
PHYSICAL REVIEW D VOLUME 29, NUMBER 8 15 APRIL 1984
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We consider stochastic variational principles for random processes taking values on a discrete
configuration space. For a suitable time-reversal-invariant choice of the stochastic action, the re-
sulting programming equations can be related to the Schrodinger equation for a discrete system. If
the discrete system is considered as an approximation of a continuous system, then the limit repro-
duces Nelson's stochastic mechanics and allows one to derive the assumptions on the random noise
acting on the system. In fact, the variational principle also gives information about the osmotic
behavior of the process. Finally, we show that there are also critical processes whose behavior can
be interpreted as a model for quantum measurement, because they relax in time to mixtures of pro-
cesses. Therefore, stochastic variational principles can provide a very simple conceptual model
simulating quantum behavior, both from the point of view of unperturbed time evolution and of the
measurement phenomena leading to wave-function collapse.

I. INTRODUCTION

In previous work' it was shown that stochastic varia-
tional principles for controlled diffusion processes can
provide a very simple basis for quantization of classical
dynamical systems, in the frame of stochastic mechanics,
originally introduced by Nelson.

This general scheme, extended to the quantum field
case (see, for example, Ref. 3), can be interpreted as a
physical motivation for the great success of probabilistic
methods in the study of relativistic quantum field theory.

The main objective of this paper is to extend the
methods of stochastic quantization to general quantum
systems. Therefore, we consider Markov random process-
es taking values on a discrete (finite or denumerable) con-
figuration space and introduce a suitable form of time-
reversal-invariant stochastic action. Compared with the
case of a continuous configuration space we cannot intro-
duce a priori hypotheses on the properties of the random
noise acting on the system. . In particular, we cannot write
stochastic differential equations for the controlled process,
isolating a regular-drift part and a Brownian-disturbance
part. On the other hand, in the discrete case the variation-
al principle also gives information on the osmotic part of
the process, so that no such a priori assumption is neces-
sary.

For a suitable choice of the stochastic action the pro-
gramming equations, coming from the variational princi-
ple, can be easily connected to the quantum Schrodinger
equation.

Moreover, in the case when the discrete system can be
considered as an approximation of a continuous system, of
the type considered in Refs. 1 and 2, it can be easily
shown that the processes corresponding to the discrete
system have, as a limit, the processes corresponding to the
continuous system, constructed according to the methods

of Refs. l and 2. From this point of view, the basic
background-field hypothesis of stochastic quantization
can also be considered as a result coming from the choice
of the stochastic action for the discrete approximating
system.

Beyond the solutions corresponding to the Schrodinger
evolution, the stochastic variational principle also pro-
vides other solutions corresponding to random processes,
whose behavior resembles, in this general stochastic
framework, the behavior of quantum systems subject to
measurement. In particular, the asymptotic time behavior
of these processes produces mixtures equivalent to those
resulting from wave-function collapse in the conventional
formulation of quantum mechanics. Here the collapse is
not instantaneous but corresponds to a time-asymptotic
relaxation behavior.

The organization of this paper is as follows. In Sec. II
we briefly recall the discrete form of the Madelung fluid
coming from the Schrodinger equation. This form is as-
sociated to a particular choice of canonical variables for
the Hamiltonian system provided by the wave function
and the evolution equation. These canonical variables are
very natural to consider in a frame where discrete random
processes and stochastic variational principles play a ma-
jor role.

In Sec. III we collect all properties of discrete Markov
processes necessary for our subsequent treatment. In par-
ticular, we recall the time-reversal properties and write in
explicit form the variations of transition probabilities and
densities corresponding to variations of the controlling pa-
rameters.

Section IV is devoted to a general discussion of stochas-
tic variational principles coming from a choice of time-
reversal-invariant action. We show that criticality for
some action implies a double set of conditions related to
the current and osmotic parts of the controlling parame-
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ters. The first set gives programming equations of the
Hamilton-Jacobi type (adapted to a discrete setting). The
second set determines the osmotic part of the transition
probabilities per unit time.

In Sec. V we introduce our proposed form of stochastic
action. This form is strongly reminiscent of analogous
forms of local Lagrangians for canonical systems for
which a "configuration" space is chosen, such that the
phase space does not correspond to its cotangent bundle.
We explicitly recall the elementary case of a plane pendu-
lum where angular momentum is taken as the "configura-
tion" of the system.

