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Conditions which may lead to a freezing of the motion of a system under continuous observation
(the so-called "Zeno paradox" or "watchdog effect") are examined. The measurement process is
treated phenomenologically by the usual wave-packet reduction as well as in a more realistic way by
including the measuring apparatus. For this purpose a model for an ideal measurement process is

employed, following an example given by von Neumann. The resulting behavior varies between

complete freezing and a mere suppression of interference terms and constant transition rates as
represented by a master equation {rate equation). The most familiar example of the latter is Fermi s

golden rule, with integration leading to exponential decay. Reviewing and extending the derivation
of the Pauli master equation, the conditions leading to constant transition rates are discussed. The
importance of the interaction with the natural environment for establishing a master equation is em-

phasized. Some consequences for the derivation of macroscopic equations of motion and for the
physical foundations of superselection rules are pointed out.

I. INTRODUCTION

It seems to be a trivial observation that there exist no
completely isolated objects in our world. Usually the in-
teraction with the environment is thought either to be
"controllable" or negligible. In particular, macroscopic
systems are strongly coupled to their environment: macro-
scopic objects cannot avoid emitting (and absorbing)
thermal radiation. Gravitation yields another long-range
interaction, which strongly couples macroscopic objects to
their surroundings. So in a sense the environment records
the state of the system under consideration, as does a
measuring apparatus. Therefore, macroscopic systems
must be considered as "continuously measured" by their
environment. An example is the position of a macroscop-
ic body. It is inevitably measured by scattering of pho-
tons. In classical mechanics the back-reaction of such a
measurement on the system can be thought of as being ar-
bitrarily small. This is quite different in quantum
mechanics, where the collapse of the state vector in gen-
eral modifies the evolution of the measured system. This
collapse describes the effect of measurement phenomeno-
logically.

Extending the quantum-mechanical description by in-
cluding the environment into the formalism instead leads
to a "dislocalization of phases. " In the example of photon
scattering, interference terms connecting different posi-
tions become unobservable at the macroscopic body itself,
though still existing in the whole system. This was first
discussed by von Neumann in his theory of the measure-
ment process. '

Owing to the nature of quantum correlations the
dynamics of a system in interaction with its surroundings
cannot be described by a Schrodinger equation for the sys-
tem alone (not even a time-dependent one). As a conse-
quence, it is not realistic to use the Ehrenfest theorem on
the time dependence of mean values to justify classical
motion for macroscopic bodies, since it presupposes the

validity of a Schrodinger equation. Instead one has to
solve the Schrodinger equation for system plus environ-
ment and then "look at" the system of interest, which for
this purpose is described by its density matrix.

Continuous measurements give rise to two different, al-
beit connected, effects.

The first is destruction of interference terms in the basis
of the "observable" according to the usual collapse as-
sumption. Repeated measurements thus lead to a per-
manent suppression of phases in this basis. On the other
hand, the absence of interference terms plays a decisive
role in the derivation of master equations in irreversible
statistical mechanics. A special case of such a rate equa-
tion is Fermi s golden rule, where integration leads to the
exponential decay law. Destruction of interference terms
and constant transition rates are usually achieved by using
the "random-phase approximation. " The interaction with
the environment may give a physical mechanism to ex-
plain the validity of this assumption and in particular may
define the basis in which the density matrix becomes diag-
onal. The same mechanism can be employed to derive su-
perselection rules. Because of the interaction with the en-
vironment some interference terms may become unobserv-
able '

The second, by now well-known, effect is the so-called
"Zeno paradox" or "watchdog effect." It has been
shown" that the motion of a continuously measured sys-
tem may become frozen, i.e., its internal dynamics are (in
the extreme case) totally suppressed. This apparently
surprising effect is obviously not relevant for most sys-
tems under measurement. For example, decaying atoms
or nuclei behave according to a master equation, i.e., their
transition rates are independent of their environment
(Fermi's golden rule).

