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Riemannian approach and cosmological singularity
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We study the definition of the Feynman propagator for a free conformally coupled scalar field on
a Robertson-Walker background, as the continuation to physical space of the single propagator of a
Riemannian manifold. If the space-time has a cosmological singularity, a boundary condition is
proposed that leads to the definition of particle modes at the singularity.

I. INTRODUCTION

The main problems of quantum field theory on a
curved background are the definition of the particle
modes and the renormalization of physical quantities.
The first is necessary to compute the matter creation by
the gravitational field and the second is essential to calcu-
late the back reaction and to find the cosmological evolu-
tion.

One possible way to solve the first problem is to define
the propagators of the theory, and then to find which defi-
nition of particle modes they belong to. Among these
propagators, the Feynman or causal propagator is useful
for this task.

In flat space-time the causal propagator is the only
Green's function of the theory after a Wick rotation has
been performed. The Wick rotation consists of replacing
the physical time by an imaginary one, so the space-time
becomes Euclidean. This operation can be generalized to
other metrics (cf. Refs. 1 and 2), leading to a possible defi-
nition of the propagator on the curved background. For
the linearly expanding Robertson-Walker universe the
causal propagator defined in this way coincides with the
well-known Chitre-Hartle propagator (cf. Refs. 3 and 4).

For the application of this method it is necessary to use
a scheme to make the manifold a Riemannian one, i.e., to
know how the Wick rotation should be performed. In
general, a given metric allows more than one such
prescription, each one leading to a different particle model
(cf. Ref. 5). To avoid this difficulty we will stick to
Robertson-Walker metrics, in which a common scheme to
make the manifold a Riemannian one can be chosen. Al-
though covariance of the method is a point to be elucidat-
ed, this is not a definitive drawback in Robertson-Walker
metrics, because one can work in the comoving reference
frame that, very likely, should be endowed with special
properties. Besides, the particle concept itself is certainly
noncovariant (cf. Ref. 6).

In the path-integral formulation of the flat —space-time
theory, the Wick rotation not only gives mathematical
meaning to the path integral but also provides the right
boundary conditions for the causal propagator. We want
to investigate whether such a recipe still works in curved

space-time. In Sec. II we introduce the general formula-
tion, and we prove that the method of defining the causal
propagator through a Wick rotation works in a
Robertson-Walker space without singularities. The gen-
eral form of the propagator can be written in terms of the
solution of the Riemannian Klein-Gordon equation that
goes to zero when the conformal time reaches infinity. In
Sec. III we give some examples of actual calculations.

Since exact solutions of the Klein-Gordon equation are
known only for a few metrics, for a wide application of
this idea it is necessary to develop approximate methods.
One possibility is to make perturbative expansions around
the conformally trivial coupled massless scalar field. In
Sec. IV we break the conformal triviality by including the
mass as perturbative parameters, and we develop the per-
turbative expansion as is suggested by the formulation of
Sec. II. In particular, we use the perturbative series to
motivate a way to handle evolution with cosmological
singularities. For the possibility of breaking the confor-
mal triviality by varying the coupling, while the field
remains massless, see Ref. 8. We discuss the properties of
the perturbative expansion.

In Sec. V we stress some mathematical facts about the
perturbative series and apply these methods for the calcu-
lation of the particle modes to second order in the squared
mass on a general Robertson-Walker metric.

II. THE RIEMANNIAN APPROACH

We will study the theory of a real scalar field on a
Robertson-Walker background with flat spatial sections
(cf. Ref. 6). The metric is

ds2= dt +A (t)(dx .dx), —
where t is the "physical time" and A (t) is the "conformal
factor. " If we introduce the "conformal time"

g= f A '(s)ds,

then

ds =A (g)[ —di1 +(dx dx)] .

For convenience, we introduce a constant A, of units
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(time) ' and numerical value 1, so

ds =A (Ail)[ —d7) +(dx. dx)] .