Section VI is dedicated to the derivations of properties
of critical processes associated to the action introduced in
Sec. V. We show the existence of solutions connected to
Schrodinger evolution and the existence of nonstandard
solutions whose properties are investigated in Sec. VIII
and connected to measurement processes in quantum
mechanics.

Section VII is dedicated to the study of the limit of
discrete systems, considered as approximations of continu-
ous systems. In this way we recover all of the structure of
Nelson's stochastic mechanics, without any assumption on
the Brownian disturbance, because the discrete stochastic
variational principle gives all necessary information on the
osmotic part of the process, as explained in Secs. IV and
VI.

Finally, Sec. IX deals with possible further develop-
ments and applications of the general scheme outlined
here.

II. THE DISCRETE FORM
OF THE MADELUNG FLUID

Consider a quantum system on a separable (or even
finite-dimensional) Hilbert space. If qr;, i = 1,2, . . . , is an
orthonormal basis, let us introduce, for a generic wave
function g, the components g; = (g&;,g) and consider the
Schrodinger equation in the abstract form

i AB, /=HE
or, for the components,

a"+S.—S.
&J Jpj =—,pi= —pj;, p;;=0.

Note that (5) is a continuity equation and implies the con-
servation of the total probability so that, at all times,

gpg(t)=1 (8)

Gn the other hand (6) is of Hamilton-Jacobi type; it can
also be written in the form

IIP; . (10)

Then we can define Poisson brackets for functions F, 6 of
(p(/Sf )9

T

)=X
g gS

where - . contains terms with I', G exchanged. In partic-
ular,

P;,SJ I =5,J IP PJ I =0, IS;,SJ I =0 . (12)

This symplectic structure is the natural one associated to a
Euclidean space. In fact we can consider Cartesian vari-
ables (x;,y;) such that

g; = (x;+iy; )/V 2

and note that for the basic one-forms

co& = gy;dx; = —g p;dS;/A .

With respect to this natural symplectic structure, Eqs. (5)
and (6) are the canonical Hamilton equations for the
Hamiltonian (10). In fact

S;+H;=0
with II; de—fined by the RHS of (6).

It is convenient to introduce the canonical Hamiltonian

A =(P,Hg) = gh, J(p;PJ)'~ cosPq

i Ag; = g h;J.exp(ia;~/fi)QJ .
J

p'; = =
I p;,~I, S;= = IS;,~I . (15)

It is convenient to introduce real variables (p;,S;), p; )0,
such that

f; =p ~ exp(iS;/fi) .

Then the complex equation (2) splits into two real ones:

p; = Q (2h;J /fi)(p~pi)' sinPJ,
J

S;= —g h;J (pj /p; )
' cosP;J,

J
where

(4)

(5)

(6)

In the right-hand side (RHS) of (2) the matrix elements of
the Hamiltonian H have been written so that h,J &0.
Self-adjointness of M implies

Note that (5) and (6) are invariant under local gauge
transformations

S;~S;+g;, o.',J
—+a,J +X;—XJ, (16)

corresponding to an independent rephasing of all wave
functions of the basis.

The global invariance S;~S;+X,~(P,S)=A (P,S+X)
generates the constant of motion g,.p; which makes it
possible to keep (8) at all times. This shows that only the
relative phases in (4) are physically relevant, as it is well
known in quantum mechanics. This general frame about
the canonical structure of the Schrodinger equation has
also been considered in Ref. 5.

Our basic strategy, to give a stochastic background to
this dynamical system, will be to consider p; as the proba-
bility that a controlled Markov process is at site i, so that
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the continuity equation (5) is satisfied. On the other hand
we will try to interpret (6) as the programming equation
for a stochastic variational principle on the process. It is
therefore necessary to recall some basic facts about
discrete Markov processes.