The main subject discussed in this paper is the follow-
ing: How are these two effects related to one another?
Which types of systems show the watchdog effect and
what distinguishes them from systems behaving according
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The resulting state of the whole system still contains in-
terference terms between different n. However, they are
unobservable locally, that is, at the measured object, if the
corresponding "pointer positions"

I P„& are orthogonal.
This can be seen from the density matrix p„m for the mea-
sured object,

pnm =cncm &0m I 0n &

= Ic„ I25„ if &P IP„&=5„ (1.3)

Since the phase relations between different coefficients c„
are still present in the whole system, they may now be
called "dislocalized. " The assumption of ideal measure-
ments, however, is by no means essential for the effect of
dislocalization since all interactions will induce correla-
tions into an initial product state. As will be discussed in
the following sections, this may have different dynamical
consequences depending on the strength of the coupling to
the environment.

Section II summarizes the main features of the watch-
dog effect, including a simple model for the measurement
process on a two-state system. Section III recalls the
essentials of Pauli's derivation of a master equation and
then extends the model of Sec. II in an appropriate
manner. There the difference between the two situations
can be clearly recognized. In Sec. IV the importance of

to some master equation?
The measurement scheme used in the following is the

so-called "ideal measurement. " The interaction Hamil-
tonian is chosen in such a way that the measured system
influences the "apparatus" (environment) without signifi-
cant back-reaction. Many interactions of simple systems
with their environment are approximately of this type.
For example, a scattered photon will carry away informa-
tion on the location of the scattering object, or, if the
scattering amplitude depends on polarization, on proper-
ties like handedness (chirality) of a molecule. Such mea-
surementlike processes will lead to a destruction (or rather
"dislocalization") of phase relations. Interference terms
become locally unobservable. The general features of this
mechanism can be sketched as follows.

An ideal measurement of some state
I y„& of the mea-

sured object leads to a correlated state
I p„& of the

measuring apparatus (with initial state
I $0& ),

lv. & IA&

While the state of the object has not changed (hence the
term ideal measurement), information about the "quan-
tum number n" has been transferred to the environment.
Following von Neumann' a model for such an ideal mea-
surement can easily be constructed by using an interaction
Hamiltonian, which is diagonal in the basis of the

I
q&„&.

This in turn defines dynamicalIy the observable, which is
is measured by the apparatus. Explicit examples are given
in the following sections.

If the measured object is initially in a superposition of
different states with amplitudes c„, the superposition prin-
ciple immediately leads to

(1.2)

the interaction with the environment is discussed. It also
contains some remarks concerning the dynamical founda-
tion of superselection rules and the measurement problem
of quantum mechanics.

II. THE VfATCHDGV EFFECT

What is the general behavior of a system which is re-
peatedly measured in short time intervals? The simplest
argument runs as follows. Let

I P & be the state of the sys-
tem at t =0. The probability of not finding the state

I P &

at the (small) time ht ("decay probability" ) is

where

(2.1)

P—+P'=n
2

24t, (ht)
Pl 7l

(2.3)

In the limit n ~ oo one has P'=0. So the internal dynam-
ics of the system under measurement is totally suppressed.
Some authors called this "Xeno's paradox in quantum
theory. " ' It was often regarded as contrary to experi-
ence. Thereupon unfounded conclusions on the complete-
ness or interpretation of quantum theory were drawn.
But the effect can be shown to be present in simple situa-
tions, e.g., by repeated measurements of the polarization
of a beam of light passing through an optically active
medium.

In this argument the measurement process has been
treated phenomenologically. A more realistic approach
incorporates the measuring apparatus into the quantum
formalism. The following model is built in analogy to an
example given, by von Neumann' for an ideal measure-
rnent process.

The measured system is a two-state system with Hamil-
tonian

H. = v(
I
»&2 I+ I

2&& I
I

) . (2.4)

The measurement apparatus consists of a one-dimensional
mass point, which is moved to the right or left, depending
on the state of the measured system. The Hamilton
operator of the whole system then reads

=I'(
I
1&&2I+ I2&&1I )

+yp( I »&1I —I2&&2I), (2.5)

where p is the momentum operator of the pointer and y a
coupling parameter. A similar model was discussed by
Kraus, where the name "watchdog effect" was intro-
duced. The model has the exact solution

(2 2)

Because of the quadratic time dependence a repetition of
the measurement, e g , n . ti.mes during ht, reduces P(ht)
according to
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e '"-'= —' ' „[v'
I

1& &1
I
+(Q y—P)'12& &21+«Q y—p)( I

1 & &2
I
+

I
» & 1

I )]
Q(Q —yj)

+ ' [v I
1&&1

I
~(Q+yp) I»&2I —«Q+yp)(l»&2l+12&&ll)],

Q(Q+ yp )
(2.6)

p»(t)= V't'+O(t') . (2.15)
Q—:[V +(yp) ]'

For the initial state
I

1 &
I P & one finds

I
f(t)&= cosQt — sinQt

I
1&

I P&Q

4

sinQt
I

2&
I P& .

