
PHYSICAL REVIEW D VOLUME 29, NUMBER 8 15 APRIL 1984

On various joint measurements of position and momentum observables in quantum theory
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In this paper the problem of simultaneous measurability of complementary physical quantities,
and the relevance of the uncertainty relations to this question, is analyzed. Formalizing carefully
the crucial notations involved in the problem it is shown that the well-known apparently contradic-
tory viewpoints on the subject matter are all true in pointing to a different aspect of one and the
same fundamental fact expressed here as complementarity.

I. INTRODUCTION

The problem of joint measurement (simultaneous
measurability) of complementary physical quantities, and
the relevance of the uncertainty principle to this question,
is one of the central issues on the foundations of quantum
theory. This problem has a long history which begins
with the discovery of the fundamental "exchange relation"
QP —PQ = (ih /2m. )I and the uncertainty relations
IsQEP) h/4m. In the relevant literature one may distin-
guish between three basically different viewpoints on that
problem. They might be called the standard view, the first
extreme vied, and the second extreme view. According to
the standard view complementary physical quantities (like
position Q and momentum P) can simultaneously be mea
sured only to the accuracy allowed by the (relevant) uncer
tainty relations (like AQbP) h/4m). This rather common
view belongs to the conceptua1 core of the so-called
Copenhagen interpretation of quantum theory, and it can
be traced back to Heisenberg. ' The first extreme view
says that complementary physical quantities cannot simul
taneously be measured at all. Such a view, which is corn-
patible with the intuitive notion of complementary physi-
cal quantities as developed by Pauli and Bohr, has, in
particular, been supported by the nonexistence theorems
for the relevant joint probability distributions. For exam-
ple, Suppes (see p. 385) argued that "the conclusion that
momentum and position are not simultaneously measur-
able at all does not follow from the Heisenberg relation
but from the more fundamental results about the absence
of a genuine joint distribution. " (See also Jauch. ) The
second extreme view claims also that the uncertainty prin-
ciple is irrelevant to the problem of simultaneous
measurability of complementary physical quantities, but
that such quantities can simultaneously be measured
within any accuracy. A prominent advocate of this view is
Margenau, with his co-workers, who paid much attention
to provide "an empirical method for the simultaneous
measurement of Q and P" through the so-called "time-
of-flight" method (Park and Margenau, p. 239ff; see also
Ballentine ).

We do not aim to review the rather extensive and diver-
gent discussion on the problem of joint measurability of
complementary physical quantities, and the importance of
the uncertainty principle to this problem. Rather, we wish
to analyze the problem with respect to some recent
theoretical developments. We carry out our analyses
within the so-called convexity approach which is flexible
enough to allow one to formulate the relevant (intuitive)
notions involved in the above three different viewpoints.
With respect to the proposed formalizations of the crucial
notions the apparent contradiction between the standard
view and the two extreme views will be reso1ved. More-
over, each view will be seen to be true in pointing to a dif-
ferent aspect of one and the same fundamental fact-
complementarity, in the sense defined below.

II. ON THE NOTION OF MEASUREMENT

In this preliminary section we shall formalize the notion
of measurement needed in analyzing the simultaneous
measurability of complementary physical quantities. In
the approach followed here the description of a physical
system is based on its set of states. Within such an ap-
proach a measurement on the system is most properly
described through transformation of states of the system
caused by the measurement performed on it. Peculiar
features of measurements can then be analyzed and
characterized through different properties of the associat-
ed transformations of states. Although the problem on
simultaneous measurability of complementary physical
quantities will be analyzed within the Hilbert state space
we find it advisable to introduce the basic notions and ter-
minology within a more general frame, the convexity
frame. Moreover, we believe that the problem may be for-
mulated independently of the Hilbert-space frame of
quantum theory.

A. The convexity frame

In the convexity approach the description of a physical
system is exclusively based on its set of states, and on the
distinction between the pure and the mixed states. The
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basic assumption of this approach is conveniently summa-
rized as follows: The set of states of a physical system is
represented by a norm closed generating cone V+ for a
complete base norm space (V,B) (see Mielnik, Davies
and Lewis, Edwards, ' and Davies"). Note
that V=V+ —V+=V(}8:a&O) —U(XB: X&0), and
8 =

I a H V+: e(a) = 1],where e:V~R is the strictly posi-
tive linear functional associated with the base 8 of V V. is
partially ordered by the cone V+: for any a,p in V, a & p
if and only if (iff) p —a& V . The functional e:V~R is
occasionally called the strength functional, and the set 8
can be recognized as the set of normalized states. Owing to
the convex structure of 8 the distinction between the pure
states, the extreme elements of 8, and the mixed states,
the nonextreme elements of 8, can be made. Ex(8)
denotes the set of pure states in 8.

The basic idea of the approach is that any change on
the system like those caused by measurements on it or
those associated with its evolution, can be described
through transformations of states of the system. To this
end the important notion of operation (state transforma-
tion) is introduced. It is assumed that an operation, when
performed on the system, will change a given initial state
into a well-defined final state, it does not increase the
strength of any state, and it acts additively and homogene-
ously on states. Formally, an operation is thus defined as
a positive, norm-nonincreasing, linear mapping P:V~V,
a I—+Pa, and the set 0( V) of all (formally possible) opera-
tions on the space Vis represented as the set of all positive
elements in the unit ball of L(V), the space of bounded
linear operations on V, equipped with the strong operator
topology.

The set 0( V) is a semigroup with zero 0 and unit I, al-
lowing one thus to perform sequences of operations on the
system. Further, it is naturally ordered as follows: for
any Pi and Pz in O(V), P, &$2 iff (Pz —Pi)(u) e V+ for
any a& V+. Note, in particular, that any operation P in
O(V) with the property e(Pa)=e(a) for any a in 8 is
maximal with respect to that order.

Any operation P leads to a detectable effect when com-
bined with detecting the strength of a state after it has
undergone the operation P. Thus, for any P in 0( V) there
is associated its detectable effect, denoted as cog, which is
a positive linear functional on V with 0 & cog & e. On the
other hand, for any positive linear functional a on V with
0 & a & e there is associated an operation P, in 0( V)
whose associated effect cog, equals a: fix any P&8 and
define P, :a~g, a=a(a)P. Thus the set of all (formally
possible) effects of the physical system is represented by
the set E(V) of elements a in the dual space (V",e) of
(V,B) satisfying 0 &a & e, where the ordering is defined by
the dual cone V+~ of V+.

The set E(V) of effects is naturally ordered as follows:
for any a, b in E(V), a &b iff (b —a)(a) &0 for any
a C V+. (E( V), & ) is a bounded poset with bounds 0 and
e. Moreover, E( V) is closed under the mapping
a —+a =—e —a, which has the properties (a ) =a; if a &b
then b &a . In general, however, a ~a is not an ortho-
complementation as a A a =0 does not necessarily hold in
E( V)

Two more basic notions of the approach are instruments
and obseruables. An instrument corresponds to an experi-
mental arrangement, defining thus a regular family of
operations which can be performed on the system with the
arrangement. Thus an instrument I is defined as a map
from the Borel sets 8(R ) of the real line R into the set of
operations which satisfies (i) e(I(R )v )=e(U) for any U H V;
(ii) for any countable family (X~) of pairwise disjoint sets
in 8(R), I( UX;)=+I(X~) where the sum converges in
the strong operator topology. To each instrument there is
associated an observable corresponding to the family of
the detectable effects of the operations performable with
the instrument. Thus an observable A is defined as an
effect-valued measure on the real Borel space (RQ(R))
with the properties (i) A(R)=e; (ii) for any countable
family (X; ) of pairwise disjoint sets in 8(R )

A( U X;)=+A (X~) where the sum converges in the weak
e-topology of V'.

