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Vacuum (P ) in Schwarzschild spacetime
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For a conformally coupled scalar field we calculate the renormalized value of (P ) for the
Hartle-Hawking vacuum in Schwarzschild spacetime for the region exterior to the horizon. We
find that the mode-sum expression for (P )„„separates naturally into two parts, a part that has a
simple analytic form coinciding with the approximate expression of Whiting and Page, and a
remainder that is small. We evaluate the remainder numerically and also provide an analytic ap-
proximation to it. Our results agree with, but are substantially more accurate than, those previously
given by Fawcett.

I. INTRODUCTION

In this article we examine, for the case of a conformally
coupled scalar field, the renormalized value of (P ) in the
Hartle-Hawking vacuum for the region exterior to a
Schwarzschild black hole. We regard this calculation as
an exercise preparatory to the computation of the renor-
malized vacuum expectation value of the stress-energy
tensor, to which we shall return elsewhere, but which is
also interesting in its own right since the expression we
obtain for (P ) divides naturally into two parts:

1 [1—(2M/r) ] h(r)
12(8mM)' (1—2M«) (8~M)

where the first part, as has been noted by Page, ' may be
written in the interesting form

1 [1—(2M/r) ]
12(8aM) (1—2M/r)

where

required to maintain a constant radius r.
Equation (1.2) provides an appealing physical interpre-

tation for the first term on the right-hand side (RHS) of
Eq. (1.1). The term —,', T~, having the same form as

(P )„„would have in Minkowski spacetime at a tempera-
ture T, may be thought of as being the contribution from
the Hawking blackbody radiation. The term —

]p T„,
may be compared to the form of (P )„„in Minkowski
spacetime for the case of an accelerated (Fulling) vac-
uum. This interpretation provides a surprisingly clear
division into a "real-particle" contribution and a pure
"vacuum-polarization" contribution to (P ). This might
not have been anticipated since the dominant wavelengths
contributing to (P )„„areof order M and hence are of
the same order as the length over which the geometry
varies. Curvature terms might have been expected to
make this splitting meaningless. Instead they make a con-
tribution which is embodied in h(r), the second term on
the RHS of Eq. (1.1), which nowhere exceeds 1% of the
first term.

1 2M
Ti —— 1—

8m.M r

—1/2

(1.3)

is the local temperature at radius r of the Hawking black-
body radiation and

II. THE RENORMAI. IZATION OF (Q )

1 M 2M
r 2 r

' —1/2 We shall calculate (P ) by taking a coincidence limit of
the Hartle-Hawking propagator

is the Unruh acceleration temperature appropriate to an
observer whose proper acceleration has the value

—1/2
M 2M
r2 r

GH(x, x') =i (H
~

&P(x )P(x')
~

H ) (2.1)

It is shown in Ref. 3 that, for imaginary values of the
Schwarzschild "time" coordinate t = —i ~, this propagator
may be expressed in the form

00

G~( —i&,r, ~,f; —l&,r, 8',p') =
2 2 g (2l+ 1)Pi(cosy)Pi(g )Qi(g )

32m M

i 1 oo

g —cosnn'(r —r') g (2l+ 1)P~(cosy )pP(g )qi"(g'& ),32m'M' „ I =0
(2.2)
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FIG. 1. The curve y used in converting the l sum to a con-
tour integral.

where
FICx. 2. The curve y' used in evaluating g„(g). The crosses

correspond to the poles of the function qI"(g).

cosy =cosB cosB'+ sinB sinB'cos(P —P'),

M
' —1,

and g& and g& denote the smaller and the greater of g and
Pi and Qi are Legendre functions and pi" and qI" are

solutions of the radial equation

(2.3)

specified by the requirements that, for n &0, pi"(g) is the
solution that remains bounded as $~1 and qP(g') is the
solution that tends to zero as g~ Oc. These solutions are
normalized by requiring

(2.4)

The geodesic point-splitting scheme of DeWitt and
Christensen yields the renormalized value of (P ) as the
limit

(H
~ P (x) ~H )«„——hm —iG~(x, x')—

Sm rr(x, x')

(2.5)

where a(x,x') denotes the geodetic interval between x and
x'.