Q

(2.7)

(2.8)

The linear behavior of the transition probability in (2.14)
in contrast to that in (2.15) will prove to be one of the cen-
tral points in the following discussions, especially for the
derivation of master equations in Sec. III.

The above result may be further illustrated by an expli-
cit example. Choosing for simplicity a rectangular wave
function with width 8 for the pointer

f dx'P(x')
I

2& (2.9)

In view of the watchdog effect in this paper interest will
concentrate on the case of strong coupling to the measur-
ing apparatus. It is then appropriate to use the Born ap-
proximation with Ho as "perturbation. "

Let the wave function of the pointer at t =0 be P(x)
and the measured system be in the state

I
1&. The Born

approximation to lowest order yields then

I g(t) & =f dx
I
x & P(x —yt)

I

1 &

P(x) = 0 ——x 0 —+x1 8 ' 8
va 2 2

one finds

p22(t)= '

V' t2 — 't2y 3 18
38 ' 2y

18 1 8 18V2 t& ——
2 y 12 y2

' 2 y

(2.16)

(2.17)

The behavior of the measured system is given by its densi-
ty matrix pg~.

(2.10)

lg(t)&—=
I

1& IP)&+ I2& leap&

The term p22
——(p2 I p2& in this case represents the transi-

tion probability from
I

1& to
I
2&. Writing

p22(t)= fdx
I
$2(x, t)

I
(2.12)

Pz(x, t) = f dx'P(x'),
2y x —yt

(2.13)

one easily verifies that p22 depends linearly on time as
soon as P(x yt) and P(x+yt) have —negligible overlap,
i.e., when yt &B, where B is the width of P(x). The main
contribution to the integral (2.12) then comes from a re-
gion with constant height (m V /2y )

I
P(0)

I
[where P(p)

is the Fourier transform of P(x)] and width growing as
2yt. The Horn approximation on the other hand requires
Vt « 1. Consequently this linear behavior

V2
(2.14)

is restricted to time scales B/y & t « 1/V (hence
BV/y«1 is required for consistency). For very small
times one has of course

Ro ——v(
I

1&(2
I
+ I

2&(1
I
)+e

I
2&(2

I
(2.18)

Now the behavior of p22 is given in the linear region by

2 2
mV

p22(t) =
y . 2y. (2.19)

As a function of y, p» obviously need not decrease as 1/y
except in the limit y~ oo (which is the extreme watchdog
effect). Instead, depending on the special shape of P(p)
there exist regions, where an increase of the coupling y
leads to an enhancement of p22.

" This outcome can again
be explicitly demonstrated by the example of a rectangular
wave function for the pointer. Now the result is

As can be seen from (2.14) or (2.17) the watchdog effect
causes the transition probability to decrease with 1/y for
t)B/y (note that B/y characterizes the time between
two measurements in the phenomenological approach).
This result parallels the situation described by Eq. (2.3).
It is important to realize that the watchdog effect is not
produced by disturbing the measured system in a classical
way, as is demonstrated by this model, which describes an
ideal (passive) measurement.

However, the suppression of transition probabilities
with 1/y does not represent the general behavior of sys-
tems under continuous measurement, as can be seen by ex-
tending the above model.

In IIoof Eq. (2.4) di'agonal elements are absent in the
measurement basis. To be more general Ho is replaced by
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4V 2y . 1 . 2et ysinet +—sin —+ t(1+cosset)
1B

Be 2y
pu(t) = ~

4V — -cos1 2Be
2 4y

2y . Be 2y . 2Be 1B
sin- + ~ tsin

2y Be

(2.20)

The crucial linear term shows very distinctly the non-
monotonic y dependence as well as the limit pz2- I jy for
P~ QQ ~

The results of this simple model may be summarized as
follows.

(a) Coupling of a two-state system to a measuring ap-
paratus changes the transition rates of the system com-
pared to that of the free evolution. In general, transitions
can be enhanced or suppressed. In the limit of strong cou-
pling the transitions are always inhibited by a factor 1/y
(watchdog effect "orresponding to Zeno's paradox in the
phenomenological approach).