III. DISCRETE MARKOV PROCESSES

Assume the existence of the limit

aJ+(t)= lim rp(i, t +At j,t) 5J—.]jht .
At~0+

Then we have

a,J+ & 0 for i ~j,
Consider a Markov process q (t), taking values on

I 1,2, . . . I. Let p;(t) be the occupation probability for the
site i, so that (8) is satisfied and for the expectations we
have E(F(q(t), t)) = g,.F;(t)p;(t). Introduce the transi-
tion probability p (i, t;j, t'), t & t', so that

p &0, gp(i, t;j,t')=1,

p(i, t j,t')~5J as t~t'+,

Q, a~j+(t) =0,

a;+ &0,
and the forward diffusion equations

B,p (i, tj;, t') = g a;k (t)p (k, t;j,t'),
k

p;(t)= ga;,+(t)p, (t) .

(19)

(20)

p (i, t j,t') = gp (i,t;k, t")p (k, t"j;,t'),
k

p; (t) = g p (i,tj;, t')pJ (t') .
J

(17)
For a generic time-dependent site function F(i, t) let us de-
fine forward and backward stochastic derivatives in analo-
gy to those considered in Ref. 2:

(D +1F1)(i,t)=+ lim (ht) 'E(F(q(t+bt), t+bt) F(q(t), t) ~—q(t)=i) .
Lt~0+ (22)

Then we can immediately show that

(D +&F1)(i,t)=(B,F)(i,t)~ QFj(, t)aj, (t), — (23)

I

and note that for i&j
0 0 0a,JPJ = —aJ,P;, a;JPJ =aJ,.P;, a;J &0 . (29)

where a is easily found, as in Ref. 6, by exploiting the
basic Nelson lemma

d E(F(q(t), t)G(q(t), t)) =E(FD1+1G)+E(D1 1FG) .
dt

Moreover

p;(t)= ga;,.(t)p, (t),
J

g a, (t)p, (t) =0 .
(30)

In fact, , after a simple calculation we have

ajl Pi +aiJ PJ =~ij ~ a&k Pk
k

aj &0 for i&j, ga;, (t)=0, a;, &0,

(24)

(25)

(26)

In our strategy we consider a process q (t) with initial dis-
tribution p;(to) and we let it evolve, according to (20), in
the time interval t0 & t & t~, assuming a+ as the basic con-
trolling variable. Since (19) holds, we may consider only
a,j with i+j

As an easy consequence of (20), (23), and (17) one im-
mediately finds (see also Ref. 1)

p;(t)= pa;, (t)p, (t)
J

D(+)p(il~tl l~t~)=0 ~ (31)

to be compared with (19) and (21).
Let us introduce

+ — 0 1
ati 2 (a,i +a . ) a"=—(a" —a. )~J ~ &J Y (28)

I

where D1+1 acts on the (i, t) variables. Then, following
the same line as in Ref. 1, it is very easy to prove the fol-
lowing formula giving the variation of p, as a consequence
of (20), under variations a+~a++5a+ of the controlling
parameter:

5p('1 t1'o to)= J, gp(i1, t1,'i, t)5atj+(t)p(j, t;io, to)dt .
E,J

As a consequence of (32) and (17), the variation of p is given by

tl
5p(i1, t1)= f g' [p(i1,t1,'i, t) —p(i1, t1j', t)]5a J (t)pj(t)dt ~ gp (i1,t1,'io, to)5p; (to),

f,J 1O

(33)
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where g' denotes a sum excluding terms with i =j and
also variations on the initial densities are allowed. It is
also convenient to recall the transport equation for condi-
tioned expectations

In the continuous case the osmotic velocity is a function
only of the density and not of the phase. This remark, to-
gether with (40) and (39), leads us to the natural con-
sideration of processes for which the osmotic part a has
the form

E(F(q (t) ), t) )
~ q (to) =io) —F(io, to)

a,oJ
—(h;J/A')(p;/pJ)'~', i~j (41)

= f E((D(+)F)(q(t), t)
~

q(to)=io)dt, (34)

an easy consequence of the definition (22).
For consideration of time-reversal-invariance properties

it is also convenient to consider the time-inverted process
q':

(compare also with Ref. 7).
The main purpose of this paper is to show that there are

choices of stochastic action, such that (39), (41), and (6)
are all consequences of the variational principle.

IV. DISCRETE STOCHASTIC
VARIATIONAL PRINCIPLE

t~t'=t, q(t)~q'(t')=q(t) .