We wish to set x =( ir, r, 8,$) — and
x'=( i(r+e),r, 8—,$) and to take the limit @~0. The
representation (2.2) for the propagator is not immediately
amenable to this process, since the partial coincidence lim-
it is represented as

QO l 1 00

GII( ir, r, B,Q; i(—r+e), r, 8,—$)= z z P (2l+1)PI(P)Q&($)+ z z P cosnKE g—(21+1)pP(g)qP(g) . (2.6)
32m M ) 0 32m M I=0

The problem is that each of the l sums diverges even though the left-hand side (LHS) of this equation is finite and unam-
biguous for each nonzero e. A simple resolution of this difficulty is afforded by the observation that for each nonzero e

n=1
cosn~e= ——, .1

(2.7)

This enables us to rewrite (2.6) as a convergent sum,

00 00 1
GH( ir, r, 8,$; i(r+—e), r, 8,$)=— g cosnIre g (2l+1) pg"(g)q~"(g) 2'(g—)Qi(g)—

32m M 1=0

00 00
n n

z g cosnIre g (21+1) —pi"(g)q&"(g)—
32 M a=i I=o (g2 1 )1/2

where in passing to the final form we have made use of the identity

(2 g)

OO
1(2l+ 1)Pi(g)QI(g)—

I =0 (g2 1)i/2

which is established in the Appendix.
The subtraction term takes the form

(2.9)



1620 P. CANDELAS AND K. W. HOWARD 29

8&cr(x,x')

r

1 g'+1 1 1 +0 e
477 g —1 E 12M (/+1) (g —1)

4
00 1g n cosnae+. 1—

12
2

/+1 +0(e ), (2.10)

where, in passing to the last equality, we have set a =(4M) and have employed the identity

00 K= —a. g ncosnae —+0(e2) .
12

(2.11)

Performing the subtraction indicated in (2.5) we obtain

1 [1—(2M/r) ] b,(r)
12(8~M)' (1—2M/r) (8~M)' '

where

(2.12)

00 00

b, (r) =2 g g (21+1)—pi"(g)qi"(g) —, , /, +-
i=o

(2.13)

We shall now show that this sum eonverges. The l sum presents no problems. For large l we see, from the WKB ap-
proximants, that the term in square brackets is 0(l ). The n sum requires a more detailed analysis. We shall show
that, in virtue of certain surprising cancellations, the term in curly brackets is 0(n ) for large n

In order to discuss the convergence of the n sum it is convenient to convert the 1 sum to a contour integral. We write

n (g —1)'/' ni r(21+1) pP(k—)qi(k) — = Re . J—dim cotnl (21+1) pi"(g)q&"—(g)
n (g2 1)i/2 (2.14)

with y the contour of Fig. 1. We further write

2L
eot ~l= —i+ —2eil1 —e

(2.15)

and thereby divide the integral into two terms. The first of these may be taken to run along the real axis. The analytic
properties of the functions pi"(g) and qi"(g') qua functions of I, specifically that pi"(g) is analytic on the entire 1 plane and
that qi (g) is analytic on the 1 plane apart from isolated simple poles that lie on the line Rel = ——,, permit the second in-
tegral to be rotated to the contour y' of Fig. 2. Thus, we find

(21+ 1 ) pi (g)qi (g) 2 i/2 ~ (g) +g (g)
I =0 Pg (g2 1)i/2

where

(2.16)

W„(g)= f dl (21+1)—pi"(g)qi"(g)— (2.17)

and

d A,A. 1 pgg n(g) 4~
o 2 2 P —1/2+i2(k)q —i/2+,i2(k),o e21t +1 n

(2.18)

with H denoting the principal value.
In order to exhibit the large-n behavior of W„(g) we subtract and add again the third-order WKB approximant to the

product ( I/n)pi"(g)qi"(g) (the successive WKB approximants are derived in the Appendix and presented in Table II):

(g) = f dl(21 +1)[pi"(g)qi"(g) W,'""(g)—W,'""(g—) W,"'"(g)]—

+f dl (21+1)[Wi"'"(g)+Wi '"(g)+ Wi"'"(g)]— (2.19)

The second integral in (2.19) may be evaluated explicitly. Thus, we find
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~„(g)= f dl(2l+1) —p,"(g)q,"(g)—W,"'"(g)—W;"'"(g)—W,"'"(g)

n /+1
2 g —1

1 (g —1)(17$—63)
3n(g+ 1) 15n (g'+ 1)

(2.20)

We observe that the term linear in n will cancel against the last term in the curly brackets in (2.13).
Turning now to g „(g) we note that in view of the exponential factor in (2.18) the dominant contribution to the in-

tegral arises in the neighborhood of A, =O; in order to identify the leading™n behavior we write

