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We consider a class of grand unified theories (GUT s) based on the Georgi-Glashow model iv.
curved spacetime. We are particularly concerned with the coupling constants involving the curva-
ture. These include the cosmological and gravitational constants, as well as coupling constants ap-
pearing in terms quadratic in the curvature and in terms which link the Higgs bosons to the scalar
curvature. For asymptotically free theories, we use the renormalization group to obtain expressions
for these effective coupling constants at high curvature (between the GUT and Planck scales). We
discuss the role of the effective coupling constants in the gravitational field equations. These results
may be of importance for cosmology.

I. INTRODUCTION

One of the areas of recent interest is the role played by
grand unified theories in the evolution of the early
universe. This leads to a closer examination of interacting
quantum field theories in curved spacetime. Of concern is
the behavior of the theories at high curvature, since this is
where any effects peculiar to curved spacetime would be
expected to have the most dramatic consequences. The
high-curvature limit is of relevance to the final stages of
evaporation of a black hole, as well as to the early
universe.

In this paper, we use renormalization-group methods to
study the high-curvature limit of a class of grand unified
theories (GUT's). We focus in particular on the effective
coupling constants which multip1y curvature invariants in
the action. These couplings include the cosmological con-
stant and the gravitational constant, as well as couplings
between the Higgs bosons and the scalar curvature. The
behavior of these running coupling constants at high cur-
vature is of significance for symmetry breaking and for
the dynamics of cosmological models. We find that the
values of these effective couplings at high curvature may
be quite different from their present values.

The first question which arises for interacting quantum
field theory in curved spacetime concerns renormalizabili-
ty. Various scalar field theories have been investigated
and shown to be renormalizable in curved spacetime if
they are also renormalizable in flat spacetime. ' The main
new feature which arises is the possibility that additional
local counterterms involving the curvature (and therefore
vanishing in flat spacetime) may be needed. The renor-
malization of gauge theories in curved spacetime has also
received some attention. For gauge theories it is also
found that the renormalizability is unaffected by space-
time curvature. Although no one has yet studied the re-
normalization of a gauge theory as complicated as those
which we sha11 consider here, it is extremely likely that
these theories are renormalizab1e in curved spacetime just
as for the theories in Refs. 2—9.

The particular models which we shall study are the
SU(5) model of Georgi and Glashow, ' and a generaliza-

tion of this theory due to Chang, Das, and Perez-
Mercader" which has the same low-energy predictions,
but which is totally asymptotically free. It is well known
from results of 't Hooft, ' Gross, and Wilczek, ' and Pol-
itzer' that in the absence of too many fermions the gauge
coupling constant is asymptotically free for non-Abelian
gauge theories; however, in models with Higgs scalars, the
quartic self-couplings of the scalar fields are not asymp-
totically free. ' Results which involve nonasymptotically
free couplings based upon perturbation theory may be-
come unreliable at high energy. Chang, Das, and Perez-
Mercader" (see also Fradkin and Kalashnikov' ) proposed
a version of the Georgi-Cslashow model in which the
Higgs self-couplings and the Yukawa couplings were pro-
portional to a power of the gauge coupling constant. This
leads to a one-coupling-constant theory in which all of the
coupling constants are asymptotically free. As a conse-
quence, predictions based upon perturbation theory are re-
liable at high momentum.

In flat spacetime the renormalization group allows the
behavior of the Green's functions to be studied at high
momentum. In a general curved spacetime there is no
natural definition of momentum space so that it is not im-
mediately clear how to proceed. (One possibility might be
to use the momentum-space approach of Bunch and Park-
er. '

) Nelson and Panangaden' have argued that the
natural analog of the usual flat-spacetime procedure of
scaling the external momenta' is to look at the behavior
of the Green's functions under a rescaling g„„~s gz, of
the background metric. In flat spacetime, increasing s
gives the short-distance, or high-momentum limit. In
curved spacetime, consideration of the curvature invari-
ants shows that increasing s corresponds to the high-
curvature limit. One of us has shown ' how this analysis
may be applied to the effective action, and this serves as
the starting point for our discussion.

We have already remarked above that the renormaliza-
tion of gauge theories should only be affected by the addi-
tion of extra local counterterms involving the curvature.
As a consequence, the renormalization counterterms for
all coupling constants appearing in the flat-spacetime
theory are unchanged. In particular, the existence of
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asymptotic freedom is unaffected by curvature (or non-
trivial spacetime topology). (See discussions in Refs. 7
and 21.) For theories which include scalar fields P, it is
necessary to add terms of the form RP to the action, as
well as terms which involve only the curvature. For P
theory in six dimensions, which is also asymptotically
free, it was demonstrated in Ref. 22 that the coupling con-
stant of the RP term had an ultraviolet fixed point given
by its conformal value of —,'. Previous calculations of the
high-curvature limit of the coupling constants which mul-
tiply pure gravitational terms are contained in Refs. 21
and 23. Other calculations of renormalization-group
functions and applications of renormalization-group tech-
niques to quantum field theory in curved spacetime in-
clude Refs. 24—35. The purpose of this paper is to use
the curved-spacetime renormalization-group method to
study the high-curvature limit of a realistic grand unified
theory.