The above ingredients constitute the convexity or (V,B)
scheme for describing a physical system. The Hilbert
realization of this scheme is provided by the usual Hilbert
state space {T,(H),T, (H)i+}, where T, (H) denotes the set
of all self-adjoint trace class operators on the underlying
Hilbert space H. The strength functional associated with
the base T, (H)i+ is the usual trace functional. Recall, in
particular, that the set Ex(T,(H)i+} of pure states of the
description consists exactly of the one-dimensional projec-
tions

~ y }{p ~

on H, which thus can be identified, modulo
complex multipliers of absolute value one, with unit vec-
tors (vector states) q& of H. Hi denotes the set of all unit
vectors in H. The set O(H) of all operations on the Hil-
bert state space {T,(H), T, (H) )iis the set L(T,(H))&i.
Hence the set E(H} of all effects is the set Itr[P ]:
/HO(H)I, which, due to the duality T, (H)*=L,(H), can
now be identified with the set IEHL, (H): 0&E(1).
Thus, in particular, the set Ex(E(H}) of extreme effects
shall be identified with the set P(H ) = IP HL, (H ):
P=P+ =P2I of projections on HTh'e. effect-valued mea-
sures, i.e., the observables of the description, are exactly
the semispectral measures.

Standard Hilbert-space quantum mechanics operates
also with the state space (T,(H), T, (H)i+), but cons'iders'
only such observables which are represented as spectral
measures (projection-valued measures). A fortiori, the
standard frame considers only such operations which give
rise to projections as their effects, i.e., 0 (H) = Ip EO(H):
tr[P.]HP(H)I. Thus E (H)=Ex(E(H))=P(H). In par-
ticular, the von Neumann-Liiders operations Pz.T, (H)
~T,(H}, a~/pa=PaP, PEP(H}, are such. They cor-
respond to the so-called pure, ideal, first-kind measure-
ments. In Sec. V we shall meet an important argument
which leads to an extension of the standard Hilbert-space
quantum mechanics in the lines described above.

B. On various kinds of measurements

According to the basic idea of the convexity approach,
a measurement on the system is described through a
transformation of the states of the system a; —+ay, where
the postmeasurement (final) state a~, depends, in general,
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on the premeasurement (initial) state a;, on the measuring
result, and on the measuring instrument employed. Thus,
within the present approach, we shall consider only such
measurements on the system which can be described, to
their essence, as operations on the state space (V,B) of the
system. This agrees with the general ideas on the quan-
tum theory of measurement (see, e.g., Beltrametti and
Cassinelli, ' ). Moreover, the results of Kraus' show that
each Hilbert operation admits a measurement theoretical
interpretation.

We shall now specify some measurement theoretical no-
tions which will be needed subsequently.

I.et (V,B) be the state space of a physical system under
consideration. We recall first that there is a many-to-one
correspondence between the sets 0(V) of operations and
E( V) of effects, O':0( V)~E( V), P ~%'(P), WP)(a)
=e(Pa), a&8. The set 4' '(a)=—IgeO(V): cog=a]
contains exactly those operations P in 0( V) which unique-
ly define the effect a. For any effect a CE(V), the
certainly yes d-om-ain a'—:[,a&A: a(a)=1I may or may
not be empty. If a ' is not empty the effect a can be actu-
alized, or realized, with preparing the system in any of the
states in a . The notion of state preparation can be
described as a constant operation I' ~ ~I' x =a. State
preparations are trivially idempotent. For any state u HB,
the certainly-yes-domain is a':—

I a CE( V): a(a) = 1 I.
A measurement of an effect a is any operation P in

0(V) which provides (probabilistic) information on a.
Thus any P in U (0' '(c): c &a) is a measurement of a.
A measurement thus always is a measurement of some ef-
fect. For any c &a, c C:u, so that a'=g implies c =e
for any c &a. Any P in 4 '(a) is, in particular, a mea-
surement of the effect a. They uniquely define a. More-
over, such measurements of the effect a are distinguished
by their minimal informative content, i.e., they are mea-
surements of a which do not provide any (probabilistic)
information beyond a. We call them minimal measure-
ments of the effect a. In the standard Hilbert space frame
of the quantum theory the minimal measurements are just
the Luders-type measurements, whereas the von
Neumann-type measurements have been called maximal
measurements (cf. Siissmann' ).

Ajoint measurement of two effects a and b is any mea-
surement which provides (probabilistic) information on
both of the two effects. Thus, any operation P in

U (4 '(c): c &a,c &b) is a joint measurement of a and
b. For any c &a,c &b it is c'Ca' Ab', so that
a'Ab'=e implies c'=e. For any a, bCE(V), if their
meet (the greatest lower bound) a h b exists in E( V), then
the measurements in 4 '(a hb) are minimal joint mea-
surements of a and b, i.e., they provide no information
beyond the two effects a and b.

The main purpose of measurements in physics is to pro-
vide information about the physical system under con-
sideration, or, more specifically, to determine the state of
the system. To be precise, we have to distinguish two pos-
sibilities: measuring results may have significance either
to the system before or after the measuring act. Whereas
measurements are always determinative (see below) they
may, or may not, be preparatory. One cannot decide

a priori whether or not the measuring act has or has not
any influence on the observed system quantum theory
tells that in general it does have; only if the premeasure-
ment state a belongs to the certainly-yes-domain of the
measured effect a it is possible to register the result "yes"
without "disturbing" the system. We shall now formulate
some distinctive features of measurements relevant to the
subsequent discussion.

By definition, any measurement P of an effect a is
determinative, i.e., with performing the measurement P in
a state a we get probabilistic information on the effect a
in the premeasurement state a. The statistics of the mea-
surement results of a sufficiently large class of effects (of
a complete set of observables) allows one to determine the
prepared, initial, state.

A measurement P is predictable, if there exists a state a
in 8 such that e(ga)=1. The resulting effect eog is actu-
alizable as (eoP)'&0. A state preparation P~ is a predict-
able measurement for those effects which belong to the
certainly-yes-domain of the prepared state cx.

A measurement P is preparatory (or weakly repeatable)
iff e(P a) =e(Pa) for any state ct. If an effect a admits a
preparatory measurement then a is actualizable. A mea-
surement P is of the first kind (or strongly repeatable) iff
it is preparatory and e(Pa) =e(a) implies Pa=a for any
state u.

We recall that in the Hilbert case, an effect E is actual-
izable iff E has the eigenvalue 1 iff E admits a preparato-
ry measurement iff E admits a first-kind measurement.

A measurement P is probabilistically preparatory iff
e(P a) e(Pa) ') e(Pa) for all states a, that is, the mea-
sured effect eag is more probable in the (normalized)
postmeasurement state Pa/e(Pa) as compared with the
premeasurement state a. This seems to be the weakest
possible kind of "preparatory" influence through measure-
ments on the system. In the Hilbert framework it can be
realized for any effect E in several ways, e.g., by
Pa=E'~ aE' . Clearly any preparatory measurement is
also probabilistically preparatory.

Physical quantities are complementary, if the experi-
mental arrangements which permit their unambiguous
definitions are mutually exclusive (see, e.g., Bohr, or Pau-
li ). We shall now formulate this intuitive idea within the
Hilbert frame of quantum theory.

In the standard Hilbert-space formulation of quantum
theory observables, physical quantities, are represented
(and identified) as self-adjoint operators A:dom(A)~
p ~Ap, or, equivalently, as spectral measures A:8(R)
~P(H), X I

—&A(X) on the relevant Hilbert space H. For
each observable A:B(R)~P(H), X ~A(X) there is associ-
ated at least one instrument (operation-valued measure)
I":8(R)~O(II) X~I"(X) which uniquely defines this
observable, through the relation trLI"(X)a] = tr[aA (X)] for
all X KB(R), a&T, (H)&+. Through its operations (state
transformations) such an instrument characterizes an ex-
perimental arrangement which can be used to measure all
the possible values of the observable, or which serves to
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define it unambiguously. Actually, for each observable A.

there is associated a (unique) family of instruments I;,
i E.I a suitable index set, which contains all the possible 2
measurements, i.e., A measurements which are describable
within the theory as state transformations. We shall recall
that in the family I;, i HI, there is a special instrument
which consists of the von Neumann-t. uders operations
T, (H) —+T,(H), a(~A (X)aA(X), XPB(R), associated
with the ideal first-kind measurements of the (standard)
observables A:8(R )~P(H ).