The Klein-Gordon equation for a conformally coupled
field is

( —V, B'+ —,'R +m')/=0,

where R =a (rl)(d /dg )a(i)) is the curvature scalar
and a (i) ) =A (A i) ).

A particle model is a set of solutions of the Klein-
Gordon equation of the form

ik. x

p-(x, g)= 3 1(tk(i1), k =
~

k
~(2ir)' 'a (il)

normalized by the equation

jli Q d
Qk Qk Qk i

de d'l7

J(x) is an arbitrary source, and
~
0;„) (

~
0,„,) ) stands for

the physical vacuum in the far past (future). With this as-
sumption we are disregarding boundary-condition-fixing
terms. We will find out later [Eq. (4) below] that the
boundary conditions are fixed by the Wick rotation (See
the Appendix).

We define the Wick rotation to be the transformation

Y/
—+ —l 7j, X~l A, ,

so the conformal factor is unchanged but the metric be-
comes positive definite. The generating functional reads

(0,„ i O.„,)' i, = W'[J]

e —(s[p]—(J,p) )

Following the flat —space-time model, we would like to
reduce the generating functional to an expression quadra-
tic in the sources.

We shift the field variable to

If a particle model is known, it is possible to build a Fock
basis of states and creation and annihilation operators that
bear the usual commutation relations.

The Klein-Cxordon equation results from the action
functional

X(x)=P(x)—f d yVg(y)J(y)G(x, y),
where G satisfies

G (x,y) =G (y,x) (2)

S[P]=——,
' f d x&—g( x)[B;QB'P +(m + 6R)P ] .

We will take the generating functional for the theory as
the direct generalization of the Aat space-time one,

and

( —V;8'+ —,
' R +m )G (x,y) = ( ~g ) '5(x —y) . (3)

In order to reach our goal, we have to impose also the
boundary condition

(0,„~0.„,) ~, = W[J]

ei(s[P]+ & J,P&)
n; &g (x) (x,y)

aG

xeav
=0 Vy, (4)

where

(J,P) = f d xv' —g(x)J(x)P(x),

where 8 V is the boundary of the space-time manifold and
n; is the outer normal. Then it is easy to show that if we
postulate condition (4),

W"[J]=W [0]exp —, f d x d y&g(x)v'g(y)J(x)J(y)G(x, y)

Both Eqs. (1) and (5) are the natural generalization of the corresponding equations of flat space-tiine. Therefore, it
seems natural to postulate condition (4) (see also the Appendix). We shall see the physical implications of this postulate
in Sec. IV. Thus,

—1 8 lnW [J]G(x,y) =
eg(x)eg(y) aJ(x)aJ(y) (O,„~ 0.„,)

is the Feynman (causal) propagator; T stands for chronological order.
Since the Universe is spatially flat, we can Fourier analyze 6:

G(x,x')=(2n) [a(il)a(il')] ' f d ke' ''" "'gk(rl, g'),

where gk(i), i)') only depends on k =
~

k
~

. The equation for gI is

a2
2 +k +m a (r}) gk(7), rl') =5(rl i)')—

an'

and the boundary condition is

(7)

a (7b)'
an

gk(i) n')
a (i))

=0 Vg'

if the boundary lies at g =g, .
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Let us assume that rl runs from —ao to + 00 and that a(q} is continuous except on a finite set and bounded on com-
pact sets. Let H be the operator H = —d /dpi +m a (q). Then H is positive definite and essentially self-adjoint [H is
the Hamiltonian of a nonrelativistic particle in the potential barrier m a (ri)]. If y„are the eigenfunctions of H,

Hy„=E„y„, E„)0
(n may be a continuous index) then we can formally compute gk as

q*,(g)y, (g')

E„+k
This is a solution of (2), since g„qr'„(g)y„(g') =5(g —g'). On more formal grounds, since ( —k ) is not in the spectrum
of H, then H+k has an inverse that is a continuous operator in L . So, if cr(g)~L, there exists one and only one
p(g) EL such that

d
2 +m a (q)+kz p(ri) .