(b) The relevant parameter is y/8, where 8 is the width
of the pointer wave function. It is a measure for the "ef-
fectivity" of the measurement, or the inverse of time inter-
vals between two measurements.

(c) For times t )B/y, as long as the Born approxima-
tion is valid, pzz is (approximately) proportional to time,
i.e., the system has constant transition rates, but these are
influenced by the measurement and for eB/y ~& 1

suppressed by a factor -8/y.
(d) Coupling to a measurement apparatus thus leads to

a masterlike behavior (regarding time dependence), but-
in contrast to the usual master behavior —the transition
rates here depend on the dynamics of the system itself as
well as on the coupling to the environment.

Pauli's work also contains some remarks which may be
understood in this way:

".. . um dagegen den zeitlichen Ablauf irgendeines Vor-
ganges zu erfassen, muP ein System stets als durch
irgendwelche Apparate messend verfolgt, d.h. als
unabgeschlossen angesehen werden. " ".. . werden im
allgemeinen die Beobachtungen selbst cine solche Regello-
sigkeit begunstigen. "'

aE+a'E'
V..., I

aE)(a'E'I, (3.1)

where cx is supposed to distinguish between macroscopi-
cally different properties. Microscopic degeneracy is
neglected for simplicity.

The most general initial state with property ao is

In view of the previous section one may ask whether for
systems with many degrees of freedom the watchdog ef-
fect plays a similarly dominant role. This will be exam-
ined by extending the model of Sec. II. For comparison
the central points of the usual derivation of a master equa-
tion will first be recalled.

Consider a many-state system with Hamiltonian

H=+E
I
aE)(aE

I

III. MASTER BEHAVIOR I
P(0) ) =P c & (0)

I
aoEO) . (3.2)

A master equation in the context of quantum mechan-
ics was first derived by Pauli. ' A characteristic of master
dynamics is (beside constant transition rates —see below)
the permanent omission of nondiagonal elements of the
density matrix in a given basis. Usually this is achieved
by applying a random-phase assumption. As mentioned
in the Introduction, this may find its justification in the
interaction with the environment (see also Sec. IV).

c ~(t)= g V(*z, ~0
E ~E

—iE0t;Et
c ~ (0) (3.3)

and therefore the diagonal part of the density matrix is

The amplitude at time t for a state
I
aE) with a&ao is in

the Born approximation given by

p(aE, aE, t) =
I
c z(t)

I

z= g p z & V"

I~E

-' 0' -iE&e —8
~EO~ iEt

c ~,(0)c', , (0) . (3.4)

At this stage usually a random-phase assumption for the coefficients c ~ (0) is applied in order to replace in (3.4) the
initial density matrix p(aoEo, aoEO, O) =c ~ (0)c*, , (0) by a diagonal one. Because of the large number of nondiago-

nal terms, this procedure may only be justified by the presence of the resonance factors. The approximation can be im-
proved by using a random mixture of many initial states or by summing over final states. For further discussion see also
Sec. IV. Then

sin (E —Eo)t /2
p(aE aE t) =4 g I

& s. ~, I

'
(E —Eo)' (3.5)

%writing this sum as an integral, one gets
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sin (E E—o)t/2
p(aE, aE, t) =4 I dEoa. (E, )1 V(aE,a~o)1', p(a+„a~o,0),ao (E —Eo)

(3.6)

p(aE, aE, t)= =+A~~ (E)p(a'E, a'E, t), (3.8)

A~~ (E)=2mcr~ (E)
I
V(aE,a'E)

I
for a&a' . (3.9)

Integration of this master equation requires the random-
phase assumption to be valid repeatedly after time inter-
vals b,t»1A. In particular, interferences between dif-
ferent values of macroscopic properties a are assumed to
be absent although they would have to occur according to
(3.3), if there are transitions at all. Only then an auto-
nomous dynamics for the diagonal part of the density ma-
trix can be established. We shall return to this point later
on.