(k) 4~ f p g p —I/2+'A{Pq —1/2+'A(P ~—1/2(P ~—1/2(k)+ 2
~—1/2(f)

(2.21)

where we have separated off terms corresponding to an expansion of the second-order WKB approximant about A, =O.
This isolates the O(n ') and O(n ) terms in the second integral which may be evaluated explicitly:

8~(1)n + ~(2)n + ~(1)n
0 e 2w'A, + ] Bk

1 (g—1)(17$—63)
2+3n(/+1)' 15n'(/+1)'

(2.22)

Note that these terms exactly cancel the corresponding terms in (2.20). The cancellation of the'O(n ') term was to be
expected since otherwise the n sum in Eq. (2.13) would not converge. However, the cancellation of the O(n ) we find
surprising. Assembling these various results we have

5(r) =2 g [W„(g')+7„(g)],
n=1

(2.23)

J „(g)= f dl(2l+ I) —pi"(g)qi"(g) —8'i' '"(g) —Wi '"(g) —Wi' '"(g) (2.24)

and

A2 a2
gn(k) 4~ f p g Ji —1/2+iX, (k)q —1/2+iX, (g) II —1/2(k) ~—1/2(k)+ p

~—1/2(p (2.25)

Our analysis has shown that both J „{g)and g „(g) are
O(n ) for large n Thus fa.r our results are exact. We
may at this point approximate W„(g') and g„(g) by re-
placing the integrands in (2.24) and (2.25) by WKB terms
of one higher order. This amounts to approximating
W„(g) and g „(g) by the O(n ) terms and yields the
asymptotic form, valid for r large,

zero. The origin of this breakdown in &KB approxima-
tion seems to be associated with the fact that the radial
function qi"(g) contains a logarithm which is not present
in its WKB approximation. The higher WKB terms do
not remedy this fact. The next-order approximation to
b, (r), due to the O(n ) terms in (2.23), is

15

~(r) -&5(r), (2.26) 67(r )= —,{g'—1) $+1
(4g' —18/+17)g(7) . (2.28)

where

&5(r) =—„(g—1)9 3 2
/+1 g(5) . (2.27)

Near the horizon b,z(r) is again O((g —1) ) but with a
larger coefficient than b.5(r). It seems that this behavior
persists in all higher terms.

It might be expected, on the basis of the fact that the
criterion for the validity of the %'KB approximation to
the solutions of the radial equation holds both as r~ ~
and as r~2M, that b,~(r) would also asymptotically ap-
proximate h(r) near the horizon. This is not the case as
evidenced by the fact that A~(r) has a vanishing derivative
at r =2M whereas it is known from the work of Fawcett
and Page' that the derivative of b, (r) at r =2M cannot be

il~. NUMERICAI. EVAI.UATIIe~ S~r)

The integral expression (2.23) for A(r), while displaying
clearly the large-n behavior of the contributions to h(r), is
not amenable to numerical evaluation. In order to bring
b (r) into a more suitable form we return to the sum (2.13)
from which we subtract and then add the third-order
WKB approximant to pi"(g)qi"(g') thereby obtaining
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1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1

32
3.3
3.4
35
3.6
3.7
3.8
3.9
4.0

{8srM) {P &

0.33333
6.31087
0.29156
0.27485
0.26027
0.24749
0.23620
O.22617
0.21723
0.20920
0.20199
0.19547
0.18953
0.18417
0.17925
0.17474
0.17060
0.16679
0.16327
0.160M
0.15697
0.15417
0.15154
0.14910
0.14680
0.14466
0.14266
0.14148
0.13895
0.13727
0.13568

{8~M)2{y'&

0.00000
0.00060
0.06099
Q.M125
0.00140
0.00149
Q.M152
0.00151
0.00149
0.60143
0,60137
6.00131
0.00122
0.00117
0.00110
0.06103
G.OM96
0.00090
0.00084
0.00078
O.M072
G.QM68
0.00063
O.RN359

0.00054
0.00051
0.00049
0.00643
0.00040
0.60037
0.00035

0.00000
O.M019
O.M092
0.00193
0.00287
O.M357
0.00401
O.M421
0.60421
0.00407
0.00385
0.00357
0.00327
0.00296
0.00266
O.M238
0.00212
0.00188
0.00166
Q.M147
0.00136
0.00115
0.00101
0.00089
0.00079
0.00070
6.00061
0.00054
0.00048
0.00042
O.MQ38