dn'

Furthermore, p(g) has two derivatives and llpll2&&llcrll2, where
OO 1/2f „dn I p(n} I'

and X does not depend on cr We w.ant to show that there exists a kernel gk(g, g') such that

P( I} f d"I gk('9 7 }~( I }

and that this kernel is in fact a function. First we note that if a (g}&A for
~
ri

~

& go, then

dp dp & i d pP (ri) — P
( —&o) & f dp' P = f dg'~ cr(ri')+[k—+m a (g')]p(g')

~

d'rJ dY/ s0 dg ~0

&+2rlo[1+(k +m A )K]~~cr~~q

by the Cauchy-Schwartz inequality. Thus, if we write

p(g)=p( —bio)+ ( qo)(ri+qo)—+p'(ri)
d'g

then

~p'(g)
~

& f de' (71')— ( —go)
dp , dp

& (2vyo) K'i fa i i~,

where IC'= I+(k +m A )K only depends on go. If now
we let cr go to zero in L 2, then p(g') goes to zero uniform-
ly in ( —go, qo), and so p approaches a linear function in
this interval. But, as on the other hand, p too goes to zero
in L, this linear function has to be the null one. We con-
clude that when cr goes to zero in L, then p(q) goes to
zero for each g, i.e., the functional that carries cr on p(g)
is continuous for each q But then, by. Riesz's theorem,
there exists an L function fz(rl') such that

p(g) = f dg'fq(rl')cr(ri') .

Defining

gk(r} rI'}=f~(rl'»

we have shown the existence of gk(g, q'). Furthermore,
for each fixed g, gk(g, g') is an L function, and since (7}
has no L homogeneous solution (because it is invertible}

gk is the only solution with that property.

Now, let us try to compute gk(g, rl'). Let us call h, and
hq two independent homogeneous solutions of (7), such
that h

&
and dh &/dg go to zero when ri goes to + ao. As

the Wronskian of two solutions of (7) is constant, h2 has
to blow up at + ao. But gk(ri, g'), which is a homogene-
ous solution of (7) for ri & rl' and an L function for g'
fixed, cannot blow up, so

gk(g, g')=f(g')h, (v]) if g&ri'.
As gk is symmetric (it is the kernel of a self-adjoint opera-
tor)

gk( l I'}=hi( }'}f(I) if ) &n' .

Thus, f is a homogeneous solution of (7), too:

f (ri) =eh )(ri)+dh2(ri) .

Let us arrange h ~ and h2 in such a way that

d EN'
h) h2 —h2 ——1 .

d 7/ d'g

In order to satisfy (7), c)gk/c)g must have a minus unity
jump at g=g' so d =1. At last, gk(g, q') goes to zero
when ri reaches —ao ', it follows that

h2(g)c=— hm—~ h)(v])

Thus, the general form of gk is

gk(g, g') =h )(q) )[hz(ri()+ch )(g()],
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where g) ——max(ii, g'), g( ——min(g, 21'). Gn the other
hand, we can write gk on physical space in terms of the
out model (cf. Ref. 3)

Ck
'

gk(g 9 ) ek(g) ) I('k(9()+ Ok(9()

where Ck and Bk are the Bogoliubov coefficients that re-
late the out model with the in inodel, pk Bk——fk+Ckgk,
and satisfy

I &k
I

' —
I Ck

I

'= 1.
If, when continued back to physical space, h i and hq go

into conjugate functions, then it is seen that hi goes into
the out model, and that c goes into (Ck/Bk)*. This and
the normalization equation fix the in inodel. If hi goes
into a real function, then the normalization cannot be
achieved and we cannot define a particle model (cf. Ref.
4)

III. SOME EXAMPLES

In the massless case, we can choose hi =(2h) '/ e
h2 ——(2k) '/ e ". These functions meet our requirements.
When we go back to physical space-time they turn into
the well-known "conformal model" that is so deduced
from the Wick rotation when —oo &g & oo.