The results we obtain for the running coupling con-
stants are most relevant between the GUT scale (at which
full symmetry is restored) and the Planck scale. That is
because we have worked with the fully symmetric phase.
In addition, we have not quantized the gravitational field
itself. As we shall see, the effective cosmological constant
in the theories under consideration may become large and
positive at high curvature (even if it is zero today). The
effective coupling constants linking the Higgs bosons to
the the scalar curvature approach the conformal value of

Furthermore, if one considers the limit of arbitrarily
large curvature, then the running gravitational constant
(and hence the effective Planck time) may conceivably ap-
proach zero. We will discuss the magnitudes of these ef-
fects more fully elsewhere.

The outline of our paper is the following. In Sec. II we
present a short discussion of the background-field method
and show how it may be used to compute the effective ac-
tion. The extra terms in the action necessary for renor-
rnalizability in curved spacetime are written out in Eq.
(2.1). The remainder of the action involving the Georgi-
Glashow part as well as the additional terms required for
total asymptotic freedom is given in Sec. III. We also list
the equations satisfied by the various propagators in the
theory. The evaluation of that part of the one-loop effec-
tive action relevant for obtaining the renormalization
counterterms for the coupling constants involving RP-
type terms for the Higgs fields is given in Sec. IV. Results
for both the Georgi-Glashow model' and the generaliza-
tion of Chang, Das, and Perez-Mercader" are presented.
The actual counterterms are obtained in Sec. V. In Sec.
VI we give a renormalization-group analysis of the run-
ning coupling constants in the RP terms. The counter-
terms for the constants appearing in the generalized
Einstein-Hilbert gravitational action are computed in Sec.
VII, with a renormalization-group analysis of these terms
given in Sec. VIII. In Sec. IX, we discuss the relation of
the renormalization group to the high-curvature limit.
The behavior of the effective Einstein equations at high
curvature is obtained. The Anal section presents our con-
clusions. A number of technical details which are in-
volved in our calculations are contained in the Appen-
dices. Appendix A contains our curvature and group con-

ventions. In Appendix B, we present an account of spi-
nors in curved spacetime and our notation for two-
component spinors. It is shown in Appendix C how the
curved-spacetime momentum-space technique of Bunch
and Parker' may be used to obtain a number of results
which are necessary in order to calculate the one-loop
counterterms. In Appendix D, the relation of our nota-
tion to that of Chang, Das, and Perez-Mercader" is given
and the expressions for the coupling constants in the fully
asymptotically free theory are quoted.

II. EFFECTIVE-ACTION, BACKGROUND-FIELD
METHOD

Z[J;q]= f dp[q]exp(iI[q+q]+iJq), (2.2)

As noted in the Introduction, the bare Lagrangian L, is
the sum of the generalized Einstein-Hilbert Lagrangian
which involves only gravitational terms and the generali-
zation to curved spacetime of a totally asymptotically free
SU(5) grand unified theory. We first outline our pro-
cedure. There are two types of Higgs fields, denoted by @
(24 components) and H (5 components), respectively. The
bare couplings of the Higgs bosons to the curvature and
the terms involving only the curvature are of the form

L,„=—g'+ tr(C2) gHRH H—+A+aR

+a,R""~ R„„z +a2R""Rz„+a3R, (2.1)

where g~, g~, A, ~, and the a's are bare coupling constants
[A and ~ being related to the cosmological constant A,
and gravitational constant G by a = ( 16m G) ' and
A = —( 8m.G) 'A, ]. In order to obtain the renor-
malization-group equations for these couplings, we must
find the way in which these bare couplings split up into
the sum of finite renormalized couplings and counter-
terms (which cancel the infinities of the quantized theory).
For that purpose it is convenient to work with the effec-
tive action, using the background-field method. Di-
mensional regularization ' " will be used to obtain the
pole part of the relevant one-loop terms in the effective
action. For the totally asymptotically free theory, the
one-loop contributions dominate and are thus sufficient to
determine the limiting values of the effective renormalized
coupling constants. It will also be necessary to take into
account certain features of the two-loop contributions to
the renormalization-group equations for g~ and g'~.

For grand unified theories, such as the Georgi-Glashow
theory, which are only asymptotically free in the gauge
coupling, it may still be possible to use the one-loop
renormalization-group equations to predict the behavior
of the running coupling constants in the relevant range of
energies between the GUT and the Planck scales (if the
nonasymptotically free effective couplings do not grow
too large). We also remark that with a background gravi-
tational field no terms of higher order in the curvature are
induced by renormalization, so that Eq. (2.1) includes all
the bare couplings involving the curvature.

