindler coordinates. Thus 5/5J ( r, 7) )
=5/5J(x, y, z, t). It then follows that

K~ D DIIexp — d x + +V +iII II rl0 . . . II r„,0 r +l0 . . r, 0
112 ( Vf)2
2 2

pHRDividing (2.14) by Tre ~ and (2.16) by Tr(e )(T~ co ), we conclude that

(2.17)

HRTr e ~ II (r&) P(r~)

Tr(e —tt~" '
(0~ II(r, ) . . P(r ) 0) .

Pa =2m
(2.18)

Equivalently for any function F(II,Q) which can be expanded in a Taylor series, we have

Tr(e PH ) Pa =2n—

with II, P, and II defined at t =g =0.
The next step is to prove that

Tr[e- "( (r„n, ) . ~ (r. no))„ =(Oi(P(x|,ti) . . P(x„,t„)), iO) .
Tr(e -t'~")

The left-hand side of Eq. (2.20) is equal to

(2.19)

(2.20)
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Using (2.19) this becomes

(2.22)

But H (II,Q) is just a times the boost generator, so
that P( rJ,O) is mapped to P( xJ, tz ) with xJ ~ I ~

rj-—
~coshag, tj ——rjsinhag. Thus

(2.23)

To complete the proof, we need to show that g ordering
and t ordering are equivalent. The time ordering matters
only if one space-time point lies within the future null
cone of the other since the fields commute for spacelike
separations. Since both q and t increase everywhere
within the future, null cone of any point, as long as we re-
strict all points to lie within the same Rindler wedge, g
ordering and t ordering will be the same. This completes
the proof of (2.4).

We have thus shown the equivalence of the physics seen
by a Minkowski observer in his vacuum state with that
seen by a Rindler observer at temperature T =a/2m.
Only an observer at position r =1/a accelerates with
proper acceleration a. And only for this observer is g the
proper time. Thus the observer accelerating with accelera-
tion a sees a thermal spectrum at T =a /2m.

III. FERMIONS

tiperiod&c boundary conditions. We must show that the
transformation (2.9) still leads to consistency on the posi-
tive x, axis.

Consider the free fermion field theory with an action

S =fd x g(x)(iy. B—m)g(x) . (3.1)

X'=y'coshag —y sinhag,

X =y coshag —y'sinhag .
(3.3)

It is useful to change the spin basis by performing the
transformation

The generalization to interacting theories is straightfor-
ward.

In Rindler coordinates for the half-space r &0 the ac-
tion becomes

S+ ——f ar dr dg dxzg(x)

Fermion field theories require special treatment for two
reasons. First of all, they have nontrivial I.orentz
transformation properties (as, of course, do all theories of
higher-spin particles). In addition, the functional integral
representation for the fermion partition function [analo-
gous to (2.6)] requires integration over fields with an

ag . agcosh +X sinh
2 2

a'g . a'g
cosh +X sinh

2 2

with X=y y'. Equation (3.2) now becomes

(3.4)

S+ ——f ar dr dgdxzg(x) y +iy' +iy Vjg mg+ — y—'Pr)0 ar 87) Br 2r

The gy'f term comes from the extra term in the derivative BfjBg due to the transformation (3 4).
The momentum II canonically conjugate to g in Rindler coordinates is

Ilg ift——
leading to the Hamiltonian

(3.5)

(3.6)

Hg ———f ar dr dx~g(x) iy +iy p~y my+ y'y—r&0 Br 2r

with the equal-time anticommutator

Ig (x),gp(y)I =5 p5' '(x —y) .

Now consider the partition function in Rindler coordinates:

Z (P)=Tr(e ") .