4.1

4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
5.0
5.1

5.2
5.3
5.4
5 ' 5
5.6
5.7
5.8
5.9
6.0
6.1

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0

0.13417
0.13275
0.13141
0.13012
0.12890
0.12774
6.12664
6.12558
0.12458
6.12363
0.12271
0.12183
0.12099
0.12619
0.11941
0.11867
0.11795
0.11726
0.11661
0.11597
0.11536
6.11477
6.11420
0.11365
6.11312
0.11260
0.11211
0.11163
0.11116
0.11072

TABLE I. Values of (II
~

P'
~

~ & «d &{r).

A{r) as{r)

0.00032
0.00630
0.00029
O.M026
0.00024
0.00022
0.60021
O.OOO19

0.00018
Q.RN317
6.00016
0.00015
G.M614
0.00013
0.00012
0.60011
O.M010
0.00609
0.00009
6.00008
0.00008
0.00607
0.00007
O.M006
0.00006
0.00005
0.00005
0.00005
0.00004
0.00004

65{r)

0.00033
0.00030
O.OM26
0.00024
0.00021
0.00019
0.00017
O.OM15
0.00013
0.00012
0.00011
0.00010
0.00009
0.00008
0.00007
0.00006
0.00006
0.00005
0.00005
0.00004
0.00004
0.00004
0.00003
0.00003
0.00003
0.00002
O.M602
0.00602
0.00002
0.00002

b(r)=2 g g (21+1) —p)"(g)qI"(g) —8'I'""(g)—8"( '"(g) —WI''"(g) +2 g [U„(g')+V„(g)],
n =11=0 n=1

where we have defined 4 p~ dkA,

(q2 1)1/2 Jo (~2 g2)1/2(e2nk+ 1)
(3.4)

and

V„(g)= g(21+1)[W')' '"(g')+ W( '"(g')] .

(3.2)

n(1++)
4(q2 1 )1/2

(3.5)

The first sum in the expression for A(r) now converges
rapidly and we shall return to its numerical evaluation.
We turn now, however, to a consideration of the contribu-
tion U„which is defined by Eq. (3.2) in terms of an l sum
which converges only slowly, the summand being 0(l )

for large I. It is therefore convenient to replace the 1 sum
by a contour integral in a manner analogous to the process
that leads to Eq. (2.16). The integral along the real axis
precisely cancels the third term in the definition of U„.
Thus, we find

which may be evaluated without difficulty. There is also
a term (see Table I),

8[Xi (g)]
(3.6)

which caused slow convergence in the sum (3.3). It is con-
venient, therefore, to deal separately with this contribution
by means of a contour integral; after deforming the con-
tour to y" (see Fig. 3) we find
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FIG. 3. The curve y" used to evaluate Eq. (3.7). The branch
cut is associated with the zeros of X~(g).

FICi. 4. 6 as a function of g. The dashed line represents
Fawcett's results.

(3.7)~ (2l I )~(,)„(~) 1 1 R d 8 sino/2

n(/+1) (g' —1) A(g —1)3~ 0 (2—e' )
~ (1+exp[2rrA(1 —e's)]I

which, despite the appearance of the integral, is also very easily evaluated. The remaining parts of 8'I '"(g) are O(l )

for large l as is W~' '"(g). Their contribution to V„(g) may be rapidly evaluated by direct summation.

Returning to the evaluation of the sum (3.8)

g (2l+1) —pP(g)ql"(g) —~("""(g)—~("'"(g)—~("'"(g)
I =0 n

we observe that convergence presents no problems since
the summand is O(l ) for large l. It is important, how-
ever, to evaluate the product p~"(g)qI"(g') accurately in view
of the significant cancellation against the WKB approxi-
mant.

As a consequence of the Wronskian relation between
p~"(g) and q~"(g) we have the integral relation

I I I

.003

For values of its argument less than 3.0 pI"(g) may be
evaluated by summing its series representation and for
values of its argument greater than 3.0 pI"(g) is obtained
by a fourth-order Runge-Kutta integration procedure.
Transformation of the integral to a finite range and an ex-
tended six-point integration routine efficiently achieves an
accuracy of eight significant figures.