It is important to realize that —in contrast to the situa-
tion with watchdog behavior —the linear time dependence
of the transition probabilities is caused here by summation
over many states with slightly different energy.

where o. are level densities. If

a,(Eo)1 V(aE, aoEo)
I
'p(aoEo aoEo 0)

is approximately constant over a range of E—Eo larger
than the width 1/t of the resonance factor, then the latter
may be replaced by a 5 function

sin (E—Eo)t/2 ~—t5(E —Eo) . (3.7)
(E Eo)2

If the width of this "range of constancy" is called ~, then
(3.7) is valid for t»1/a. v is roughly given by the in-
verse square root of the second derivative of o.

I
V

I p at E,
as may be seen from the Taylor expansion.

Starting more generally with a mixture of different
macroscopic values a leads to time "derivatives" (mean-
ingful only for t »1/a), which are given by

In Eq. (2.3) the watchdog effect was due to the quadra-
tic time dependence for small times. This general argu-
ment is still valid. Therefore, if the absence of macro-
scopic interference terms, as implicitly assumed by the
Pauli equation, is to be explained by continuous measure-
ments, these have to occur within sufficiently large time
intervals.

In these considerations the measurement was described
phenomenologically by the collapse. In order to study the
influence of measurements nonphenomenologically by a
von Neumann-type interaction, the model of Sec. II will
now be extended in a straightforward manner.

The Hamilton operator is in analogy to (2.5):

a =g E
I
aE & (aE

I
+ g v..., I

aE &
(a'E'

I

aE+a'E'

+g y(a, E)p
I
aE & (aE

I
(3.10)

10(t)&=+ laE& lk E(t)& (3.11)

the initial state is

I
W(0) & =

I
aoEo & 14 & (3.12)

and the Born approximation with respect to V E E
yields for a&ao

where the pointer acts as a measuring apparatus if y(a, E)
is a nonconstant function. Corresponding to the above
treatment macroscopic measurement is supposed to
discriminate only between different a, that is y=y(a).
To simplify notation in the following calculations we will
first deal with the case of an eigenstate

I
aoEo & as the ini-

tial state. The extension to the general case [correspond-
ing to Eq. (3.5)] is then straightforward. Assume
1'(ao)=0. Let the wave function of the pointer be p(x).
Writing

& E,a~,
P~E(x, t) = i —exp

y(a)
i (E —Eo)— X

x —IEot ck exp
y(a) x —y(,a)t

J

i (E —Eo)z
p(~) .

g a (3.13)

The diagonal part of the density matrix is

B
t for t» ya

p(aE, aE, t)=(P E(t) IP E(t)&
2

I VaE, a&@ I
~
E Eo-

y(a) y(a)
(3.14)

where again P(p) is the Fourier transform of P(x), which has width B [compare Eqs. (2.14) and (2.19)].
Hence the transition probability into a single state is again linear due to the measurement. This is identical with the

corresponding result of Sec. II. The m.ain difference here is the existence of a host of states with different energy.
Replacing the single initial state by a mixture of states with the same ao (again assuming random phases for different

Eo) one gets
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EEo) (Eo)
P(aE,aE,t)=g (P E (t)

I
ttt E' (t) &P(aoEo apEo 0)

Eo

=2mt f dEpo, (Ep)
I vaE, aoEt) I E —Eo

y(a) y(a) p(apEo apEo o)

2~tI v E ~ I
a (E) if y(a) (3.15)

where y(a)/B is the width of P in energy units and tt. is again the range of constancy of cr
I

V
I

p(Ep). Thus Pauli's re-
sult has been recovered while the coupling parameter y(a) has disappeared due to the summation. The latter result was
obtained because after the substitution Z =(E Ep)!—y(a) in (3.15) only the slowly varying product (7

I
V

I
p(Ep) would

implicitly depend on y(a). This dependence could be neglected in the last step of (3.15) by assuming a sufficiently broad
"pointer" wave function P.

Equation (3.15) was derived for the "linear watchdog range" t »B/y(a) assuming B/y(a) » I/a. . Pauli's derivation
required only t » I/a. In order to discuss the whole range of linearity it is more appropriate to use the momentum rep-
resentation, for which the Born approximation reads

(zE

—i[E+y(a)p)t

i [E—E()+y(a)it]t
VaE, a~, e

E E,+y(—a)p
(3.16)

The diagonal part of the density matrix is then [instead of (3.14), but without the additional assumption t »B/y(a)] for
asap given by

p(aE, aE, t)=(p E(t)
I

ttt E(t))
sin t [E Ep+y(a—)p]t/2I

dpldp I'
[ E ( ) ],

For the initial density matrix p(apEp, apEp, 0) the result is then

sin I [E Ep+y(a)p—]t/2IP(«« t) =4 f dEodP a.,«o)
I
v.E,.~, I

'
I 4(P) I

' p«pEo apEo o) .
[E Eo+ y(a)p—]'

The questions to be discussed are as follows:

(3.17)

(3.18)

(1) Under what circumstances is p(aE, aE, t) linear in time as is required for master behavior.
(2) When are the resulting constant transition rates independent of the coupling to the environment, that is, indepen-

dent of y(a) and B?