The effective action I is obtained from the vacuum per-
sistence amplitude or generating functional for discon-
nected graphs
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I [u;q] = W[J;q]—f du„u (x)J(x),
where

(2 4)

u (x)=5W[J;q]/5J(x) . (2.5)

(The functional dependence of u on the background field
has been suppressed. ) Finally, the effective action I [q] is
obtained by evaluating (2.4) at u =0:

where a J-independent normalization has been ignored,
and the fields, denoted collectively by q(x), have been
shifted by the addition of the background fields q(x).
Here the measure dp[q] includes the ghost and gauge-
fixing factors, ' and I denotes the classical action:

I = f dU„L, (2.3)

where dv„ is the invariant volume element. Fermion fields
are treated as anticommuting quantities in (2.2). As is
well known, the quantity 8'= —i lnZ generates connected
graphs. The generating functional for single-particle ir-
reducible graphs is obtained from W by a Legendre
transformation

For the renormalization of A, a, and the a's in Eq. (2.1)
we can set all of the background fields q to zero, while for
the renormalization of g~ and gH we only require that the
background Higgs fields P and H be nonzero. In that way
we obtain all one-loop pole terms having a form analogous
to (2.1) when written in terms of the nonvanishing back-
ground fields.

First consider the renormalization of g~ and gH. We
can write

(0) (].) (2)
2 qIgq =I2 +Iint +IilIt (2.12)

where the superscripts denote the powers of the back-
ground Higgs fields which occur in each term. I;„, =I „",

+I,'„,' will be treated as an interaction, while I2 ' will yield
the propagators to be used on the internal lines. Expand-
ing exp(iI;„,)= pi"(I;„,)"/n!, we need only retain the
terms quadratic in the background Higgs fields in order to
obtain the pole terms which must be canceled by renor-
malization of g~ and giL. These quadratic terms are
i (I;'„",) /2+iI, '„,' It fo.llows from Eqs. (2.10) and (2.11)
that the part of the one-loop effective action which is
quadratic in the background fields is

I [q]=l [u =0;q] . (2.6) r,"„'.,= &II„",&+(i/2)((I', „",)') . (2.13)
As in Refs. 47 and 48, one can evaluate the terms in the

loop expansion of the effective action as follows. Set
J=0 in Eq. (2.2). Expand I[q+q] in powers of q, drop-
ping the term linear in q. Thus,

I [q +q ]=I [q ]+ ,' qI2q +0 (q )—, (2.7)

The effective action is the single-particle irreducible part
of Z. The loop expansion is

r[q]=r'"[q]+r"'[q]+ . . (2.9)

where all indices and a spacetime integration have been
suppressed in the second term on the right, and I2 is a dif-
ferential operator which depends on the background fields
q. Then

Z[q]= exp(iI[q]) f dp[q]exp[iqI2q/2+0(q3)] .

(2.8)

Here the angular brackets are to be evaluated using the
Wick reduction formula, keeping only the single-particle
irreducible parts. Thus, the calculation of the pole terms
in g~ and g~ reduces to finding I,'„", and I,'g, and then
evaluating I qzzd.

To renormalize A, ~, and the a' s, we set the background
fields q to zero in Eqs. (2.10) and (2.11), obtaining

I ~'~[0]= i ln f dp—[q]exp(iI2 ) . (2.14)

This Gaussian integral yields the trace of a determinant.
We will use the proper-time or heat-kernel expansion to
obtain the pole part of I'"[0],which contains the various
counterterms. This analysis is carried out in Sec. VII.

III. PROPAGATOR EQUATIONS

Here I ' '[q]=I[q] and

r' "[q]= —z lnz' "[q],
where

Z'"[q]= f dS [qlexr (iqI2q/2)

(2.10)

(2.11)

The various propagators will satisfy equations deter-
mined by the part of the Lagrangian which contributes to
I2 '. For generality, we work with an SU(n)-invariant La-
grangian in calculating the counterterms, and only special-
ize later to n =5. The full Lagrangian L consists of three
main parts:

is the one-loop contribution of Z. I'" is evaluated by
summing only the connected graphs in Z'".

L =L, +L2+L«+(ghost terms),

where L,„was given in Eq. (2.1) and

(3.1)

L, = ,F„'g'"" (V—A—'") +tr[—(D„C )(D"C )]+(D„H)t(D"H)

+ T[QLab a ~~(DpitL ) ++L a ~~(DpXL )a+H. c.]