Let I";, i&I(A), and Iz. , jEI(8), be any two instru-
ments associated with the observables A and 8, respective-
ly. The operations I; (X) and IJ. ( Y), X, Y'&8(R ), describe
some particular measurements of the two properties A (X)
and B(Y) of the system. If there exists an operation
P H O(H ), P&0, which is contained both in I; (X) and
IJ ( Y'), this operation, when performed on the system, pro-
vides information on both of the two properties. It is a
joint measurement of A (X) and 8 ( Y). Obviously, in such
a case the instruments I; and IJ were not mutually ex-
clusive. We come thus to the following definition of the
notion of mutual exclusiveness of instruments, experimen-
tal arrangements (cf. Lahti, ' ' ).

Definition 3.I. Instruments I
&
..8(R )~O(H ) and

Iz.B(R)—+O(H) are mutually exclusive if and only if
lower bound IIi(X), I2(Y') j = IOj for any two bounded X
and Y in 8(R) for which neither Ii(X) nor I2(Y) is maxi-
mal.

As noted above the set O(H) of operations on the state
space T,(H) is naturally ordered by the base T, (H)i+ of
the positive cone T, (H)+ of the state space: for any two
operatioils yi and yp iil O(H), yi & yz iff y}a & $2a for all
a in T,(H) i . The zero operation 0:a~Oa =0 is the least
element of the poset (O(H), & ) whereas each /HO(H)
with the property tr[Pa]=tr[a] V a&T, (H)i+ is maxi-
mal. The identity operation I:ci( +Ia=a is —maximal,
though not the only one. The restriction to nonmaxirnal
operations allows the possibility that also bounded instru-
ments, i.e., instruments with bounded value sets, might be
mutually exclusive. The restriction to bounded Borel sets
may be motivated by considering the possibilities for an
operational definition of an observable. Actually, such
considerations would propose that closed intervals should
already suffice here. Finally, lower bound
=[4&«H):4&%i 4&02j.

We are led now to the following formal definition of
the notion of complementary physical quantities.

Def&'««Ori 3.2. Observables A:8(R )~E(H ) and
8:8(R) +E(H) are complem—entary iff any two instru-
ments I;", i HI(A), and Iz, jE-I(8), uniquely defining
these observables are mutually exclusive.

For our subsequent needs, we have formulated this defi-
nition, as also the preceding one, not in the standard
frame, but in the extended frame which results from con-
sidering the whole set O(H) of operations. As a conse-
quence, the standard set of propositions P(H) extends to
the set of effects E(H)= [EHI. ,(H'): 0(E('I j, and the
standard notion of observable as a P(H)-valued measure
extends to a generalized observable as an E(H)-valued
measure. Note that these definitions apply, in particular,
to the standard observables and to their instruments.

Y' in 8(R) for which A (X)&I~B(Y') . (3.1)

As it will turn out, there are (generalized) observables
which share the property (3.1) but which are not comple-
mentary in the sense of definition (3.2). This suggests the
following definition.

Definition 3.3. Observables A:8(R )~E(H ) and
8:(R)~E(H) are probabilis«cally complementary iff they
share the property (3.1).
We then have:

complementarity (in the sense of mutual exclusiveness)
implies probabihstic complementarity, but, in
general, not conversely . (3.2)

An immediate consequence of the above two definitions
is that observables A and 8 are complementary iff
A(X) P 8(Y')=0 for any two bounded X and Y in 8(R)
for which neither A(X) nor 8( Y') is the unit element I of
the poset E(H). Tllis then sllows 'tllat the llotloil of com-
plementarity expresses ihe strongest case of the so-called
][ncolnmensurab111ty, OI lncompatltH11ty which usually 1s
defined through the commutation relation [A,B]&0. In-
compatibility of A and 8 means that there is no complete
set of eigenvectors but it does not exclude the possible ex-
istence of some common eigenvectors. Complementary
observables do have no common eigenvectors.

Let A and B be complementary observables so that, by
definition, any two instruments I; and IJ which uniquely
define these observables are mutually exclusive, i.e.,
lower bound II";(X), IJ ( Y) j = IOj for all bounded value
sets X and 1'and for all i HI(A) and j HI(8). Thus, cor-
responding to the intuitive idea that mutually exclusive
experimental arrangements cannot be applied at t4e same
time, there are no joint measurements (describable as state
transformations and associated with bounded value sets)
of A and B. Complementary observables cannot be mea-
sured, or defined, at the same time. We formulate this
important, though obvious, result. as a corollary.

Corollary 3.1. Complementary observables do not ad-
mit any joint measurements.

There is a relaxation of the notion of complementary
observables, which opens the possibility for their joint
measurements. We shall now work it out.

Theorem 3.7. I et 2 and B be any two self-adjoint
operators with 0&2 &I, 0&B&I, and lower bound
IA, Bj = IOj, i.e., A hB =0. If (q&,Ap) =1 for some
y HH i, then (ip, Bq&) & 1, and conversely

Proof. Assume that there is a y H H, such that
(~,A@)=1 and (ip, Bip)=1. As 0&A &I and 0&8&I,
this implies that A y =y and By=y which means that 1 is
an eigenvalue of both A and 8, and ~p is their common
eigenvector. In particular, this would mean that the meet
A (I 1 j ) AB(I 1 j ) of the corresponding eigenprojections
A(I 1 j) &A and 8(I 1 j ) &8 is nonzero, which contradicts
with the assumption lower bound IA,B j = I 0j.

The above result shows that if the observables A and S
are complementary in the sense of definition 3.2, then they
also shaIe the property:

if (~p,A(X)ip) =1 for some vector state cpEHi, then

(y,B(Y)y) & 1, and converseiy, for all bounded X and
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Note that it is only in the case of standard observables
where the two notions of complementary observables and
probabilistically complementary observables are equiva-
lent. The term probabilistic complementarity is motivated
by the fact that if the observables A and 8 are of that
kind, then the certainly-yes predictions concerning their
possible values are mutually exclusive. This feature of
complementarity is emphasized by Pauli, and further ela-
borated, e.g., by Beltrametti and Cassinelli, ' and
Lahti. ""

Let A and Bbe two probabilistically complementary ob-
servable, which need not be complementary in the sense of
mutual exclusiveness. Assume further that for some
bounded value sets X and 7 there is a predictable joint
measurement P H O(H ) of A (X) and 8 ( Y). But as
tr[ga]=1 for some a=

~
p)(q&

~

H r, (H)&+, we then
would have (pg(X)qr)=1 and (y,8(F)p)=1 which is ex-
cluded by the probabilistic complementarity of A and 8.
Thus we have the following corollary.

Corollary 3.2. Probabilistically complementary observ-
ables do not admit any predictable joint measurements.

%'e recall that preparatory measurements are also
predictable measurements. Finally, we note that the
canonically conjugate position and momentum observables
Q and P are complementary. This follows from the
Paley-Wiener theorem as Q and P are Fourier-Plancherel
equivalent physical quantities, i.e., P=(h/2n. )E Q with
F denoting the Fourier-Plancherel operator of the underly-
ing Hilbert space H. (For a full discussion of this topic,
with the relevant literature, see Busch, ' Busch and
Lahti, ' Jammer, and Lahti. ' ' The components of
the spin observable s=(si, s2,s3), s=0, —,, 1,. . . are pair-
wise complementary as well (Beltrametti and Cassinelli',
p. 31).