If the space-time has an asymptotically flat out region,
we can approximate the solutions of (7) by WIN B solu-
tions. Then, defining tok ——[k +m a (g))' we see that
the Euclidean solutions

Z/2
—l "cok&p')dip'

h, (21 ) = (2cok )
'/ e

h2(11)=(2(ok )
'/ e cok

(g')dg'

satisfy the requirements of our theory and become
complex-conjugate functions when we go back to physical
space, thus defining a particle model. This model coin-
cides with the well-known adiabatic definition of the out
modes. By the same reasons, our method singles out the
in adiabatic modes when there is an in adiabatic zone.

The class of metrics in which i) ranges from —oo to
+ (x) also includes some singular spaces. For example, in
the linearly expanding universe [a(t)=t] q=lnt, so it
enters in the hypothesis of our theorem. The complete
calculations, although with a different but equivalent way
of defining the Wick rotation, can be seen in Refs. 3 and
4. The class of models with a cosmological singularity at
q =0 will be dealt with in Sec. IV.

As an example of a completely different situation, let us
consider the inflationary metric a (t) =aoe '. The confor-
mal time is defined through 2) =(—aoA, ) 'e ' when
t~ —oo, g~ —Oo, but when t~+ m, g~q, =0, so we
cannot use the results of the previous paragraph. In terms
of conformal time, the conformal factor is a (21)= —1/A, 21

and the scalar curvature is R = —2A, . In this case, the
singularity is to be related to the reference frame and not
to the geometry itself.

In fact, through an appropriate change of variables, the
inflationary space-time can be seen as a sector of the de
Sitter universe (cf. Ref. 6). This is another example show-
ing that particle modes strongly depend upon the refer-
ence frame on which they are defined.

In the inflationary metric, Eq. (7) becomes

8 7tg+k'+ gk(ri, ri') =5(ri r—i') .
an'

If gk(ri, g')' f (ri, 21'), it results that

8 1 Bf k2 m 1 1

5(2) —g')

So, if ring', f is a Bessel function of order
v=(m /A, + —,')' and variable ikg Th. e solution that
goes to zero when g~O is J„(ikg), while J „(ikg) blows
up. The solution that remains bounded when q —+ —~ is
H'„'(ikg). Taking into account normalization conditions,
we can build our candidate to the propagator as

gk(ii, g')= (g—g')'/. J„(ikrt))H„(ikrt ) .
2

When we return to physical space, ikg goes into —kri
and m /A, + —,

' into —,—m /A, , so if m &A, /2 the solu-
tions are Bessel functions of real variables and orders
(therefore, real functions), and we find we cannot define
particle modes. If the scalar field is heavy enough
(m & A, /2) then v~i (m /A, ——,)'/ and we can build the
particle models in and out. The Bogoliubov coefficients
turn out to be

e 2vn) —1/2— '

2
'1/2

vn(1 —2v—n) —1/2 .
g2 4

They do not depend on k, so there is a white noise of
created particles, and they blow up when the mass reaches
A, /2. These unphysical results may mean that an infla-
tionary expansion has to be quickly damped by particle-
creation processes.

IV. PERTURBATIVE EVALUATION
OF THE PROPAGATOR

So far we have assumed the knowledge of the exact
solutions of the wave equation, but in practice this is not
possible except for very few special evolutions. Actually,
in the formulation of the problem that takes into account
the back reaction of the created particles on the metric,
the evolution is not a priori known, and our method can
only lead to an intricate integro-differential coupled sys-
tem. Thus, it is necessary to develop perturbative expan-
sions in order to draw conclusions without an exact
knowledge of the solutions of the wave equation.