+~'Y&LwPgL &b, +r&~b,d, gL qgL' "H'+H. c. )+@~ tr(4 ) —a[tr(4 )] —2b tr(4 )

+ ~ p~ H H — (H H) 2aH H tr(4 )
—2PHt@2—H, — (3.2)
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L2 B—, y&(D„B)'+e,y&(Dye)'+iv 2I kzeae y'(F')'b+[k4B;(F')'be Ha +H c ]
+2k B (Fi)a Bj(Fj )b yk(Fk)c +2k B (Fi)b Bj(Fj)a yk(Fk)c (3.3)

Here I
&

is the Georgi-Glashow Lagrangian' and I.2 is
the part of the Lagrangian added by Chang, Das, and
Perez-Mercader. " The (F;)'b are the matrix elements of
the n 1 —generators of the Lie algebra of SU(n) in the
fundamental representation. The multiplets of Higgs bo-
sons are denoted by @= /'F' and H, where N is Hermitian
and transforms under the adjoint representation, and FI is
complex and transforms under the n representation of
SU(n). The gauge-fixing parameter is denoted by co. Be-
cause the gauge-fixing term is independent of the Higgs
fields, the ghost terms in L, will not contribute to the re-
normalization of g~ and pe and can be ignored. For the
fermion fields g and X in L, we are using two-component
spinor notation with capital roman spinor indices (except
for subscript L which denotes left-handedness). The gl'
transform as the antisymmetric tensor product of two n

representations of SU(n), and the XL,
' transform under the

n* representation. The gauge-covariant derivative D& and
the space- and time-dependent matrices cr" and y" are the
appropriate ones for curved spacetime. The gauge cou-
pling g appears as usual in I'z and in D@. Here

F„'„=B„A'„d+p+gf—'j"A~pA „" .

Scalar propagators. The scalar propagators

(p'(x)p(x') ) =i 5'jb, ~(x,x') (3.5)

(H'(x)Hb (x') ) =i 5bb H(x, x')

satisfy

(H+gQ —pp )bp(x, x')= —5(x,x')

(3.6)

(3.7a)

(CI+gjiR —pH /2)bH(x, x') = —5(x,x') . (3.7b)

(X aA(x)X bB(x ) ) =i 5 bS 4B(x,

where

(3.8)

Recall that the P' are related to the 4& in L by N=P~F',
where the F' are the generators (i =1 to n 1)—of SU(n)
in the fundamental (n-dimensional) representation. The
group index on H' runs from I to n,.

SIpinor propagators. The two-point function of the left-
handed Weyl spinor XI ', where a (= 1 to n) is the group
index and A (= 1 to 2) is the spinor index, is

The form of D& appropriate to the various fields is listed
in Appendices A and B. Our notation is similar to that in
the review by Langacker, although some numerical fac-
tors differ because of slightly different conventions. A
more complete discussion of our notation, including two-
component spinors, is given in Appendices A and B. Fer-
mion fields are treated as anticommuting quantities.

The Dirac spinors 8' and 6' are the heavy fermions
[transforming under the adjoint and the n representation
of SU(n), respectively] introduced by Chang, Das, and
Perez-Mercader in order to obtain a consistent theory in
which the coupling constants appearing in I.

&
and L, 2 are

proportional to positive powers of the gauge coupling g,
and hence are asymptotically free. (The relation of our
notation to that of Chang, Das, and Perez-Mercader" is
given in Appendix D.) Generation indices have been
suppressed.

The minimal Georgi-Glashow model is obtained by
omitting I.2 and setting the number X of light-fermion
generations in L

&
to 3 and n to 5. The first model in Ref.

11 of Chang, Das, and Perez-Mercader is obtained by in-
cluding one generation of the heavy fermions in I.2 and
setting the number of Hght-fermion generations in I.

&
to

N =7. In their second model of Ref. 11, the number of
light generations is N =3.

The part of t. which contributes to I2 consists of those
terms which are quadratic in the quantum fields. This
part of the Lagrangian is seen to be the same as one would
obtain by setting to zero in Eqs. (3.1)—(3.3) the following
couplings: g, y, I, a, b, A, , a, P, and the k's. From this
"kinetic" or "noninteracting" part of I. follows the equa-
tions for the propagators used in calculating the counter-
terms for g~ and gH.

o". V&S (x,x') =5„5(x,x') . (3.9)

where S satisfies Eq. (3.9).
Defining G. by

S (x,x') =o V',6 (x,x'), (3.11)

one has, upon use of identity (850),

( + —4'R)G. (x,x')=5. 5(x,x') . (3.12)

It should be noted that in this equation the operator
=V"Vz is acting on a bispinor.
The I agrangian L, 2 contains Dirac spinors Q' and 8',

where i and a are group indices. Let

(B'(x)Bj(x')) =i5jS(x,x'),
(8'(x)nb(x')) =i5,S(x,x ) .