IV. JOINT MEASUREMENTS OF Q AND P
%'ITHIN THE STANDARD FRAME

We shall now begin to study the problem of joint
measurability of complementary physical quantities with
respect to the uncertainty relations. %'e start with analyz-
ing the problem first within the standard Hilbert space
formulation of quantum theory.

The standard frame, though extremely useful, is highly
idealized. This appears, in particular, in the fact that ob-
servables are represented as spectral measures
8(R ) +P(H), or, equivalen—tly, that properties of the sys-
tem are represented (and identified) as projections on the
underlying Hilbert space H. Thus, in particular, only
such operations (and thus measurements) P HO(H) can be
considered within the theory which give rise to projections
(i.e., which serve to define or measure properties)
trg ]HP(H ). [Here we use the identification
T, (H)*=I-,(H).] Further, each property PUP(H) admits
a pure, ideal, first-kind measurement defined by the opera-
tion Pz..a ~Pea =PaP. Closely related to that is the fact
that within the standard frame the notions of complemen-
tarity (in the sense of mutual exclusiveness) and proba-
bilistic complementarity are equivalent. Also an opera-
tional definition of an observable A:8(R )~P(H ),

X ~A (X) through its spectral projections A ( [a,b] ),
a (b HR, assumes that the value sets [a,b] are sharply de-
fined. No "defining ambiguities" or "measuring inaccura-
cies" are incorporated there. For each observable-state
pair (A,a) the number A(A, a) is the standard deviation of
the probability distribution p~:8(R)~[0,1], X~p~(X)—:tr[aA (X)] of the possible values of the observable A in
the state a. The interpretation of 6(A,a) is determined
by, and thus consistent with, the interpretation of the dis-
tribution p . This gives rise to probabilistic interpretation
of the uncertainty relations. In the standard frame there
is no formal reason to interpret the probabilistic number
b, (A,a) as a kind of measuring (in-) accuracy. As a conse-
quence, the standard view concerning the question of joint
measurements of complementary physical quantities can-
not be formulated in the usual Hilbert-space frame of
quantum theory. The question remains which one of the
two extreme views holds true therein. For explicitness, we
shall refer to canonically conjugate position and momen-
tum observables, though the considerations are equally
valid for any pair of complementary observables satisfying
the uncertainty principle.

Let g:8(R)~P(H), Xi~g(X) and P:8(R)~P(H),
X~P(X) be canonically conjugate position and momen-
tum observables. Owing to their Fourier-Plancherel
equivalence Q and P are complementary,

lower bound I Q(X),P( I') j = I 0 j (4.1)

lower bound IIP(X),IJ ( Y) j = IOj (4.2)

for all bounded value sets X and F in 8(R), and for all
i HI(g) and j HI(P). None of the instruments I p,
i HI(g), and IJ,j HI(P)„can be applied simultaneously;
there is no joint measurement of Q and P. The observ-
ables Q and P cannot be defined, or measured, at the same
time. That is, in the standard frame the only acceptable
standpoint seems to be the first exteme view.

The obstacle for the simultaneous definition, or mea-
surement, of complementary physical quantities, like Q
and P, lies in the fact that any two instruments associated
with these observables are mutually exclusive. The prob-
lem is thus whether this obstacle can be removed or not.
According to the standard view this should be possible by
introducing some ambiguities, or inaccuracies, in the defi-
nitions, or measurements of the observables, to the extent
expressed in the uncertainty relations

b, ( g, p)h(P, y) )h /4m

for all p&dom (Q) fl dom (P) . (4.3)

Within standard quantum mechanics there is an intui-
tive idea how to account for the relevant ambiguities, or
inaccuracies. This idea comes close to Heisenberg's origi-
nal interpretation of his uncertainty relations. The stan-
dard deviation b,(A,a) of a physical quantity in a state a is

for all bounded value sets X and F in 8(R). Consequent-
ly, any two instruments I~~:8(R)~O(H), X~I~(X),
i HI(g), and IJ:8(R )—+O(H), Xi~IJ (X),j HI(P), which
uniquely define these observables are mutually exclusive,
1.e.,
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here identified with the characteristic accuracy 5(A, a) in
determining the value of the quantity A in the state a, or,
with the inaccuracy in an A measurement performed on
the system in the state a. However, as already pointed out
by Jammer, ' see also Park and Margenau, the identifica-
tion of b, (A, a) with 5(A, a) is not a logical must. Within
the standard frame it is an ad hoc assumption, which, if
accepted, would lead to difficulties with the fundamental
probability postulate of the theory. The number 4(A, a)
cannot be intepreted through some ad hoc -assumptions,
but its interpretation should be derived from the given in-
terpretation of the measure p~ as pointed out above. If
such an ad hoc interpretation is, however, accepted, it
remains totally unsuccessful within the standard frame, as
it does not break the relation (4.2). In other words, within
the standard frame, this interpretation does not lead to
any new instruments associated with position and momen-
tum which were not mutally exclusive. The obstacle for
the simultaneous definitions, or measurements, of comple-
mentary physical quantities remains. This situation is
closely related to the above discussed idealizations of the
standard Hilbert space quantum theory. It contains nei-
ther the notion of ambiguous definition of a physical
quantity nor the notion of inaccurate, or unsharp, mea-
surement. The standard frame can, however, easily be ex-
tended to contain such notions. We shall continue our
analyses of the problem within such an extended frame,
which will be sketched in the next section.

We shall summarize the above discussion as the follow-
ing result:

Within the standard Hilbert-space quantum theory

complementary physical quantities, like position and

momentum, cannot be simultaneously measured at all.

This does not follow from the uncertainty principle,

which therein is to be interpreted probabilistically, but

rather from the very idea of complementarity. (4.4)

V. UNSHARP OBSERVABLES—THE EXTENDED
FRAME

In employing his y-ray microscope (thought experi-
ment) to determine the position of an electron Heisenberg
argued that due to the finite resolution of the apparatus,
the Q measurement is inaccurate (Heisenberg, ' p. 198). A
similar situation appears in a momentum measurement of
a particle through the Doppler effect (see, e.g., Heisen-
berg }. Further, in the double-slit experiment, the mea-
surement of the momentum transfer from the particle to
the first diaphragm with one slit, say, requires that the
diaphragm is not rigidly connected with the common sup-
port which serves to define the space frame of reference.
Consequently, in giving up the exact controlling of the po-
sition of the slit, the slit (in the movable diaphragm) no
more defines unambiguously the relevant value set, rather
it becomes "unsharp" or "fuzzy" (with respect to the
space frame of reference). 2 fortiori, a possibility for an
unambiguous definition of the position of the particle is
thereby lost (see Bohr ).

The notion of unsharp observables, introduced and dis-
cussed by several authors in recent years, provides a for-
mal means to account for the intuitive ideas contained in
the above examples on inaccurate measurements, or am-
biguous definitions, of observables.

In order to appreciate the definition below of unsharp
observable we precede it with some heuristics (cf. Ali and
Emch ).

p~(X) =tr[aA(X)] is the probability that a measurement
of the observable A:B(R)~P(H), X~A (X) on the sys-
tem in the state a E T, (H) i+ yields a result in the value set
X. This formalism assumes that an experimental arrange-
ment which serves to define the observable A, or a measur-
ing apparatus which can be used to measure its values, is
optimal in the sense that it admits a sharp (or unique or
unambiguous or proper) definition of the value sets X.
Assume, however, that the 3-measuring apparatus, which
is employed, is not such an ideal one, but it has a finite
resolution 5, say. Thus it cannot distinguish between
points lying within the distance 5 of each other. Conse-
quently, such an apparatus does not define (operationally)
the value set

=[ i xz]=[xo —
2 lx2 —xil xo+ z lxz —xill,

but rather it defines a "fuzzy" value set [x +X:
x H [—5/2, +5/2]]. Consistent with the standard frame,
such an apparatus does not measure the probability p~(X),
but a weighted mean (or convex combination) of the prob-
abilities p"(x+X), xH[ —5/2, +5/2] depending on the
finite resolution 5 and some other relevant properties of
the system. In the approach followed here, it is assumed
that such "relevant ambiguities" are properly accounted
for through a probability density function.