Then one can easily show

a~j+(t') = —a~J (t),

(35)

I. =E(W'+') =E(W( ') =E(W) (42)

Let us consider a forward Lagrangian density W,'+', as
a function only of a,J, i&j, and its time-inverted one

', such that for the expectations we have

a~J (t ') = atJ (t)—,

a, (t')=aoJ(t) .

(36)

asap) = —~ argpJ ~

J

Pg a7JPJ
J

= ~ aJpJ+a;;p;
J

Therefore, the forward a+, the backward a, the stream-
ing a, and the osmotic a behave exactly like their con-
tinuous counterparts v+, v, v, and u in the continuous
case (see Ref. 6).

Let us now relate the first equation in (30) with its ana-
log (5). Note that in (5) there is no term in the sum with
j=i, in fact, p is antisymmetric and p;; =0. It is there-
fore convenient to write the first equation in (30) with a
sum g' excluding j =i. By exploiting g,. a;J ——0 [a
consequence of (19), (26), and (28)] and (29) we have

t)
I;(t)= —f g WJ(+)(t')P (j,t', i, t)dt',

J

so that

(D(+)I);(t)=W,'+'(t), I; (t()=0,
A = —gI; (to)p; (to)

Ep

(44)

(45)

(46)

with obvious shorthand notations. Consider variations
5p(to), 5a+. Introduce an arbitrary function S' and de-
fine

S;(t)=I;(t)+gS p(i„t, ;i, t) (47)

for some time-reversal-invariant W function of a and a .
Let us assume a given initial density p;(to) and consider

a,J (t), i&j as controlling parameters in the time interval
t0 & t & t &. Introduce the stochastic action

A =A (t(), t),'p(), a+) = J E(W(+))dt (43)

and define

(JPJ

Therefore, we can recognize

(38)

so that

(D(+)S);(t)=W,'+'(t), S; (t) ) =S (48)

aJ =(h;J/fi)(p;/pJ)'~ sinpJ, i&j (39)

+ 0 ~ ~

asg
——asg+asJ. )0, s (40)

I

On the other hand, the first equation in (19) tells us that

Note that in our shorthand notation we have suppressed
the dependence of S on a+ and S', which must be tacitly
understood. A straightforward application of (34) and
(33) allows us to find immediately the following expres-
sion for the variation of the action A defined in (43):

t)
A = J g 5W(+)(t) —g'[S, (t) S;(t)]5a,+(t)—p;(t)dt+ gS, (t, )5p; (t, ) —gS; (t, )5p; (t, ) .

J ll iO

(49)

The proof is standard and follows the same line as in the
continuous case explained in Ref. 1. Note that (49) is
completely insensible to the choice of S', but each single
one of the three terms in the RHS of (49) does depend on
S' (only the sum does not).

Let us now explore the consequences of a stationary ac-
tion principle requiring 62=0 under the constraint that
the variations 5p(to) and 5a+ are such that the two terms
containing g; and g; in (49) balance each other. Since
W(+) is a function of a+ let us introduce the generalized
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momentum p+ through

5Wt+'(t) = g'p+ (kj,i;t)5a~+;(t), (50)

~';+'(t) =(D(+)S);(t)
= g'(Rpj+aj;. )aj+

j
in analogy with p; =BW/Bq; in classical mechanics.
Then (49) gives the following condition for a critical pro-
cess (i.e., in the case where the variational principle is sa-
tisfied):

pt (t)
p+(kj, i;t) =SJ(t) S;(t) —.

I, p;(t)
(51)

By splitting symmetric and antisymmetric terms for i~j
we get the osmotic formula

g pt, (t)[p; '(t)p+(kj, i;t)+pj '(t)p+(k, i j;t)]=0 (52)
k

and the current formula

—, g pt, (t)[p; '(t)p (kj,i;t)
k

pj —'(t)p+ (k, ij;t)]=SJ (t) S;(t)— (53)

V. THE STOCHASTIC ACTION

Let us now consider the problem of finding a suitable
form of W'+) such that the resulting programming equa-
tion is (6). Qur strategy will be the following. In a first
stage we assume (6) and derive W'+' as a function of a+
by exploiting (39), (48), and (41). This will be done in this
section. We will find that it is very convenient to intro-
duce auxiliary parameters P,J related to the parameters
a+. Then the Lagrangian also involves P;J (which in fact
should be considered as a function of a+). The situation
is very similar to the case when we try to introduce a La-
grangian theory for a system for which we have assumed
a "configuration" space, such that the real canonical
phase space is not its cotangent bundle. We give explicitly
the case of the plane pendulum in order to show that in
these cases the Lagrangian can be defined only locally on
the tangent bundle and some additional auxiliary parame-
ters are naturally involved.