In order to do so, we return to the path-integral formu-
lation of Sec. II. We perform the trick

y(x)e(&p& 1 ~ e(J&&
V'g(x) BJ(x)

On the generating function, we find

m' d'x 82
W[J]=exp — I2 g(x) gJ(x)

w'[ J]
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The massless generating function can be handled as in Sec. II to yield

W[J]=&[0]i, pexp
m& p d4x

&g(x) BJ(x)'
exp —,

' f d xd yV'g(x)g(y)J(x)J(y)Gp(x, y)

The massless source-free generating function is a constant; it can be put equal to 1 by the conformal triviality. Gp(x,y)
is the massless symmetric propagator that satisfies

( —V;8'+ —,
' R)Gp(x, y)=, &g (x)n' . Gp(x, y) =0 Vy .

&g (y) Bx

From now on the perturbative evaluation runs as usual (cf. Ref. 9). We set

Z [J]= —ln W[J],
where Z [J] is the sum of the connected diagrams. Our "potential" —,m P is really a quadratic mass term, so the "ver-
tex" has only two legs. The Feynman rules in coordinate space are "a line joining two points labeled x and y means
Gp(x, y); a vertex labeled x means —,' m —fd4xVg (x)."

The only connected graphs are the vacuum loops and the two-point functions. The integral corresponding to the vac-
uum loop of nth order is

A = f d xi+g(xi) ' d x Qg(x )Gp(xi x2) ' ' Gp(x i,x )Gp(x xi )

For the two-point function of nth order

B„(x,y)= f d x&+g(xi) . d"x„+g(x„)Gp(x,xi) Gp(x„,y) .

The weights are —k '2" ' for Ak and 2" for Bk (cf. Ref. 8), so the final result is

00 2 00

Z [J]=Z [0] I ~ p+ z g . AJ ——,
' g ( —m V( (BJ(1,2),J(1)),J(2) ) .,

J ~ p

where Z[0]
~

2 p can be set equal to zero. The propagator is

—1 8 Z[J]G(xy)= ~ g ( I VB(xy) . (9)

From its definition Bp(x y) =Gp(x, y) and

BJ(x,y)= f d xi+g(x&)Gp(x, xi)B i(xi,y), j) 1

we have

(10)

( —V;8'+ 6R)BJ(x,y)=B& i(x,y), j) 1 .

Differentiating under the summation sign, we can see that G(x,y) satisfies the massive Klein-Gordon equation and
the boundary condition. Finally, we note that

AJ ——f d xV'g(x)BJ i(x,x) .

Thus,

= ——,
' g ( —1112V 'A,.= ——,

' f d4xv'g(x)G(x, x) .
8pl

—1 d3k ei k. (x —x ')

Gp(x, x') =
a (11)a (rl') f (21r)3 2k

1

~(n)~(n') (q —~ )'+(x —x )2

The recurrence relation (10) defines the following BJ s. If there is a cosmological singularity (0 & rl & 00 ), after apply-
ing the methods of Sec. II there remains an unknown constant ak,

As we saw in Sec. III, if 11 runs from —ao to + 00, the apparatus of Sec. II leads to the usually accepted massless
propagator, which is conforinal to flat-space massless DF ..

Gp(x, x') = —1 d3k i k .(x —x ')

a(11)a(1)') f (21r)3 2k
&& ~+ kt~+q ))— —

because we cannot use the condition that gk(rl, 1)')~0
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when g~ —00. If we recall the boundary condition (4)
we get

3I &ik ~ (x —x ')

G(x,x') = f 3
—,h, (g) )

(2~)3 a g a q'

lim
q~O+

1 da
2 d'Q

2 1da—a~ ka +—
2 de

=0. X[h, (ri, )+dkhi(il )],
The different possibilities are the following:

(a) If a goes to zero but da /dpi does not, then the
solution is aI, ———1. But this implies that the Bogoliubov
coefficients Bk and Ck are both infinite, because ak is
the analytical continuation of (Ck /Bk ) ~ and
B,

I

'—
I
c,

(b) The same holds if da /dg goes to zero but a does
not.