Then S(x,x') is the Dirac propagator satisfying

y'V;S(x, x') =5(x,x'),

(3.13)

(3.14)

(3.15)

where a denotes a vierbein index, and should not be con-
fused with a group index. As for the Weyl spinors, if we
define 6 by

Here V'z denotes the spacetime-covariant derivative (for its
action on a two-component spinor see Appendix 8).

Similarly, for the fermions 1(~l
'b one finds

(1//I, b"(X)l/ll, d (x') ) =i ,' (5„5bd —5,d5b„)S" (X—,X'),

(3.10)
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S(x,x') =y'V;G(x, x'),
then G satisfies [using identity (B60)j

(Cj+ —,'R)G(x, x') =5(x,x') .

(3.16)

(3.17)

pearing in the one-loop effective action. This is done in
Appendix C.

IV. EVALUATION OF THE ONE-LOOP EFFECTIVE
ACTION

(A„'(x)A J„(x')) =i5'~G„(x,x') (3.18)

satisfies

[5i'kQ+Ri'k —(1—co ')V"Vk]G,(x,x') =b"p(x,x') .

(3.19)

As before, V'& is the spacetime-covariant derivative and
=V„V".
The above equations will be used to obtain the pole

parts of the various propagators and related quantities ap-
I

Again, it should be noted that operates on the bispinor
G.

Vector propagator. We work with the gauge-fixing pa-
rameter m arbitrary, in order to check gauge indepen-
dence. The gauge two-point function

Followin~ the procedure described in Sec. II, we must
now find I;„", and I;'„,', the parts of the action quadratic in
the quantum fields, but linear and quadratic, respectively,
in the background fields. As we are interested here in the
renormalization of g~ and gH, only Higgs background
fields P

' and H ' will be introduced. Clearly, there are no
contributions to I;„, coming from L,„of Eq. (2.1).
(However, L,„does contribute to I2 ' and hence to the
propagators used in the calculation. ) Because it may be of
independent interest, we first obtain the result for the
Georgi-Crlashow theory. Then we give the result for the
fully asymptotically free model.

Contribution of Li. Replacing P' by i''+P' and H' by
0'+H' in 1.j, and collecting the terms having the ap-
propriate powers of the background fields and quadratic
in the quantum fields, we obtain

I( f du [gf IJk(() p l)Q Jppk+gf I/k(d pi)p Jpp k t'g(g H )giil(Fi)a Hb

ig(a„a.')w'~(F')', a '+ iga .'W '~(F')', (a,ab)+ gaga.'W'~(F'')', (a„a ')

+YJil. APL HI+1 ~t. i|L b H +~'4b d itiL APL H +T + 0 i|L d H j (4.1)

Similarly, the relevant terms quadratic in the background fields yield

I(2) f du [ g2fiJkfilm jkjm+J+lP+g2H Zi (Fi)a Z JP(FJ)b H c &pic Jyig &y'ijig'
8bp'pip—"ptr(F'FiF F') 4bp'i' pp—tr(F'FiF"F') —(A, /2)(H*, H')(Hba )

—(A /2)(H *H')(Hb~a ) aH,*H 'i''i'' a—a,*a'i'�'p ' —2pa, p 'itii(F'Fi) b—Hb 2pH*(F'FJ) bH bi—ti'qV j,
(4.2)

where we have omitted terms which will not contribute to (I',„,') because they contain vanishing two-point functions [as,
for example, (H'(x)H (x') ) and (H'(x)P'(x') ) j.

It is now a straightforward calculation to evaluate ((I „,') ) using Wick's theorem and the definitions of the propaga-
tors in Eqs. (3.5), (3.6), and (3.8). The identities (A7), (A9), and (A10) as well as

&ab.de& " =« —1)t5e (4.3)

are used to obtain the expression

((I „t') ) = —f du„ f du„ng B„P'(x)B,'P'(x')G" (x,x')b~(x, x') ng BzP
'(x)P'(x')G" (x—,x')O'A~(x, x')

ng i''(x—)B'P'(x')G" (x,x')B„h~(x,x')+ng P'(x)P'(x')G" (x,x')B&i3„'A~(x,x')

2g'H ', (x)o' H '(x') G~"(x,x')&„~H (x,x') + —g'H ",(x)a'(x') Gi'"(x x ')

g O' H ', (x') i3„H '(x)G""(x,x')b H(x, x')

2

g B&H , (x)H'(x')G& (x,x')8'„bH'(x, x') (n —1)
~ y ~

—H*,(x)a (x')

&&S . (x,x')S (x,x') —4ln —1)!
~

I
i

H*, (x')H (x)S . (x,x')S" (x,x') (4.4)
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The pole part of this expression is now obtained with the use of Eqs. (C33)—(C37) and gives

2
—P.P.[(I„', ) )]=@ ' f du„I (3 c—o)ng d"P'"d~P'

+[(3 —co)n '(n —1)g (—n —1)
~ y ~

4—(n —1)!
~

I
~

]d"H,B„H'

+ng (copy+co/12 ——„' )RP'P '

+[n '(n 1)g—(cogH+co/12 ——)+ ,'(n ——1)
~ y ~

+ , (n ——l)I
~

I
~

]RH,'H'I .