Let 3:B(R)~P(H), Xt-+2 (X)'be a projection-valued
measure (i.e., a standard observable), and f:R~R,
x ~f(x) a probability density function (f &0, J f=1).
Any such couple (A,f) defines, in the weak sense, an
effect-valued measure (known also as a generalized or fuz-
zy or unsharp or approximate or improper observable}
A~..B(R )~E(H ), XI~A/(X) through the relation

tr[aAg(X)]= J f(x) tr[aA(x+X)]dx (5.1)

for all states a in T, (H)&+. The function f is taken to
describe the unsharpness involved in the measurement, or
the ambiguity involved in the definition of the observable.
That is, we may alternatively interpret this function as at-
tached either to the measuring apparatus employed for a
measurement the values of the observables (characterizing
thereby, e.g., the finite resolution of the measuring ap-
paratus), or to the experimental arrangement used to de-
fine the observables (characterizing thus the ambiguities
involved in the defining procedure). For a more detailed
exposition of this notion we refer to Ali and Emch,
Davies, " Prugovecki, and Ali and Prugovecki. Its
measurement theoretical interpretation has been discussed
by Busch.

The notion of unsharp observable is consistent with the
standard notion of observable emphasizing, however, the
ideality of the latter. Really, if f tends to the Dirac 5
function, which corresponds to the idea that the measur-
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ing accuracy increases, or the defining ambiguities de-
crease, then the unsharp Af tends to the sharp, i.e., stan-
dard, A (in the weak sense). Further, the set function

p~f:B(R)~[0,1],X ~p f(X)=—tr[aAf(X)] is a probability
measure for any state a&T, (H)&+ so that, in particular,
the number p (X) admits a probabilistic interpretation.
Consistent with the probability postulate of the standard

theory, the number p~ (X) may be interpreted as the prob-Af

ability that a measurement of the observable A in the state
cx yields a result in the value set I within the measuring
accuracy characterized by the function f [or that the value
of the unsharp observable Af lies in the set X in the state
a, or that the system possesses the effect (unsharp proper-
ty) Af (X) in the state a]. We note also that for each effect
Af(X) there exists at least one operation /HO(H ) which
uniquely defines the effect, through the relation
tr[ga]=tr[aAf(X)] for all aE'T, (H)&+. Similarly, to each
generalized observable Af .B(R )~E(H ) there corresponds
at least one instrument (operation-values measure)
I f:B(R)~O(H) which uniquely defines the observable.

The theory has now been extended through a generali-
zation of the notion of observable. This generalization re-
sulted from introducing the notion of unsharp measure-
ment, or ambiguous definition, of an observable in the
form of a couple (A,f) defining the unsharp observable
Af. In particular, what has been gained is that the stan-
dard deviation hf of a probability density function
f:R~R may consistently be taken to describe, e.g., the
characteristic accuracy in determining the value of the ob-
servable A in a given state a. The conceptual difficulties
involved in the above-discussed identification of 5(A, a)
with 6(A, a) can thus be overcome, e.g., through an iden-
tification of 5(A, a) with bf. Furthermore, this extension
allows a double role for the basic probability measures p
of the theory: On one hand p is the probability distribu-
tion of the possible values Of the observable A in the state
of the system, on the other hand p defines a probability

density function f, which, in such, may be taken to
describe some ambiguities, or inaccuracies, involved in a
given A measurement (giving thus rise to the unsharp ob-
servable A „~). It is just this feature of the extended frame

f CE

which makes it possible that the uncertainty relations may
have something to do with the imprecisions of measure-
ments as stated in the standard view. It is important to
note that this distinction between the two interpretations
of the probability measures p" appears already in Heisen-
berg' though he did not explicitly work out the formal
consequences of the second interpretation. It is certainly
true that within the standard frame of quantum theory
"the Heisenberg uncertainty relations have nothing to do
with the imprecisions of measurement. . . . On the con-
trary the Heisenberg relation b,q bp &h/4. . . is deduced
in the framework of the theory under the assumption that
the observables position and momentum are measured
with absolute precision" (Ludwig, p. 17). However, as
soon as one may consistently speak of "the imprecisions
of measurements" such a strong conclusion is hardly ten-
able, as an extended frame is needed. In the present ap-
proach, it would simply overlook the double role played

by the probability measures p~ of the theory. The extend-
ed frame thus opens the possibility for an alternative of
the probabilistic interpretation of the uncertainty rela-
tions, and it admits a quantitative formulation of the stan-
dard view. It is to be noted that in general the probability
density function f of an unsharp observable Af need not
be given by the relevant measure p~ though this appears
to be the case in the standard view. Finally, we point out
that the introduction of the unsharp observable Af, A a
standard observable, f a probability density function, does
not exhaust the sets O(H) and E(H) of all operations and
effects on the Hilbert state space T,(H).

VI. JGINT MEASUREMENTS GF Q AND P
WITHIN THE EXTENDED FRAME

%'e shall now analyze the validity of the three views
concerning the simultaneous measurability of complemen-
tary physical quantities within the extended Hilbert-space
formulation of the quantum theory. For explicitness, we
shall refer again to canonically conjugate position and
momentum observables Q and P, with L2(R) as the
underlying Hilbert space.

%'e have

pQ Pf=f, g=g, aET, (L2(R))]+ . (6.3)

As Q and P are Fourier-Plancherel equivalent physical
quantities, the functions f and g above are Fourier-
connected as well. More explicitly,

f(x)=f (x)=+A,; ~y;(x)
~

g(x) =g (x)= g (x)
2m.

(6.3a)

gA, ; ~

q)(x) ~',

lower bound I Q(X),P( Y)}= [0}
[for all bound X and Y in B(R )], (6.1)

b(Q, y)b(P, p) &h/4n.
[for all qr in dom (Q)

Adorn

(P)], (6.2)

and we ask whether the measuring inaccuracies, or defin-
ing ambiguities, which agree with the (probabilistic) un-
certainty relations (6.2) are needed, or are enough, to break
the complementarity of Q and P, expressed in (6.1) and
thus to admit their joint measurements.

We shall first consider such unsharp position and
momentum observables Qf and Pg whose "characteristic
inaccuracies" Af and Ag are compatible with the uncer-
tainty relations, i.e., bf =5(Q,a) and kg=a, (P,a) for
some aCT, (L2(R)}~+. In other words, making use of the
flexibility of the extended frame we now interpret the
numbers b, (Q, a) and A(P, a) as the measuring accuracies
of the relevant Q and P measurements (performed on the
system in a state a), so that the probability density func-
tions f and g of the pair (Qf,Pg ) are the probability densi-
ty functions of the probability measures p and p, for
some a e T, (L2 (R )}t+, i.e.,
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where gA, ; ~
tp; ) (y; ~

is any decomposition of a into pure
states

~
~p; ) (y; ~ and@; =Fyj is the Fourier transform of

y;. With this choice we have

bfbg =b(Q, a)b(P, a) )h /4n, (6.3b)

(6.3c)

where

a~ exp——(ipQ )exp( —iqP)a exp(iqP)exp( ipQ
—) (6.3d)

with a&T, (L2(R))i+. Moreover, any effect-valued mea-

sure on R XR which has continuous positive definite den-

sity and unsharp position and momentum as marginals is
of that type (Ali and Prugovecki ).