Substituting z =E —Ep+y(a)p yields

i t/2
p(aE, aE, t)=4 f dzdp

I P(p) I'o
I VI p(E —z+y(a)p) z' (3.19)

One first notes that the time dependence is given by the
z integral. Therefore, it is appropriate to write

p(aE, aE, t)= f dzA(z)
'

2
(3.20)z'

A(z) =4 f dp14(p) I'a
I

V I'p« —z+y(a)p)

and to discuss the shape of the function A(z).
To get linear behavior, the width of A(z) must exceed

the width of the resonance factor, that is

width (A) »—.
1 (3.22)

The width of A(z) is given by the overlap of
I P(p) I

which has width 1/B, and tr
I

V
I

p(E —z+yp) which is
shifted by (E —z)/y and compressed by a factor 1/y

when considered as a function of p. If the width of
(T

I

V
I p(Ep) is tt., then the width of A(z) is roughly given

by

width (A) = max y(a)
8 (3.23)

With these preliminaries the two extreme cases can be
pictured as follows.

Case I: a. «y(a)/B. One finds linearity for times
t »B/y(a) accompanied by a suppression of p(aE, aE, t)
by a factor 1/y(a) (because (TV p is compressed by this
factor). In this case the measurement by the environment
has a great influence on the system (watchdog effect).

Case 2: ~&&y(a)/B. p(aE, aE, t) is now independent
of y(a)/B. Linearity is obtained for times t » I/tt. . This
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corresponds to master behavior in accordance with the
usual results.

So the question of whether a system shows master
behavior or the watchdog effect can be decided by inspec-
tion of the properties of the system (in this model mainly
characterized by the parameter x.) and the properties of
the measurement by the environment (here given by y/B).

The remarkable y independence of the result (in case 2)
is caused by the summation over the various states with
different energy, which smears out the y dependence of
the individual transitions. The reason that cancellation
can occur is that the coupling to the environment does not
always lead to a suppression of the transitions as in the
case of extreme watchdog effect or of degeneracy [com-

I

pare (2.14) and (2.19)], but also can give rise to enhanced
transition probabilities. This can again be illustrated by
employing the example of the rectangular wave function
(2.16) and considering the linear term [compare (2.20)]

y(a)t
p(aE~aE~t)

I
linear=4

I
VaE, a(pp I B(E E—o)

B (E —Ep)
2y(a)

(3.24)

p(aE, aE, t) does not depend monotonically on y (except
for y~ec). Therefore, the summation over an ensemble
of initial (or final) states may give a y-independent result:

y(a) sin [B(E —Eo )/2y(a ) ]p(aE, aE, t)
I i =4 t dEotJa (Eo)

I VaE, a~ I

'
p(aoEo, apEo, 0)111C8r P P (E E )2

=2mto,
I
-Va~a&

I
if 1~» y(a)

(3.25)

So far we were concerned with the diagonal part of the density matrix. But in order to justify a master equation for
macroscopic properties a the absence of interference terms between different a is essential.

This suppression of nondiagonal elements with respect to a can easily be demonstrated in the model under considera-
tion. Let again the initial state be

I
apEp) (a member of the ensemble with property ap). Then for a&ap the density

matrix is given by

E Ep+ y(a)p—
—i [E—Eo+y(a)p]t

p( E, oEo, t)=(P ~, I4' )=V, ~, J 4 lk(s») I' (3.26)

For times t »B/y, where master behavior for the transi-
tion probabilities was found, this expression is of the order

according to a master equation and therefore can be called
"macroscopic. "

E —Eo
p(aE, apE p, t) —VaE 'ya ya

&&aE, g
y(a)

2

(3.27)

So interference terms first grow and then approach a
constant (and small) value in the linear (master) region.
Therefore, the build-up of interference terms between ma-
croscopically different properties is inhibited by the mea-
surement as expected.