(c) If both a and da /dg have nonzero limits, then

ka z(0) ——,
' a '(0)

1
ka (0)+—,'a (0)

when k —+00, leading to an ultraviolet catastrophe. The
fulfillment of our program has led us to particle models
that are different from the conformal one, but also to un-
physical results. The boundary condition (4) may be
wrong or else a universe that appears from nothing with a
finite radius or finite expansion rate is by itself unphysi-
cal.

(d) In the remaining case, both a and a go to zero, the
boundary condition is trivial, and aI, remains unknown.

One way to eliminate this ambiguity is to add to physi-
cal space-time a fictitious zone where a (g) =0,
—00 &g&0. Then we are back in the singularity-free
case and as we saw in Sec. III we can use conformal trivi-
ality to put aI, ——0. Since all physical quantities are ex-
pressed in terms of integrals over the invariant measure
d xVg (x), this fictitious zone does not lead to unphysical
results, and the inverse conformal factors that appear in
the propagator are easily handled.

On the other hand, since the mass does not appear in
the Klein-Gordon equation in the added region, and the
particle models are continuous, the massive-particle model
approaches the massless one as the singularity. This is a
desirable physical result, since in this "hot" singularity
model particles must behave as ultrarelativistic ones near
the singularity, and so their masses are to be neglected.
Besides, it agrees with other well-known criteria, for ex-
ample, Hamiltonian diagonalization at the singularity (cf.
Refs. 10 and 11 ).

Furthermore, to set aI, ——0 it is necessary to avoid
creation of particles in the conformally invariant massless
theory, an effect that is usually believed not to occur (cf.
Ref. 12). Then the massless propagator reduces to the
conformal one (11),which satisfies the boundary condition

a (g)GO(x, x')a
8'g

wherey =(O, y) and

= f d y I'(x —y)GO(y, x'),

d3kI'(x)= f e'" "k
(2m. )

Differentiating under the integral sign we can see that this
boundary condition is shared by all BJ's and thus for the
massive propagator itself. If, as in Sec. II,

it follows that

dh2 dhi
(0)+dk (0)=k[h2(0)+dkh, (0)] .

d'l7

If we solve this equation for dk and go back to physical
space, we can write the Bogoliubov coefficients in terms
of the out model pk, which is the analytic continuation of
h), as

Bk =(2k) '~ [krak(0) —igk(0)],

Ck =(—l)(2k) '
[krak(0) —igk(0)] .

Thus, the in model is

0'k(n) =
I [kii'k(0) —

teak(0)N'k(n)

~2k

—[krak(0) —ifk(0)]fk(V)I .

The Cauchy data for the in model at the singularity are
the massless ones:

1/2
1 . k

Nk(0) = Nk(0) = —i-
v'2k

From now on, we will handle the cosmological singular
spaces as singularity-free ones with a (g) =0 for
—Oo &g&0. This ensures, through the calculations of
Sec. II, that the massless model is the conformal one and
avoids the introduction of a boundary condition at the
singularity. As a last reinark, we note that for a (g) =g,
a (0)=0 and a (0)=0 if 5 & —,. In terms of physical time
t, this means a(t)-t' with e& —,. So the radiation-
dominated universe (e= —,

'
) and the matter-dominated

universe (e= —,
'

) fall into class (d) above.

V. CLOSE STUDY OF THE PERTURBATION SERIES

The first striking fact about the perturbation series (9) is
that all its terms are infinite, even in flat space-time. In
fact, since flat space DF vanishes as x, the integrand for
flat space Bi vanishes as Dz -x, thus the integral over
all space-time is logarithmically divergent.

To find out the meaning of this fact we formally
Fourier transform b,F, Dz, and the Bz's. The Fourier
transform of DF is +k: as the recurrence relation (10)
dictates that B~ is the convolution of DF and Bj q, the
Fourier transform of BJ is the product of the transforms,
and so (+k )J+'. Finally, the complete Fourier
transform of hF is, by the perturbative expansion,

y ( —m )J/k 'J+" .
j=0

If k') m' the series converges to

(k ) '(1+m /k )
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d3k eik. (x —x ')

Bi (x,x') =
(2m. )' a (g)a (ri')

j+1
bki'(g, q'),

Therefore, we see that the built-in infrared divergence is
completely fictitious, since the result can be easily con-
verted into the right Fourier transform (m +k }
which has no singularity.