A Pair (QI,Ps) of unsharP Position and momentum ob-

servables with Fourier connected probability density func-
tions (6.3a) shall be called a Fourier couple. It follows that
only Fourier couples (QI,Pg ) give rise to continuous joint
observables AIg.B(R )~E{Lz(R)) with the correspond-
ing measuring accuracies, or defining ambiguities, obeying
the uncertainty relations. Since AI g(XX Y) &Q/(X) and

Af g(XX Y) &Pg( Y) we have

lower bound I QI(X),Pg( Y) I & tOI (6.4}

for all nonempty sets X and Y in B(R }. Unsharp observ-

ables QI and Pg, with Fourier connected probability densi-

ty functions f ang g, are not complementary. Any opera-
tion P in O(Lz(R)}, whose effect lies in the set (6.4) is a
joint measurement of QI(X) and Pe(Y). This then shows

that the standard view is tenable, at least, with respect to
all Fourier couples (QI,Pg ).

Let (QI,Pg) be a Fourier couple. The existence of an

A/g implies the existence of a (continuous) instrument
I~f' g:B(Rz)~O(L (R)} which provides joint measure-

ments I I g(X X Y) for all the possible values of the (con-

tinuous) position and momentum observables. It might
turn out that some of the minimal measurements

I ~' g(XX Y) of the effects A/g(XX Y) would also serve

as minimal joint measurements of the pair {Q/(X),Ps( Y))
but we leave this question open here. Anyway, it can be
shown (Ali and Prugovecki ) that for any pair of non-

negative real numbers 5q and 5p the condition

5q5p) h/4m. is necessary and sufficient for the existence
of a Fourier couple (Q/, Pg) with bf=5q and b,g =5p. It
is in this, and only in this sense that the uncertainty rela-

tions express a necessary and sufficient condition to break
the complementarity of position and momentum observ-

which confirms that the characteristic inaccuracies in-

volved in the pair (Q/, Pg ) agree with the uncertainty rela-

tions
We are now in position to apply the results of Davies"

and Ali and Prugovecki which show that in this case
there exists an effect-valued measure AI s.B(R~)

~E{L2(R)},ZI~A/g(Z) which has unsharp position Q/
and momentum Pg as marginal observables, i.e.,
Af (XXR )=QI(X) and AI (R X Y)=P ( Y') for any X
and Y in B(R ). Such an A&g has the explicit form

(IpyAf g(Z)g7}— I (Ipyaqpip)dp dp, yE-Lz(R )
1

ables and thus to admit their joint measurability. It is to
be emphasized, however, that these results refer to the
continuous case only, i.e., to the existence of a continuous
(joint-) instrument with minimal joint ineasurements. Al-
though Fourier couples, and minimal joint measurements,
obviously characterize an important class of joint mea-
surements of position and momentum observables we still
face the problem whether the uncertainty relations ex-
press, in general, a necessary and sufficient condition for
their joint measurability. We shall now turn to this ques-
tion which can be answered by the so-called generalized
Jauch theorem (Busch' ).

Let v» and + be the generalized characteristic func-
tions defined by

v»(q) =(X» +f)(q), (6.S)

where X»sf denotes the convolution of the probability
density function f with the characteristic function X» of
the set X. Let X and Y be bounded Borel sets of the real
line R. Then it holds (Busch )

lower bound I QI(X),Ps( Y}]= IO]

if both v» and + have bounded supports (6.6a)

lower bound I QI(X),Pg( Y) I & IOI

if supp (v»)=R or supp (+)=R . (6.6b)

Let us call (Q/, Pg} a first type Jauch -couple if both f
and g are distribution functions with bounded supports.
Then (6.6a) states the complementarity of all pairs of ob-

servables QI,Pg which are first-type Jauch couples, in-

cluding the original pair (Q, P) for which f and g are the
Dirac distributions. So we may say that the first extreme
view refers (at least) to all first-type Jauch couples.

Let (Qf Pg ) be a pair of unsharp position and momen-

tum observables with f and g as the normalized charac-
teristic functions of the symmetric intervals [—n, n] and

[—m, rn], n, m&LI, say. Clearly, (QI,Pg) is a first-type
Jauch couple and the characteristic inaccuracies involved
in this pair satisfy the relation bfbg=nm/3. This then
shows that the uncertainty relations do not express any
sufficient amount of defining ambiguities, or measuring
inaccuracies, to break the complementarity of position and
momentum and thus to allow their joint measurements.

A couple (QI,Pg) shall be called a second type Jauch-
couple if supp(f)=R or supp(g)=R. Then according to
(6.6b) (at least) all second-type Jauch couples are jointly
measurable. There is room both for the standard view [of
course (almost all) Fourier couples are also second-type
Jauch couples] as well as for the second extreme view.
The result (6.6b), like (6.6a), holds true independently of
the uncertainty relations. For example, any pair of in-

dependent Gaussian probability density functions f,g with

arbitrarily small uncertainty product

hfdf,

g gives rise to a
second-type Jauch couple. Thus the uncertainty relations
do not express any necessary condition for the joint
measurability of complementary physical quantities, like
position and momentum.

Up to this point we have found a formal characteriza-
tion of the measuring situations which the three
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viewpoints refer to: the first extreme view claims that
there exists a class of pairs of complementary observables

Qf, Ps', the standard view holds true with respect to
Fourier couples, whereas the second extreme view refers to
second-type Jauch couples which are also non-Fourier
couples. All three classes of pairs have in common that
they are probabilistically complementary.

A careful comparison of the determinative and prepara-
tory features of the corresponding types of measurements
will show the proper status of the uncertainty relation,
that is, of the standard view. We shall turn to that in Sec.
VIII. To end the present section we show that no joint
measurement can be predictable which implies the proba-
bilistic complementarity stated above.

Let p H O{L (R ) }be a joint measurement of some given
effects Qf(X) and Ps(Y), associated with bounded value
sets X and Y. Assume now that P is predictable, i.e., there
is a vector state yHL (R) with tr[P

~
q&)(y

~

]=l. (Re-
call, in particular, that a first-kind measurement is also
predictable. ) In this case we would have (q&,Qf(X)y)= I
and (y,Pg(Y)y)= 1 for the given y. This would further
imply that both f and g have bounded supports, thus
(Qf, P&) must be a first-type Jauch couple which would
contradict their supposed joint measurability. Thus we
conclude that Qf, Pg though not complementary are pro-
babilistically complementary. Actually, although we can
destroy the complementarity of Q and P through intro-
ducing some defining ambiguities or measuring inaccura-
cies in the form of unsharp Qf and Pg we can never avoid
their probabilistic complementarity, so far as we stick to
the canonical relation P=(h /2')F 'QF. F.inally as P
cannot be predictable it follows that it also cannot serve as
a preparatory measurement, i.e., the postmeasurement or
final state Pa does not allow one to conclude that the sys-
tem possess the measured "properties" Qf(X) and Pg( Y)
with certainty. We may conclude:

Position and momentum observables Q and P can
simultaneously be measured with measuring accura-
cies which may or may not obey the uncertainty rela-

tions. In particular, uncertainty relations do express
neither necessary nor sufficient conditions for their

joint measurability. None of the possible joint mea-

surements of position and momentum observables is,
however, predictable or preparatory.

VII. COMPARISON OF THE THREE VIEWPOINTS

In the following we shall elucidate the determinative
and preparatory features of the various types of measure-
ments which the three viewpoints refer to, respectively. It
will turn out that there are considerable differences by
which it becomes possible to resolve the apparent contra-
dictions between the three views.

A. First extreme view: first-type Jauch couples

1. Determinatiue character
The relations tr[If (X)a]—tr[aQf (X)] trLI ( Y)a]

=tr[aPg( Y)] allow a determination of statistics of values,

that is, of the respective probabilities in state a. If, for ex-
ample, the state a=

~ y) (p
~

is localized in some bounded
interval X with measure p(X) &p(supp+, supp(y(q)) C:X,
then there exist bounded intervals X'DX such that their
registrations leads to the "yes" result with certainty. Ac-
cording to (6.6) the reason for the complementarity of a
first-type Jauch couple (Qf, Pg) can be said to lie in the
fact that both Qf and Ps allow predictable measurements
of sharp values (i.e., sharply defined bounded Borel sets)
whereas Corollary 3.2 tells us that there are no predictable
joint measurements for Qf and Pg.