A similar procedure is used to evaluate (II„,' ) from Eq. (4.2). We find

(4.5)

2—
(II„,') =i f dv„—,'

ng P'P'G"„(x,x)+
2n

g2H*, H'G&„(x,x)——,'(n +1)ag'P'Ap(x, x)

2

bP 'P 'b ~(x,x) ——,
'

(n + 1)AH*,H 'b H (x,x) (n 1)aH—*,H '—b ~(x,x)
n

—naP'P 'b, H(x, x)— n
PH ',H 'b, p(x,x) PP 'P 'b —Ic(x,x)

n
(4.6)

From the results in Eqs. (C21) and (C24) it follows that

P.P.[(I',„t )]= e' f du~I [—(n/12)(co+3)g +(n +1)(g~——,')a+2(2n —3)n '(g~ ——,')b

+2n (ka 6)a—+2(kH 6»—]R4"'0 '

+[+(co+3)n '(n 1)g +(n+1)—(g'H ——,
'

)A,

+2(n —l)(g'~ —
6 )a+2n '(n 1)(g~—

6 )p—]RH ~H (4.7)

Finally, Eq. (2.13) yields the part of the one-loop effective action which is quadratic in the background Higgs fields and
comes from the Georgi-Glashow Lagrangian L i.

P.P.(I' zG)=e ' f du„I (3 co)ng 8"P'd„P'—

+[(3—co)n '(n 1)g —N(n —1)
~ y—~

4N(n ——1)!
~

I
~

]d"H', d„H'

+ [(cog~ ——,)ng —(n + 1)(g~——,
' )a 2n '(2n —3—)(g& ——,

'
)b

2n (/II ——,)a ——2(gH ——,
'

)p]RQ 'p '

+ [(cog~ —,' )n '(n—1)g—(n +—1)(g'Ic ——,
'

)A, —2(n —1)(g'~ ——,
' )a

2n '(n — 1)(g'~ ———,')P+ —,'N(n —1)
~ y ~

+ —', N(n —1)!
~

I'~ ]RH', H'J, (4.&)

where N, which multiplies the terms proportional to
~ y (

and
~

I ~, denotes the number of generations of light fer-
mions.

Result for the fully asymptotically free model

Because L2 in Eq. (3.3) is linear in the Higgs fields it contributes only to I;„,. In addition, it is clear that there will be
no cross terms with (4.1) in ((I',„t') ). The required two-point functions were defined in Eqs. (3.13) and (3.14). Using
Eqs. (A9), (A10), (A13), and (A14), we find in addition to (4.4) the following contribution to ((I,'„", ) ):

2——2 f dv„ f du„—,'k2 P'(x)P'(x')+ kz H*,(x)H'(x')'
n

2

+ (ks +k6 )P (x)P (x ) — ksk6$ (x)P'(x') tr[S(x,x')S(x',x)] .
2n ri

The additional contribution to (i/2)P. P.[((I,'„", ) ) ] follows upon use of Eq. (C38) as

(4.9)
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4e ' f du„[ [—, k—2 +(2/n)k5k6 —(2n) '(n —2)(kq +k6 )]c)~P'c)zP' n—'(n —1)k4 d&H,'cj„H'

+[+k2 —(3n) 'kgk6+(12n) '(n —2)(kg +k6 )]RP'P'+(6n) '(n —l)k~ RH,'H'] . (4.10)

If there are N~ generations of heavy fermions (8 and 8) with the same coupling constants, then this result would be
multiplied by NH. IIowever, as both models of Chang, Das, and Perez-Mercader have only one generation of heavy
fermions, we take X~ ——1.

Adding the contributions from L~ and L2 contained in Eqs. (4.5), (4.7) and (4.10) we obtain the pole part of I ~'~d

the one-loop effective action quadratic in the Higgs fields [see Eq. (2.13)]:

P P .(I'. ")=e ' f du„[ [(3—co)ng —2k2 +(8/n)k5k6 2—n '(n —2)(k5 +k6 )]B&P'c)&P'

+[(3 co)n—'(n 1—)g N(n——1)
~ y ~

4N—(n —1)!
~

1
~

4n —'(n 1)k& ]—d&H*, d&H'

+[(copy ——, )ng' —(n'+1)(g~ ——,)a —(2/n)(2n' —3)(g&—,' )b-
—2n(fH ——,

' )a —2(gH ——,
' )p+ —,

'
k2 +(3n) '(n' —2)(k, '+k6') —4(3n) 'k, k6]RQ'p'

+ [(cogH —,' )n —'(n 1)g —(n —+ 1)(gH ——,
' )A2(n,

— 1)(g—~ ——,
' )a

2n '—(n' 1)(gp ——,')P—+(N/6)(n —1) ~y ~
+ —', N(n —1)!~1 ~'

+ ,'n '(n —1)k4—]RH*,H'] .