In this way we find a candidate for the Lagrangian
which surely agrees with the true Lagrangian on the phys-
ical orbits. Then in Sec. VI, we verify the highly nontrivi-
al result that this candidate, assumed as the basic starting
point, really does give rise to the correct equations
through the variational principle. As a matter of fact,
some nonstandard solutions will also be found.

Therefore, let us start from (6) and (48). Then we have

[we assume p;(t) &0].
Formulas (52) and (53) are the discrete analogs of

u =vVp/p and p =VS, respectively, of the continuous
case (compare with Ref. 1). It is important to remark that
the osmotic formula (52) here is a consequence of the sto-
chastic variational principle and not an independent as-
sumption as in the continuous case.

The resulting programming equation is (48) where now
a+ is restricted by the conditions (52) and (53). Our ob-
jective is to find a particular form of W(+) as a function
of a+, such that (52) and (53) are equivalent to (41) and
(39), respectively, while (48) reduces to (6).

—$'h;J(pj/p;)'~ cosP~J —h;; .
j

(54)

a;J+=(h,j/fi)(p;/pj. )'~ (1+sinP,J) .

Therefore, we have

h,J (pj /p; )
' ~ = fiaj+; /( 1 —sinPJ ) .

In conclusion (54) can be written in the form

W,'+'= g'(fif (p;J )+aj, )aj+ —h;;,
j

(56)

f(P)=P—cosP/(1 —sinP)

=P—( 1+sinP) /cosP, (59)

and P;J = —PJ,. is connected to a+ through (55), which is
an essential part in the definition (58).

Note that, as far as the consequences of the variational
principle are concerned, the local Lagrangian (58) falls in
the class of those considered in Sec. IV. In fact the pres-
ence of the additional parameters Ptj is irrelevant. For
each couple i &j, we could solve (55) for ptj as a function
of a+ (by taking one particular specification among the
generic four) and substitute it in (58), so that W'+' would
be the only function of a+. For small variations of a+
and small time intervals the specification does not change
so that (58) can be considered as giving rise to functions of
a+, to be exploited in the variational principle according
to the general method developed in Sec. IV.

Note that (55) gives a bound on the possible values of
a,j,aj+. In fact, in all situations we must have

a(J+aj~t ((h;J/fi), i&j .

Recall that h,j are fixed external parameters given once
for all.

Bounds on the controlling parameters are not a surprise.
Consider, for example, the following extremely simple
case in classical mechanics. Let I9 be an angle specifying

Clearly h;J. and a,j can be naturally considered as fixed pa-
rameters in the theory, playing a role analogous to the
external fields. Therefore, we must find (pj /p; ) and P,J.

as functions of a+, because W(+', by basic assumption,
must be a function of only a+. Let us consider (39), (41),
and (28); then we have

+ +
a;J aj; =ag~aj, +a,qaj,.

= ( h;J /A) cos p;i, i ~j .

This is the basic formula relating P with a+. Note that,
even if we assume antisymmetric P,J., formula (55) will
give us in general four values of P,J, on the circle, for
given a+. But this is not an obstacle because we can con-
sider the antisymmetric P,J as controlling parameters also,
constrained to change so that (55) is always preserved.
Note that (39), (41), and (28) also imply
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thc COIlflgulRt1OIl of thc plaIlc pcIlduluIIl with I Rg1Rng1RIl
and Hamiltonian dynamics given by

where the symmetric S;j and the antisymmetric A,z are
g1VCIl by

W(O, O) = — +k cosO, p =- . =IO,Io BW
2 80

(61) Sjj=QJg (Q jJ
—QjojSlllpij )g I +J

A gJ
——

QJg ( Q jJ
—Q jjSlllpj j ), I+j (69)

H = —— —k co&8, p= —k sine, H=p/I .
2I (62)

2

W(p,p) =k cosO —Op- 2I '

The phase space of the system is given by the cotangent
bundle of U(1), i.e., I =U(1) &&R, in fact, OEU(1), p HR.
Suppose we try to build a Lagrangian theory assuming p
as the "configuration. " We are obliged in this case to
work only locally. In fact, as a consequence of (62), p is
constrained by

~ p ~

& k and the corresponding Lagrangian
SJ =0,

&P;, +~,; ——'+ ——S,(t) —S;(t) .
coSpj Q;j+Qj,

(70)

Let us explore the consequences of S,j ——O. By taking
into account (68) we must have either

In the derivation of (67), formulas (25), (28), and (29) play
an essential role.