2. Preparatory measurements

The predictability described in Sec. VIIA 1 implies the
existence of preparatory measurements in the following
sense (slightly differing from the definition given in Sec.
II): the final state of a Qf(X) measurement though only
unsharply localized within X represents a particle which
may be found with certainty in a somewhat larger set
X'=X+Af. Thus one may speak of the system as pos-
sessing an objective localization property.

B. Second extreme view: second-type Jauch couples

1. Determinative character

Let 0&EE loioer bound I Qf(X),Ps( Y) J, Pz
H O(L (R ) } defined through tr[Pza] = tr[aE]. Then
determination of the statistics for the effect E in state a
represents an estimation of lower bounds of probabilities
for Qf(X) and Ps( Y). If (Qf, Pg) is a non-Fourier couple
Pz cannot at all provide any information about sharp or
unsharp position and momentum values simultaneously
but only about probabilities. Obviously it is not trivial
that this possibility exists.

2. Preparatory measurements

According to statement (6.7) there are no pre-
paratory joint measurements. Let pz be a probabilistically
preparatory measurement of effect E, that is
tr[Pz a]tr[Pza] '&tr[Pza], or with a'=tr[Pza] 'Pza,
tr(Pza') & tr(Pza). Then there is only very little informa-
tion about the (non-Fourier couple) Qf(X) and Pg(Y) in
the postmeasurement state u': after an individual "yes"
registration for the effect E all one knows about Qf(X)
and Pg(Y) is that the lower bound for their probabilities
has become larger than it was before the measurement.
That is, one has improved one's chance of registrating
each one of these effects, afterwards.

This type of measurement appears rather strange as it
gives only probabilistic information about the system,
namely, about probabilities for position and momentum
values, but no information about the values themselves.
Actually, no experimentalist who may primarily be in-
terested in the determination of values would try to devise
a measuring apparatus for the joint measurement of such
non-Fourier second-type Jauch couple. Rather one may
interpret, if possible, some real(istic) measurement of some
other observable as such joint measurement. We shall give
an example of this in the final section.
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C. Standard view: Fourier couples

%'e have seen that there is a wide gap between the sharp
measurements which are mutually exclusive and the joint
measurements of unsharp second-type Jauch couples. In
order to incorporate into the language of quantum physics
the formal possibility of speaking about joint position and
momentum measurements with arbitrary accuracy one has
to give up all the strong determinative and preparatory
features accessible in case of sharp measurements. In par-
ticular, one cannot speak of sharp path determinations.
This is the point where the standard view comes into play.
Only Fourier couples QI, Ps provide a means to define ap-
proximate classical trajectories for quantum-mechanical
particles as has been worked out in detail by Busch.
The 1neasurement theoretic analysis performed therein by
means of models of joint measurements indicates that the
following conjectures should be valid:

The joint application of two devices suited for

minimal measurements (see Sec. II) of QI (X) and

Ps ( Y) inevitably leads to a minimal measurement of
&0

some A/s(XX Y), that is, to a joint measurement of a

Fourier couple Qy(X),Ps( Y). (7.1)

If one single apparatus is suited to be applied by

choice for a minimal measurement either of some

Qf (X) or of some Ps ( Y) then (QI', Ps ) necessarily

represents a Fourier couple. (7.2)

In both cases one inescapably runs into the uncertainty re-
lation. The proof of these conjectures would have to be
formulated by means of a general description of the
respective measuring devices and processes as dynamical
processes. Up to now there are only examples which show
the following: instruments for QI and Ps, if they simul-

taneously interact with the observed object, get mutually
influenced so that the resulting composite instrument I/s
measures a joint observable A~z and thus necessarily
respects the uncertainty relation. It is in this sense that
the uncertainty relation may be interpreted to show up an
aspect of complementarity: instruments corresponding to
complementary observables exclude each other not only in
the sense described in Sec. III but also in that they disturb
each other (if simultaneously applied) to the extent given

I

by the uncertainty relation.
Only for Fourier couples QI(X),Ps(Y) there exists a

joint observable A/s(XX Y) =E. We shall describe now
the possibilities of determinative and preparatory mea-
suretnents pE going beyond the features displayed in Sec.
VII B.

1. Determinative character

As there is a full instrument Iy, or joint observable
Af s for the effect-valued measures Qy, Ps, one may em-
ploy this single instrument II s for a determination of the
statistics

Itr[aA&s(XX Y)]W, Y~B(R)I (7.3)

2. Preparatory features

According to conclusion (6.7) there is no possibility of
performing preparatory joint measurements leading to ob-
jective sharp position and momentum values (or better,
value sets). However, the models of Busch show that
there are probabilistically preparatory measurements of
some A~z which provide a preparation of unsharp posi-
tion and momentum values. Assume that A~~ is given by
a~ ——

I p~)(y~ I
[see Eq. (6.3d)]. Let ZHB(R ) take

the form Z =Xp X Yp with Xp ——[qp —5q, qp+ 5q],
Yp = [pp —5p,pp+ 5p]. For sufficiently small 5q « hf
and 5p «« the system can be found after measurement
in a state p which (up to nor1nalization) is approximately
given by

I y«) (y« I
. That is, to the measured value

set Xp X Yp ol unsharp value (qp, hf) X (pp, «) there corre-
sponds an object state p-=I y«)(y« I

characterized

by

including the full statistics of the marginal observables

Itr[aQ~(X)]WEB(R)I, [tr[aPs(Y)]: YES(R)I . (7.4)

In the case of complementary pairs QI,Ps one has to use

two different instruments I/ and ~I . As pointed out by
Ali and Prugovecki there are informationally, or proba-
bilistically complete joint observables for which the sets
(7.3) uniquely determine the state which can never be
achieved by means of the sets (7.4). That is, the deter-
minative possibilities of instruments Iys for joint mea-
surements of Fourier couples Q&,Ps are, with respect to
state determinations, even better than those of, e.g., instru-
ments II g~ corresponding to complementary QI,Ps .

f(q —qp) «[PQ]= g—~ (4 Qf )=qo ~(Q P)=~f

X~; If;(p) I'I'-=g(p —p. ), «[PP]= g~;(A, PA)—=pp ~(»l3)=«. —
(7.5)

I.et us call a probabilistically preparatory measurement
quasipreparatory if it serves to prepare objective unsharp
position and/or momentum values as described in (7.5).
An example of such quasipreparatory instruments is given

by

IIs(Z)= f dq dp (p~, a+~) I p~ ) '(p~ I

(cf. also Schroeck; in the work of Busch' somewhat dif-
ferent expressions have been used for the same notion).

It seems that the deeper reason for the validity of the
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TABLE I. Comparison of the various types of (joint) measurements.

(Qy, Ps )
Linguistic

possibilities First-type Jauch couple
Second-type Jauch couple

Fourier couple non-Fourier couple

Formal: types
of statements

Complementarity: no joint
measurements at all
First extreme view

Joint measurements within
limits of uncertainty relation

Standard view

Joint measurements with
arbitrary accuracy

Second extreme view

Material:
content of
measuring
statements

Preparatory measurements:
objective sharp values

Determinative measurements:
statistical information about
sharp values and their probabil-
ities

Quasipreparatory joint measure-
ments: objective unsharp values

Determinative joint measurements:
statistical information about
unsharp values and their probabil-
ities

Probabilistically preparatory
joint measurements: objective
lower bound estimations for
probabilities, no information
about values
Determinative joint measurements:
statistical estimative
information only about probabilities,
not about values

Similarity
to classical
language

- formally: type of statements
materially: content of statements

conjectures (7.1) and (7.2) evaluating the significance of
the uncertainty relation lies in the existence of
quasipreparatory measurements among the minimal pro-
babilistically preparatory measurements of Q~ and Pz,
respectively: Combination of two such instruments can-
not destroy that quasipreparatory character (only the
preparatory nature gets lost if it was there) so that in the
final states both unsharp position and momentum values
are objectified. At this point the probabilistic uncertainty
relation for states and the individualistic uncertainty rela-
tion for unsharp values come into close connection (cf.
four pages earlier).