The counterterms required for renormalization of g~ and gH follow from this expression.

(4.11)

V. RENQRMALIZATIQN OF g'p AND g'n

The pole part of I [q] in Eq. (2.9) must vanish. Therefore, the pole part of the one-loop effective action I'"[q] must
be canceled by the poles in the bare fields and coupling constants which appear in 1"' '[q]=I[q]. I et P~'=Z~'~2/',
g'~s ——g~+g'~, and analogous equations for the H fields, where the subscript B labels the bare quantities and Z~ is the
field renormalization factor Z~=l+5Z~. (Because the gs s are dimensionless, independent of the dimension of the
spacetime, no mass parameter appears in the above equations. ) Writing the bare action I [q] in terms of the renormal-
ized quantities and the pole terms 5g and 5Z, one has (since the only nonzero background fields are the Higgs fields)

r[q]= f du„[ ,'Z, a~/'B„-P'+Z 8"H*,B„H' , Zp(gp+—g—'p)RP'P'—Z (g +g' )RH', H'] .

Neglecting terms of order g'5Z and using

P.P. [r [q]+I'"[q]j =0,
we obtain the one-loop counterterms

5Zy = —2e '[(3—cu)ng —2k~ +(8/n)ksk6 2n '(—n —2)(k, +k6 )],
'[(3—cu)n '(n' —1)g' —(n —1)N

~ y ~

' —4N(n —1)!
~

I
~

' —4n '(n' —1)kg']

(5.1)

(5.2)

(5.3)

(5.4)

5'= E ~gy[6ng 2(n +1)a—4n {2n ——3)b 4k2 4n (—n —2)—(k5 +k6 )+16k5k6]+6 ~gH( 4na 4P), — —
(5.5)

5' ——E 'gH[3n '(n 1)g —(n+1)A.——(n —1)N
~ y (

4(n —1)—!N
~

1
~

4n '(n —1)kq]-
+e 'g~[ —2(n —1)a 2n '(n 1)P]—, — (5.6)

where we have defined (with appropriate subscripts)

(5.7)

These results are for SU(n) with n arbitrary, and N genera-
tions of light fermions. The arbitrary gauge-fixing pa-
rameter co has dropped out of (5.5) and (5.6), making these
results manifestly gauge invariant. . It is also noteworthy
that the Ps appear in the one-loop counterterms only in
the form of (g ——,

' ).

The counterterms for the Georgi-Glashow Lagrangian
are obtained from the above expressions by setting all the
k's to zero. In that theory, the full set of renor-
malization-group equations are known to result in the
running couplings A,, y, I, a, f!,a, and b not being asymp-
totically free in the high-momentum limit. As pointed
out in Refs. 50 and 51, if those couplings are assumed to
not grow large in the energy range where g is small, one
can still make use of the asymptotic freedom of the gauge
coupling. In that case, the behavior of the running cou-
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plings g~ and gH in the high-curvature limit would depend
on the particular values of the other couplings at high en-
ergy. Therefore, it is of interest to consider a totally
asymptotically free theory"' in which the previous cou-
plings all become small at high energy. For such a theory,
one can reach definite conclusions concerning the
behavior of the g's.

Chang, Das, and Perez-Mercader" have shown that for
the Lagrangian of Eq. (3.1) in flat spacetime there is a
solution of the full set of renormalization-group equations
in which the above couplings are proportional to positive
powers of the gauge coupling g. For the case of SU(5),
n =5, they calculated the numerical values of the propor-
tionality constants. The values of those couplings for
their two theories (with N =3 and 7, respectively), are list-
ed in Appendix D. Those values hold also in curved
spacetime because couplings to the curvature do not ap-
pear in the relevant renormalization-group equations.

For each of the fully asymptotically free models, Eqs.
(5.5) and (5.6) take the form

5'—6 g (C114$+C12$H ),
gH —6 g (C21gy+C22$H),

(5.8)

(5.9)

where the c,j are numerical constants calculated by setting
n =5 in Eqs. (5.5) and (5.6) and substituting the appropri-
ate values for N and the various proportionality constants
from Appendix D. For the model with N =3, we
find c» ———13.42, c12 ———1.695, c21 ———4.067, and
c22 ———21.41. The model with %=7 has cII ———27.21,
cI2 ———4.215, c2&

———10.12, and c22 ———37.48. We are
now in a position to obtain the renormalization-group
equations for g~ and gH.

pdg/dp=(32m ) 'eg —2z(4m) g (6.1)

where e=(4m. ) (d —4), and the constant z depends on n

and X. The number z must be positive for g to be asyrnp-
totically free. ' ' At dimension d =4, the solution is

g'(p) =go'[I+z(2~) 'gQ'»(p/pQ)] ' (6.2)

where po is an arbitrary fixed unit of mass, and go is the
value of g at p =pa.