Using standard results on fermion path integrals, (3.9) can be written as
r

Z (P)- f Dg(x, r)Dt/r(x, w)exp I f dr f dr dxq i II +H~
P

(3.8)

(3.9)

(3.10)
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with II =i fy and where —denotes equality up to an overall normalization factor. Using (3.6) and (3.7), Eq. (3.10) be-

Z~(p)- f DQDgexp —f d~ f ar dr dx~g(x) - +iy' +iy Vz.p m—f+ y'g
P

(3.12)

D D exp —S~ (3.11)

where S~(p) is the Euclidean action for S+ of Eq. (3.S) on the imaginary-time interval (O,p). Note that p and f are in-
dependent variables. We can thus make a change of variables in the integral (3.11):

QV . . QV QQ . a+
g(x)—+ cos +i X sin t/r, P(x)~P(x) cos—+i X sin

2 2 2

Equation (3.11) then becomes

Z~(p)- fDQDpexp —f dr far dr dxzg(x) —X +iX ' +i@ Vzp mp—
0 ar Br Br

(3.13)

X =y cosa7.—Ey sinai, X =y cosa& —iy sinai,0 0 ~ 1 1 1 ~ 0 ~

and with boundary conditions

(3.14)

P(~=0)= —'cos i X sin —P(v =P) .ap . . ap
2 2

(3.15)

When pa =2~, the antiperiodic boundary conditions on g of Eq. (3.11) become periodic boundary conditions due to
(3.15). This is crucial since the periodicity condition, in the Euclidean inertial path integral, is simply a consistency con-
dition at ~a =2m. The properties of the field under rotations by 2n. have combined with the antiperiodicity in the fer-
mion path integral to give this consistency.

We now perform the coordinate transformation [as we did in Eq. (2.9)]:

x~ = p' cosa'T~ t, =r sina~ . (3.16)

When Pa =2~, we obtain

Z (Pa =—27r)- J DQDgexp —f d x P(x) y
' +i@' +i@ .V~/ mf—08+ . ~

8
Bt, Bx,

(3.17)

where SE is the Euclidean action for the action (3.1). Thus the partition function of the Rindler observer at temperature
'1=a/2m is proportional to the Euclidean generating functional for the inertial observer so that

Z (Pa=2m)=Tre " ~ Tre
—PH~

(3.18)
T—+ oo

where 0 is the Minkowski observer's Hamiltonian.
The arguments of the preceding section are easily generalized to relating the real-time thermal CJreen s functions in

Rindler coordinates to the Careen s functions in Minkowski coordinates. Gne finds as in (2.4)

Tr[e "((U(q, )g(r, q, )) ~ . (U(g„)P(r„,q„)) )„]
(0

~ (P,(x(, t() . . g (x„,t„)),
~

0) =
Tr(e ") (3.19)

where (rj, gJ ) is the same space-time point as (Xj., tj ) but in Rindler coordinates and where U(qj) is the 4X4 matrix
representing a boost with rapidity agj. .

We thus conclude for fermions as well, that an observer accelerating in the vacuum state of Minkowski space is in a
thermal bath at temperature T =a/2~.

The generalization of this result to theories of interacting ferrnions is straightforward. Consider, for example, the ac-
tion

S =SF(g,p )+Se(p) —g fd"x p(x)p(x)p(x), (3.20)

where SF is the free fermion action of (3.1) and Se is the boson action of (2.1). The Rindler Hamiltonian is given by
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HR H——F(Q, II&)+HR(Q, II~)+g fd x p(x)p(x)p(x)

with HF given by (3.7) and HR given by (2.3b). The partition function for the Rindler Hamiltonian is then

(3.21)

" -f„.„„,„D&DyDyexp —SE'(p)F+SE(13)R+gf deaf ardrdx1$(x)p(x)p(x)
Q(v =0)=P(z=P)

(3.22)

with SE(p)F and SE(p)R given by Eqs. (2.8) and (3.11), respectively. Now perform the transformations (3.12) and (3.16).
When pa =21', one finds

Tr(e )=f, , DQDQDpexp — (SE)F+(Sz)R+gfd x g(x)g(x)p(x)
boundary conditions

D D D exp —SE

with SE the Euclidean action corresponding to (3.20). The
result can similarly be proven for the Green's functions.
It is easy to check that interaction terms of the form
gy gp, (gg), fy"1tjgy&g, and gy"Qd&p also lead to the
result that the accelerated observer in thermal equilibrium
at T =a/27r measures the same Green's functions as the
Minkowski observer in his vacuum state. We expect the
result to hold for any Lorentz-invariant interaction.