To conclude this section we shall summarize the most
important distinguishing features of the various types of
pairs Q~, P& and their measurements (see Table I). By in-
troducing the extended frame certain formal restrictions
contained in the language of the standard frame can be
weakened, namely, the complementarity of, e.g., position
and momentum observables; language becomes more simi-
lar to classical language in this respect as one may talk
about joint measurements of (probabilistically) comple-
mentary observables. However, there is a price to be paid
which consists in a loss of informational content of the
measuring statements: In case of joint measurements it is
no longer possible to speak of objective sharp values but
only of objective unsharp joint values (respecting the un-
certainty relation) or even of estimative probabilities.
Thus the nonclassical nature of the quantum language
remains preserved.

Finally we give a formulation of the three views which
shows that they may be interpreted consistently to point
out three different aspects of complementarity, or of the
nonclassical nature of the quantum language:

ments which could prepare both sharp position and
momentum values.

(2) Second extreme view: It is possible to perform joint
measurements of position and momentum with arbitrarily
small inaccuracies, namely, by means of second-type
Jauch couples; but such measurements at best are proba-
bilistically preparatory and neither preparatory nor
quasipreparatory.

(3) Standard view: If instruments for (quasi-)prep-
aratory position and momentum measurements are com-
bined then the resulting measurement is a quasipreparato-
ry joint measurement obeying the uncertainty relation.

If formulated in such detail there obviously is no longer
any contradiction between the three viewpoints.

VIII. AN EXAMPLE AND CONCLUDING REMARKS

fQ(q)=
I m(q) I' gQV &=

I q(p& I'=g 9» (8.1)

with p having bounded support [—qQ, +qQ]. Further, letf be a distribution function with supp(f)=R, e.g., a
Cxaussian. Then a simple estimation shows that to any
bounded XHB(R) there exists a XQLX, XQHB(R) such
that

To show how a measureinent of a joint effect
3f g (XQ X FQ ) connected with a Fourier couple (Q~,Pg )

may be interpreted as joint measurement of a non-Fourier
'

second-type Jauch couple Q~(X),Ps(F) we take fQ, gQ and
f,g as

(1) First extreme view: Instruments for first-type Jauch
couples are mutually exclusive; there are no joint measure-

vx (q) & v~(q) for all q HR .

Together with the representation

(8.2)
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Qf(X)= I dq f(q)Q(X+q)=vz(Q)

this gives

Qf (Xo) &Qf(X) .

(8.3)

(8.4)

Moreover, for arbitrary bounded Yo, YCB(R ), Yo C Y, we
have

Pg, (Y()) &Pe(Y) .

Taken together

Af e (Xo)& Yo)&lower bound I Qf(X),Pg( Y)] .

(8.5)

(8.6)

Although a probabilistically preparatory measurement of
Af g (X 0& Yo) may be quasipreparatory with respect to
the Fourier couple Qf +e it never can be so for both

members of the non-Fourier second-type Jauch couple
Qf, Pe. In particular bfAg may be chosen arbitrarily
small below h /4n.

Finally, we should mention an attempt by Park and
Margenau to prove the second extreme view. They em-
ploy the time-of-flight method as an example for a joint
measurement of position and momentum with arbitrary
accuracy. This attempt has been refuted by Jauch as well
as by de Muynck et al. ' We try to give a formal recon-
struction of the argutnent in order to show up the point
where it fails.

Take a vector state y which is localized in some bound-
ed region of space, that is, there exists a d & 0 such that
y(x)=0 for ~x

~

&d. Let U, =exp[ —(1'2~/h)(1/2m)P t]
be the free time evolution of operator, and denote
y, = Uy. Then

tr aQ(X)U,+Q PIt P2~
9

~ «[aQ(X)P((pi, p2))Q(X)]&~ oo
(8.8)

for all a in T, (H) 1+, that is,

present paper: Only the determinative aspect is relevant
and allows Park and Margenau's conclusion. However, if
one takes into account the preparatory aspect, that is, a
stronger concept of measurement which still seems to be
consistent with the quantum-mechanical formalism then,
as emphasized by Jauch and de Muynck et aI. , it is not
admissible to speak of joint position and momentum
values as possible properties of a physical system. Thus
according to the view taken also in the present investiga-
tion the time-of-flight method fails to serve as an example
of the second extreme view.

We wish to emphasize further that the existence of a
vector state q& C H 1 for which (p, Q(X)y) = 1 and
(y,P(Y)qr)&0 (for given bounded value sets X and Y), as
demonstrated by Park and Margenau, does not contradict
with the fact that Q (X) h P ( Y) =0 [for any two bounded
X, Y&8(R)] which, in our approach excludes the joint
measurements. Furthermore, it is also fully consistent
with probabilistic complementarity (3.1) of position Q and
momentum I'.

To see which observables according to our approach
really become approximately equal, we write (8.7) in a
modified form. Let X=[—d, +1]. Then

(qi, P{(pi,p2) )y) =(q f,P((pi,p2) )yg )
Q(X) U,+Q

Pl fPl
U, Q (X)

( pit p2t= 11111
/ +1,Qfico f71 Pl

(8.7)

holds. In this sense the observable F(Q)—:(m/t)Q ap-
proximates the observable P for taboo. Now Park and
Margenau claim that, since in quantum mechanics only
probabilistic predictions can be made, no further justifica-
tion than (8.7) is needed for the interpretation of the mea-
sured values of F(Q) as momentum values. But then one
would have simultaneous arbitrarily sharp values for posi-
tion and momentum. However, essentially for the same
reason (i.e., the probabilistic nature of quantum mechan-
ics) Jauch and de Muynck et al. ' argue that it is not pos-
sible to identify the values of F(Q) as momentum values.
This paradoxical situation "ontradictory conclusions
from one and the same premise "an be explained by tak-
ing into account the different interpretational background
of the two parties. For Park and Margenau the measured
values of observables have nothing to do with possible
properties of physical systems which implies that their no-
tion of measurement is weaker than that used in the

~Q(X)P((p i,p1) )Q(X) (8.9)

as t —+co, weakly. On one hand, from this it becomes
clear how the time-of-flight method represents an intuitive
illustration of the concept of momentum, or velocity
However, on the other hand, it is seen that strictly speak-
ing there is no approximation of momentum by means of
some function of position.

An argument similar to that of Park and Margenau has
been given by Ballentine in terms of the slit experiment
which essentially is the same type of experiment as the
titne-of-flight experiment: A localization (slit), followed
by waiting, then again localization (screen). For the same
reasons as above the assignment of some calculated
momentum value is ad hoc and has nothing to do with a
momentum measurement.

So we are left with the type of example given in the first
part of this section: According to quantum theory there
are (probably) no joint measurements violating the uncer-
tainty relations which give sharp values but only such
measurements which yield probability estimates for pairs
of sharp values.



Note added in proof: After a correction in the paper by
Busch (Ref. 18, to be published in J. Math. Phys. ), state-
ment (6.6b) can no longer be held up. However, the line of
argument in Secs. VI to VIII in the present paper remains

true if second-type Jauch couples (QJ,Ps) are defined as
follows: there exist bounded X, YHB(R ) such that

ran [QJ(X)'~ ]Aran [Ps(Y)'~ j&IOI .
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