Let us now insert (67) in (49) and impose 52=0 under
the usual constraints on the boundaries. As a conse-
quence, formulas (52) and (53) assume the forms

where O is introduced through the second formula in (62),
which is considered here as connecting the control param-
eter p with some auxiliary parameter 8 as a consequence
of the bound p &k, which allows one to define t9

uniquely as a (multivalued) function of P in the form

p = —k sinO. We see a perfect analogy with (60), (55), and
(58).

Of course (58) is, by now, only a candidate for a sto-
chastic Lagrangian. Section VI explores the consequences
of the stochastic variational principle applied to this I.a-

g1Rng1R11.

or

Q;j =Qojslnpj (stRIldald sollltloll)

a;J =0 (nonstandard solution) .

Here we consider the standard case.
From (71) and (29) we derive

0 0
QjJQJj — ajJQ j S111 Pjj.

0 0
=Qjjajj(cos Pij —1) .

(71)

(72)

VI. CONSEQUENCES
GF THE STGCHASTIC VARIATIGNAI. PRINCIPI. K

First of all let us summarize the general kinematical
frame. We consider Markov processes controlled by a,z+,

i+j These . control parameters are restricted, so that for
each couple of sites i +j, there exist constants gjj;J =goj; for
which

.+ + ..2aIj ajar (co)~

Introduce antisymmetric p; = —p, , I~j such that

+ +
aij aji =tgjjj cos pjJ' (64)

(65)

5a,+

a"Jl

5a,j+ = —2tanPij5P;j .
sj

Through a long but straightforward calculation we can
evaluate E (5W'+'), to be inserted in (49), in the form

fi(S;j +A;. )E(5W'+') = g' Irip; +~I; —— —5a+;p;, (67)
g J COSpgjQgj Qjg

FOI glvcIl A jj A'jj p Ajj 1Iltroducc thc local LagraIlg 1an
(58) and consider stochastic variational principles of the
type considered in Sec. IV. Note that Ill appears in (58) for
dllllcllslollR1 reasons wllllc tllc collstRllts ill (64) Rl c I elated
to those in (55) through co;J =h;j/Iri. In fact h;j have the
d1IIlcIls1OIls of energy~ Q)gj. Rlc flequcIlc1cs, RIld R 1s RIl ac-
tion.

We can consider P;j as additional parameters on which
W+ depends, according to (58), but the variations of p;j
are restrained by (65) to the form

Therefore, taking into account the purely kinematical first
equality in (55), we get

(74)

Rnd flllally, still cxploltlllg (29), we find for a; thc expres-
sion (41).

Molcovcl (71) also ltIlpllcs Ajj ——0, therefore ('70) repro-
duces (7) and (71) is identical to (49). On the other hand it
is also immediately seen that the transport equation (48) is
equivalent to (6) in this case.

Therefore, we have one of the main results of this pa-
per: Stochastic Uariationa/ princip/es, based on the L,a-
grangian (58), reproduce the osmotic expression (4I) and
the correct continuity equation (5) and Hamilton Jacobi-
equation (6) of the Schrodinger theory for a discrete quan
turn system. Nonstandard solutions will be investigated in
Sec. VIII.

VII. O'ISCRETE APPRGXIMATIGN
GF CGNTINUGUS SYSTEM

As an essential check of the consistency of our theory it
is necessary to investigate the limiting behavior of discrete
systems, considered as approximations for continuous sys-
tems. Since in the continuous case the procedure of sto-
chastic quantization is well known, " it is important to
verify that the theory outlined in this paper, for the
discrete case, has the correct limit.