IV. THEORIES %'ITH MULTIPLE VACUA

In the previous sections, we have shown that in a large
class of interacting field theories, an accelerated observer
sees a thermal spectrum of radiation. An interesting ques-
tion arises when we consider a theory in which spontane-
ous symmetry breaking is expected. For example, consid-
er the scalar field theory with Hamiltonian

H =fd x + +V(P-) (4.1)

with V(P)= —m P /2+A, Q"/4. The Hamiltonian H is
symmetric under P—+ —P. However, this symmetry is ex-
pected to be spontaneously broken. There are two vacua

~

+ ) and in the tree approximation

is allowed to approach 0. In the tree approximation, one
f111ds

' ]I/2

11m (0
~
y(x)

~

0) =+
J~0+

and, in fact

lim (0 J)=~+) .
J—+0+

(4.5)

Now consider an observer accelerating in the vacuum

~
O,J). For fixed J&0, the vacuum is unique and the ob-

server will see a thermal spectrum. In fact, if P(J) is the
vacuum expectation value of P for fixed J, then the ob-
server will find

Tr[e P(x )]/Tr(e ) =P(J) . (4 7)

If we let J~O, for example, then the Minkowski vac-
uum approaches

~
+ ) and P(J)~+(m /A, )' (in the tree

approximation). All the Green's functions of the Rindler
observer approach the Minkowski Green's functions in the
vacuum

~
+ ). (In particular (P)&0.) We conclude that

the results of Secs. II and III apply to this cas~ as well as
that there is no phase transition as a functioj. accelera-
tion, since

(4.2)
lim Tr(e "P)/Tre =(+

~ P ~

+)~0J~0+ (4.&)

It is believed that at high temperature this symmetry is re-
stored so that for T & some critical temperature T„

(P(x)) =Tr[e ~ P(x)]/Tre ~~=0. (4.3)

We would like to know whether the results of Secs. II
and III apply in the case of multiple vacua. Furthermore,
if an observer accelerates with an acceleration a -2ml„
does he see a phase transition?

A field theory which has multiple vacua by virtue of a
symmetry such as P~ —P can be dealt with by introduc-
ing a symmetry-breaking term (analogous to putting a
spin system in a magnetic field) such as

K~K+ fd x J(x)P(x) . (4.4)

For fixed J&0, the theory has a unique vacuum. The
properties of the theory are studied for fixed J and then J

for all values of the acceleration. Recall that the ac-
celerated observer sees himself not only in a thermal bath
but also in a gravitational field. Furthermore, due to the
gravitational field, the local temperature changes signifi-
cantly over a distance of the order of the peak wavelength
in the thermal distribution. Thus one does not expect the
same behavior as in a thermal bath in flat space-time.

Wc have used the path-integral formulation of field
theory to show that for a large class of interacting scalar
and spinor field theories, an accelerated observer sees a
thermal spectrum of particles. It is straightforward to ex-
tend our method to prove the result for gauge theories.
Wc bclicvc that oui method can bc generalized to yield a
proof for any Lorentz-invariant field theory.
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From Eq. (2.4), one sees that we have proven equality of
the Green's functions for the two observers. %"e have not
shown that this implies equality of the density matrices

~R[e ~ and e (T~ao)) for the two observers. How-
ever, one can deduce from our proof that any uniformly
accelerated detector which couples to the fields via P, II,
or any of its derivatives will be thermally excited. This is
certainly a reasonable property to expect of a detector. (In
fact, we do not know how to construct a detector which
does not couple in this way. )

Finally, we note that the results of this paper should not
be affected by renormalization of the theory. The easiest

way to see this is to note that the result holds in any num-
ber of spatial dimensions d. Thus any Feynman graph
regulated using dimensional regularization in the Rindler
system at temperature T =a/2m will be equal to the cor-
responding regulated T=0 graph in Minkowski space.
Since all counterterms are Lorentz invariant, the renor-
malized graphs should be equal as well.
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