So we realize that we must rely not on the direct
development (9) but on its Fourier transform. As in gen-
eral space-times we have no temporal translational invari-
ance, we do not work with the complete Fourier transform
but with the partial one (6). Writing

multiplying by a polynomially bounded function and tak-
ing convolution with e "~"

~ preserve this fast- decreasing
character. bk

' is continuous but not differentiable; dif-
ferentiating under the integral sign we see that

8 +k bkJ'(g, g') =(2k)by~ '(g, g')a (g), j) 1 .

Thus, bkj' has (2j) continuous derivatives, if a (g) is infin-
itely differentiable. If a (q) is bounded, the series con-
verges uniformly for large enough k. Indeed, if
a (ri) &A, Vg, then

then

1 —m
j

2kj=0

~

bki'(g, g')
~

& max
~

bk' "(ri,q')
~

ZA

Y/p 7j

~2

with

and

bkj'(g, ri') = f dna (g)bkj "(g,g')e k
I n kl j—

It is clear that all bk's are real and positive. If the
function a (g) is polynomially bounded, all bkj's are in
fact fast decreasing, since bk

' is, and the operations of

because
~
bk

'
~

& 1, so the series converges for k )m 2 .
As the derivatives converge uniformly too, it can be
shown that the sum satisfies Eq. (7), and as the solution is
unique, this means that the series converges to gk(q, g').
The way to the particle models is now straightforward.
First one must compute gk up to the desired order in m .
Then one must continue back to physical space-time and
rearrange terms as in Ref. 3. The results up to second or-
der are as follows.

(a) Out model:

i (m 2/2k)F(q)
fk(71 }= .e —rkg

0

2k
K(ri) +e' "

2

2k
L (g)+ M(g)

2k

where

F(g)= f dsa (s), K(g)= J dsa (s)e ' f dra (r)e

L(ri)= —J dsa (s)e ', M(g)=2 f dsa (s) f dr a (r)e
S

The integrals are to be understood as the analytical continuation of the Riemannian ones. On the other hand, since
F(ri) contributes only as a phase, this integral does not need to be extended up to + 00.

(b) In model:

where

i(m /2k)F(q)
( ) e i(m4/4k2)y e— '8 ~ 1—

2

2k
N~(q ) +e'""

OO 2J ds a 2(s)e 2iks—

f dsa (s) f dr a (r)e

q&= f du(sin2ku) f du a (u)a (u —u),
F(g)= f ds a (s},

'9
S

N(g)= dsa (s)e ' f dr a (s)e ' "

P(g)= f dsa (s)e '

P(g)=2 J dsa (s) f dr a (r)e '"".

(c) Bogoliubou coefficients:
2

1 im
2 2k

2
im J 2 2.k4 l m

2k 2k

(cf. Ref. 10).
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VI. FINAL. REMARKS

The definition of asymptotic particle modes in
Robertson-Walker universes through the Wick rotation is
applicable in most physically interesting evolutions.
Furthermore, it satisfies the best-known criteria for the
definition of a particle model; for example, it agrees with
WKB definitions of positive frequency if there are asymp-
totically flat regions, it diagonalizes the metric Hamiltoni-
an at the singularity, and it preserves the conformal trivi-
ality of the massless model.

Our perturbative expansion is complementary to the
well-known Schwinger-DeWitt one (cf. Ref. 6), since this
is well defined for large masses, and ours for small ones.
Its mathematical foundations are clear (see Ref. 2) and
can be extended to more general situations, including for
example, nonzero-spatial-curvature or anisotropic models.
(For a Riemannian scheme and solutions of the Klein-
Gordon equation in Bianchi type-1 universes see Ref. 5.)