To sum up:
(1) Coupling of a many-state system to a measuring ap-

paratus again yields constant transition rates.
(2) While the individual transitions are still influenced

by the coupling to the surroundings, the existence of a
very dense energy spectrum allows the cancellation of the
effect on individual states, therefore leading to transition
rates, which are independent of the coupling to the envi-
ronment.

(3) The destruction of interferences between macroscop-
ically different states allows integration of the resulting
master equation.

(4) Properties of the system in combination with charac-
teristics of the interaction with the environment define
which properties of the system under consideration behave

IV. CONCLUDING REMARKS

The interaction with the environment, which is present
for all physical systems, may have great influence on the
behavior of some systems, as is exemplified by the watch-
dog effect. In addition, more common effects are ex-
plained by such mechanisms, as the discussion of Pauli's
master equation has shown. Usually master equations are
derived by considering only the system itself and applying
suitable assumptions (such as random phases) and
(inessential for our discussion) approximations. The sub-
stantiation of the additional assumptions which are neces-
sary to derive irreversible equations of motion from rever-
sible dynamics, is an old problem of statistical mechanics
since Boltzmann used his "Stosszahlansatz" for deriving
entropy increase. These difficulties are more fundamental
in quantum mechanics. As is well known, a master equa-
tion is incompatible with the validity of a von Neumann
equation for the system under consideration. ' However,
a system in interaction with its environment does not in
general obey a von Neumann equation. Instead, as the
model of Sec. III has shown, constant transition rates are
possible, while interference terms are negligible because
they are destroyed by the measurement. Then an initial
random-phase assumption is necessary only for rnicroscop-
ic degrees of freedom. In most treatments this distinction
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is not made. However, assuming a Schrodinger equation
necessarily leads to a build-up of phase relations between
macroscopically different properties (provided there are
transitions at all), so master dynamics would be impossi-
ble. At the same time the interaction with the natural en-
vironment defines the basis where interference terms be-
come negligible. The corresponding properties of the sys-
tem may then be called macroscopic.

The interaction with the surroundings can also have ef-
fects on systems which are not obviously macroscopic.
For example, optically active molecules like sugar are al-
ways found in right- or left-handed configurations, never
in eigenstates of the Hamilton operator of the mole-
cule. ' Interferences between these chiral states cannot
be observed, because the scattering of photons (measuring
of handedness) dislocalizes the connecting phases. In this
case the dislocalization of phases has also been described
as a time-independent correlation. ' However, such corre-
lations merely seem to describe a "dressing" of states by
static fields that should be accompanied by a correspond-
ing renormalization of observables so that superpositions
could still be observed. The disappearance of interferences
as discussed in this paper is an irreversible process. The
unavoidable interaction with the radiation field also has
the consequence that interferences between different posi-
tions of macroscopic objects, which necessarily emerge in
measurementlike processes (compare Schrodinger's cat)
are unobservable at the macroscopic body itself. This is a
more realistic argument than merely to say that the in-
terference pattern would be very minute due to the short
wavelength. This in effect leads to a superselection rule,
which in these cases need not be postulated, but can be de-
riued from the dynamical behavior of the local density ma-

trix. A basic presupposition for this mechanism to
work is a special (e.g., separating) initial state. Only then
the phases are dislocalized "forever" because of the long
Poincare times. The relevant Poincare times are not only
those of the pointer interacting with the measured system;
the pointer itself is coupled to its surroundings and so on.
Hence the effective Poincare times become those of the
whole universe. This immediately leads to cosmological
considerations and the supposed connection between the
cosmological and the thermodynamical arrow of time. '

Superselection rules for macroscopic objects, which in a
sense limit the validity of the superposition principle of
quantum mechanics, may be a hint for solving the mea-
surement problem. The disappearance of certain interfer-
ences is a basic consequence of the nonunitary collapse of
the state vector. However, as long as the Schrodinger
dynamics (hence the superposition principle) is accepted
for the whole system, the nonlocality of quantum mechan-
ics does in general not allow states of subsystems. There-
fore, such a solution would require fundamental changes
in the formalism. One can only hope to achieve further
progress by a deeper understanding of the physical con-
ceptions and mechanisms underlying the measurement
process.
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