In virtue of the rapid convergence of the n sum estab-
lished in Sec. II we find it suffices to evaluate numerically
only the contributions corresponding to n =1 and n =2
and to apprOximate the remaining terms by their contribu-
tion to b.5(r).

The method outlined above allows (P ) to be calculated
to five-figure accuracy while using only two minutes of
C.P.U. time. Our results are presented in Table I and de-
picted in Figs. 4 and 5.
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APPENDIX

FIG. 5. b, q and b, as a function of g. b, z is the curve with the
higher peak.

We present, in this appendix, a procedure for evaluating
the WKB approximants to the product
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TABLE II. The WKB approximants.

2
X'=(1+—,

' )'(g' —1)+ (1+/)', Xo= —(1+/)'
16 4

pr(1)
x

x' 4
W' '= — (2/2 —6/+7)+ '

(g —2)"=Sr -4X SX'

x'
(16( —60$ +88/ —70/+ 171)32''

16$ +11
128''

(56/' 320('—+773/ 1020$—+666)— (2$ —6g+ 7)(g—2)~+ (g —2)~
7X' 23 1+p

& 2 1 155&p 4

64'' 32/" 128/'

W'~'= (128( +824/ +173)
, 1024+

X2
(256$ —1008$'+ 1344/ —776/ +2058/ —12510/+ 11901)

512+

(10112$ —66976$'+ 195648/ —337216$'~392289$ —382324/+ 333472)
1024'"
11+

(6304/6 —53172$'+ 198348$ —430770/3+ 599925/i —536904/+ 248042)256'"

(1968( —11488/3+ 28963/ —37948/+ 23448)(g —2)2
1024+'

255255+p' 4(g—2)'(2g' —g'+7)+ i9 (g—2)'425425+p'

'~i"(~)e"(~)
n

together with a proof of the identity (2.9).

(1!a)d'a//d~'+ ,' (g' 1)——~=X-'" 1—
Q 2+2

(A6)

with h an expansion parameter that will ultimately be set
to unity. It is convenient to rewrite the differential equa-
tion in the form

We set

1. The &KB approximants and to solve iteratively, taking X ' as a first approxima-
tion. This procedure yields

a'(4) = SP (4)eP (4»—
n

choose a new radial variable z such that

(A 1)

(A2)

Wi '"(g)a-
h 2k —2

k=1

The first four W'"' are displayed in Table II.

and write

nX'(g) =(&+—,
' )'(g' —1)+ (1+g')" .

16
(A3) 2. The j.dentity (2.9)

It follows from the radial equation (2.3) and the Wron-
skian relation

We sha11 here establish the relation

2n

g —1
e"(4) ei"(k) u—P (k) =

dg dg'

that a satisfies the nonlinear equation

d2 —[h X ——,'(g —1)]a+ 3
=0

(A4)

(A5)

(2&+1)(—I)"&i "(g)gi"(g)—
I=o (g2 1)1/2

n

(g2 1)1/2

of which (2.9) is a special case. We first note the standard
identity
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Qi(g' —(g —1)' (p —1)' cosg) =Pi(g'& )Qi(g& )+2 g ( —1)"cos(nf)P& "(g& )Q&"(g& ) .
n=1

(A9)

Taking the Fourier inverse of this expansion permits us to express a product of Legendre functions in terms of a single
Legendre function

211

P1 "(g& )Qp(g& ) =( —1)"f cos(ng)Q1(g' (—g —1)'/ (g'2 —I)'/2cosll ) .

This relation together with Heine's formula

(A10)

g (21+ 1)Pi(P)Q1(21)=
I=O

which, in particular, holds for real values of p and 21 such that 21 ~p & 1 allows us to evaluate the following sum:

00 2m

X 1 y 1 ~& Q ~& 2~ fp (gr g2 1 )1/2(g~2 1 )1/2

—llQ

(g +g' —2g'cosy —sin y)'/

(Al 1)

(A12)

where, in the last equality,

Q =cosh gg' —cosy
(g2 1 )1/2(g&2 1 )1/2

If we now set g'=g and let y~0 we find

(A13)

I

Finally we note that

00 1g Pi(cosy) =
I=0 2sln y 2

(A15)

1

y(g2 1)1/2 +0(y) (A14)
g —1

( —1)"g (2l+1)P1(cosy)Pi "(g)Qi"(g)
I=O

By multiplying this identity by (g —1) '/, subtracting
from (A14), and letting y~O we establish the desired re-
sult (AS).
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