This method furnishes only asymptotic in and out
states. Even if other schemes (i.e., Hamiltonian diagonali-
zation or adiabatic modes) lead to the definition of inter-
rnediate models, the physical interpretation of these modes
is under discussion (cf. Ref. 13).

The main drawback of this model is that it is written in
a highly noncovariant way. This is the price to be paid
for mathematical simplicity. As we said in the Introduc-
tion, the covariance of the theory is to be elucidated (cf.
Ref. 5).

Even if this prescription is accepted as a good definition
of particle modes, it stands still the more interesting prob-
lem of back reaction. To handle this, it is necessary to
have first a sound renormalization method for the
energy-momentum tensor (cf. Ref. 6). We are continuing
our research on these lines.

APPENDIX

If the path integral

et(~[4/+& J,P))

over all configurations of fields with boundary conditions

P(x, t) =p(x), P(x, t') =p'(x),
is understood as the transition amplitude between states of
well-defined field variables from time t to time t', then the
generating functional should be written

W[J]=(0(t)
/

0(t')) = f [&qv][&cpi]
F5( x, t)=y( x )

P( x, t')=y)( x )

e' ~&~+ '~ Ot y t y&
t' Ot' (A 1)

where
~

0(t) ) is the vacuum at time t and
~
q(t) ) is the common eigenvector of the operators I P(x, t),x E R I satisfying

P(x, t)
~

q(t))=q(x)
~
q(t)) .

Such a state exists since I P(x, t ~,x HR I are commuting observables. Furthermore two states defined by different func-
tions q& and f are orthogonal,

(q (t)
~

g(t) ) =~(q p), —
where the 5 symbol means that, for any suitable functional J[P],

f l ~e]J[V ]&
I V I

=~[0]

Finally the
~

q&) states are complete, meaning that

yt yt =I,
where I is the identity operator in the Hilbert space of physical states.

To compute the bracket (0(t)
~
y(b)), we recall that it is annihilated by any destruction operator a-. The a- are

k k

written in terms of the field variables as

a —=(F+,P ) = i f d x—v' —g
ax+*(x,t)

k
y( b) ~+a ( )

ap(xyt)

where (, ) is the Klein-Gordon inner product (cf. Ref. 6) and [I'- J is the positive-frequency part of the particle model

at time t. So we have the functional equation

a-„~0(t))= f [&p]( i) f d x& —gP(x, t) —I'+* ' ~y(—t))(y(t) ~0(t))=0. (A2)

The action of the operator a/lat on the ket
~
y(t) ) is defined through

x (x, t) y(t) = (x
~
y(t))(

ap i a
—g a~(x)
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(where the derivative is a functional one) for any bra (x
~

. In this way we recover the commutation relation

P(x, t), (x ', t) = 6(x —x ') .
r)t —g

Integrating by parts in (A2) and using the independence of the
~ p) kets, we are left with

r

f d'x ( i—)v' g—
as+'(x, t)

k q)(x)+E+*(x,t) (qr(t) j 0(t)) =0, ((t'k, p(x),
aq(x)

(A3)

whose solution is

(()p(t)
~
0(t)) =exp ——,

' f d x d yp(x)y(y)II'(x —y)
L

(A4)

with

3
Ht(~ ~) I ik. (x —y)(

(2m. )

x lnfk(t),
dt

where fk(t) is the temporal part of the particle model:

If we use (A4) in (Al), we will see that the complete
generating functional includes boundary-condition-fixing
terms that depend on the particle models at times t and t'.
In this work we set t =0 or t = —Oo and t'= + ~.

In the flat —space-time theory, after the Wick rotation is
performed only field configurations with finite Euclidean
action contribute to the path integral. Since these config-
urations go to zero at + ao, the brackets in (A4) have value
one and can thus be omitted. The Feynman propagator is
defined as the only Euclidean Careen's function that is fin-
ite at + oo (cf. Refs. 3 and 7).

In this work we study what models result if this method
is translated to the curved background.
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