Let us consider a quantum system on R, with the
Schrodinger equation
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iAB, Q= — bg+ Vg .
2m

(75)

Assume that R is discretized to eZ", the square lattice of
spacing e. Then g(x, t) is replaced by f„(t), n HZ", with

The factor 2 is necessary because there is a doubling g'
with respect to all directions. Collecting (85) and (84) we
see that (83) reduces to

1/2 . 1/2

X I @.I'= Xp. = I (76) = —V.(pu) . (86)

h„„=(12 /2m', a„„=1rt2,

i
n n'

i

—=1, h„„=H„„.
(79)

and (75) can be approximated by exploiting a finite-
difference expression for the Laplacian

ihg„= gH„„g„,
n

H„„=—fi /2m@

in —n'i =1,
H„„=V„+2d1ri /2m@

We may relate to the general scheme exploited in this pa-
per by assuming n as the discrete index labeling sites and
putting

Therefore, we see that the discrete continuity equations
(80) and (81) reproduce correctly the continuous one

B,p= —V' (pv), u =V'S/m .

In the same way one can show that (6) reduces in this case
to the Hamilton- Jacobi-Madelung equation

2m p'"
by exploiting cosa= 1 —12. /2 for small a.

Let us now consider the limiting behavior of the
discrete process associated to the quantum system accord-
ing to the procedure outlined in the previous sections. We
find it convenient to work with the forward derivative,
which summarizes all random properties of the process.
In this case, from (23) we have

With these notations the discrete continuity equations are

pn + ~ ann'pn' ~

(D, )F)„(r)=a,F„+g (F„.—F„)a„+„, (89)

n'

pn'
an'n

2m' pn

Sn.—S„
S1Il (81)

where g' is restricted to
i

n' n
i

= 1. —
Consider that (S„—S„)/e is the lattice approximation

for the gradient TS. Therefore, we introduce the vector
field u (n', n) on the lattice, defined by

u (n', n) =2@a„„(p„/p„)'/ (82)

1/2 pl p
—1(p 1/2

p 1/2)u (g & g )

Note that the RHS is antisymmetric as a consequence of
(29). Clearly u(n', n) acts as a lattice approximation for
the current velocity field u =VS/m, as (81) and (82) show.
Then we can write (80) in the form

p„=—e ' g' (p„p„)'/ u (n', n)

where the second equation in (19) has been exploited in or-
der to write g' instead of g. Now we have

1/2
Sn —S„

1+sin
pn'

&n'n =
2m E' pn

Sn —S„=u(n', n) .

If we write

( / )1/2 1/2( 1/2 1/2) + 1

(D(+)F)(x,t) =d,F +u~ VF + hF,
2m

we see immediately that (89) is the lattice approximation
for

—p„g'e-(u(n', n) . (83)
u+ ——VS/m +(A/m)Vp' /p'

It is amusing to see through the splitting (92) that the
osmotic term (41), in the continuous limit, gives both a
contribution to u+ and the reason for the appearance of
the Laplace term in (93). Since (93) is the correct forward
derivative for the continuous process (see Refs. 2, 1, and 6)
we have given evidence that the correct limit is repro-
duced by the dlscI'ete stochastic pI'ocess 1IltI'oduced 1Il ple-
vious sections of this paper.

It is important to remark explicitly that, in the continu-
ous case, the osmotic part, giving rise to the correction
from u to u+ and to the Laplacian in (93), must be postu-
lated. On the other hand, in the discrete case the osmotic
part is a consequence of the variational principle. More-
over it gives rise to the correct expression (93) in the limit.

I.et us introduce the notation = to denote lattice approxi-
mations. Then we have

e 'g'u(n', n)=V u,
(84)

&
—1(p 1/2

p
1/2

) Vp
1/2

Note also

v (n', n)=u, u (n', n)=u
~ g'u(n', n)u(n', n)=2v. u .
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Thus, we may conclude that the whole theory can be
founded on the stochastic variational principle alone.

VIII. NONSTANDARD SOLUTIONS
FOR STOCHASTIC VARIATIONAL PRINCIPLES

Let us now turn to the nonstandard case (72). Now we
have p;=0 as a consequence of (38), i.e., the occupation
probabilities stay constant in time on the average. On the
other hand (55) gives

a,Jaj, (h,j——/A') cos P,J, (95)

to be compared with (74). Therefore, from (29) we have.

a;1 =(h;J. /A)(pt/p~)'i
~
cosP;J i

(96)

instead of (41). In this case the second equation in (70)
reduces to

A'(P,J
—tanP;J )+a~; =S~ —Sg, (97)

which is deeply different from (7). It is now easy to calcu-
late S; from (48). We find

S, = —g'ri, ,(p, /p, )'" h;; = —E-, ,
J

(98)

where gtj is the sign of cosp;~ and p's are constant. Let us
start from a situation at t =to with a given sign for g,j.
Because of continuity it stays constant for t in some time
interval around to (a fact we will find for any t). In the
generic case E;pe, i gj Thu. s, we see that S;—SJ~+ ~
as t~ oo ', therefore, p;J —tanp;J ~+ oo, and p never
crosses values where cosp changes sign, so that E; stay
constant. Necessarily we have cospJ~O. &s cosp~. ~O,
a,&

0~and a;1+~0 also (because a,j is already zero).
Therefore, we see that in the nonstandard generic case as
taboo the diffusion disappears completely in the limit,
and the process reduces to a mixture of static distributions
at each site.

Clearly we can choose the standard solution for all cou-
ples (i,j ) belonging to a subset A of sites or to the comple-
ment A' and the nonstandard solution for all couples cou-
pling A and A'. In this case, when t~ oo, the process will
not make jumps between sites of A and sites of A' and will
reduce to a mixture of standard processes each jumping
around in A and A', respectively. Thus, we see that non-
standard solutions tend to reproduce a behavior very simi-
lar to quantum measurement. It is the decay to zero of
a,j+ which destroys quantum coherence between the sites
i,j and forces the system to reproduce mixtures of states in
the limit.

Therefore, we have the second main result of this paper:
Starting from a single stochastic variational principle ive
can also simulate the formation of mixtures in analogy
with the quantum-measurement operations.

Compared to the standard theory of quantum measure-
ment (see, for example, Ref. 8, but compare also with Ref.
9), here the wave-packet collapse (mixture formation) is
not instantaneous, but evolves according to (96)—(98).
Note that the speed of mixture formation depends on the

differences E; —EJ. The larger they are, the faster is the
progression to collapse. In order to see whether the
phenomenon of nonstandard solutions found here may
really have some physical implication for the quantum-
measurement theory, it would be necessary to investigate
the possibility of checking, at the experimental level, that
the wave-packet collapse is not instantaneous. We plan to
report on this problem in a future paper.

IX. CONCLUSION AND OUTLOOK

We have shown that it is possible to choose a stochastic
Lagrangian for controlled diffusions on discrete configu-
ration space, so that the whole structure of quantum-
mechanical behavior is correctly simulated. In particular,
we reproduce the right forms of the continuity equation
and the discrete Hamilton-Jacobi —type equation. More-
over the stochastic variational principle also gives the ex-
pression for the osmotic (time-reversal-symmetric) part of
the transition probabilities per unit time. This expression
reduces to the standard one of stochastic mechanics in the
continuous limit. A peculiar feature of this scheme is the
existence of critical processes simulating the quantum-
measurement wave-packet collapse and producing mix-
tures in the time-asymptotic region.

Any quantum system can be put in the form considered
in this paper by choosing an appropriate complete set of
compatible observables. In the stochastic framework these
observables evolve according to a probabilistic scheme,
whose foundation rests on variational principles, involving
suitably averaged actions. Therefore, the scheme outlined
here is completely general and can be applied to a large
variety of cases, which were beyond the reach of the previ-
ous formulation of stochastic mechanics, as, for example,
discrete spin systems or Fermi-Dirac fields.

On the other hand a physical justification for the as-
sumed form of the stochastic Lagrangian seems to be very
difficult and surely involves new ideas about the origin of
the underlying Brownian motion in stochastic mechanics;
it is clear that the Lagrangian is never unique. Therefore,
as a preliminary step it would be interesting to find other
forms, which reduces to that found here along the orbits
of the stochastic dynamical system.

Also, a more detailed investigation on the bifurcation
leading to the standard and nonstandard solutions seems
to be worth considering. %'e have considered this problem
for the simplest nontrivial case of random processes on
the two-sites set Z2 and plan to report this in a forthcom-
ing note.
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