The equation p, dg&21/dp =0 implies that

VI. RENORMALIZATION-GROUP EQUATIONS
FOR g'P AND g'H

It is well known that in the process of renormalization,
a new mass parameter p appears. In dimensional regulari-
zation, p is introduced in order to keep the action di-
mensionless for all values of d, the number of dimensions
of the spacetime. The renormalized coupling "constants"
will depend on the value of p (the so-called renormaliza-
tion point). The renormalization-group equations, from
which that p dependence follows, are an expression of the
fact that the bare coupling constants are independent of p
(which only appears in the process of regularization). The
renorrnalization of the gauge coupling constant g is unaf-
fected by the curvature to one-loop order. Consequently,
the renormalized coupling g satisfies

0= p dg~/dp+p(dg/dp)B(g'~)/Bg

+p(d g, /d p)a(g, )/ag,

+p(de /d p)a(5&~)/agH, (6.3)

pdg/dp= —(4n. ) g Cg, (6.5)

where g is a column matrix having components /; ——,
'

with i =P and H, and C is a 2X2 matrix having com-
ponents c,J defined in Eqs. (5.8) and (5.9).

The above renormalization-group equation for the g's is
readily solved by diagonalizing the matrix C. The eigen-
values are

A, = —,
' ItrC+[(trC)' —4detC]'"I, (6.6)

where i = 1 (2) corresponds to the + ( —) sign. The solu-
tion of Eq. (6.5) is then

gp(p) = —C12[(C11—kl) glQf l(p)

+(c» —A,2) '$2Qf2(p)],

gH (p ) klQf 1 (p ) +k2Qf 2 (p )

(6.7)

(6.8)

where glQ and $2Q are constants, and

f;(p) =[1+z(4lr ) 'gQ ln(p/pQ)] ' (i =1,2) . (6.9)

We see that g'~ and gH will approach zero as p ap-
proaches infinity, only if the eigenvalues A,; are both posi-
tive [they must be real so that the g(p)'s are real for all
values of p]. For a general theory of the present type,
these requirements are met if and only if both trC and
detC are positive and (trC) & 4detC. For each of the two
theories of Chang, Das, and Perez-Merader, " the values
of the c;J [given after Eq. (5.9)] do not satisfy these condi-
tions. Therefore, it would appear that the g'(p) diverge as

p approaches infinity, or that g(p) is constant at the value
0 [which is also a solution of Eq. (6.5)]. However, it can
be shown that the effect of two-loop contributions to the
renormalization-group equations will make g'(p) =0 an
unstable fixed point, leaving only the divergent solution.

This divergence is analogous to that of other couplings
of the theory. It is natural to search for a solution of the
same type as for the other couplings; that is, to see if a
solution exists in which the coupling constants for large p
are proportional to a positive power of the gauge coupling.
It turns out to be possible to find such a solution, if it is
assumed that g (but not g') for large p is proportional to an

where it is clear from Eqs. (5.8) and (5.9) that the 5$'s de-
pend on p through g and the Ps. One has also the analo-
gous equation involving p dgH/dp. Substituting Eq. (6.1)
into Eq. (6.3) and defining 5$,'" as the coefficient of the
simple pole in the expansion 5$;=e '5$,'"+O(e ), for
i =P and H, the terms of order e give

p dg~/dp = —(32m. ) 'gB(5$~")/Bg .

One also has the same equation with P replaced by H.
The one-loop contributions to the quantities 5$'Il ' and 5''
are the coefficients of e ' in Eqs. (5.8) and (5.9). Then
Eq. (6.4) and the corresponding equation for gH can be
written in the matrix form
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appropriate power of g. Thus, in our previous matrix no-
tation, suppose that for large p,

g(p) =g'(p)r, (6.10)

where r is a column matrix with constant dimensionless
components r

&
and r2.

If Eq. (6.10) is substituted into Eq. (6.5) and Eq. (6.1)
with a =0 is used, then one finds that a solution seems to
exist only if det(C —2zI)=0. That would require C to
have degenerate eigenvalues equal to 2z, a condition which
is clearly not met by the theories under consideration.

However, the renormalization-group equation in (6.5)
ignores two-loop contributions. When the latter contribu-
tions are included, it becomes clear that a solution of the
form of Eq. (6.10) does exist. When two-loop diagrams
are included, one expects that the generalization of Eq.
(6.5) will have the form

curvature terms, we start with Eq. (2.14),

I'"= i—ln f dp[q]exp(iI'i '), (7.1)

dvzg H (7.2)

where H is a differential operator (indices have been
suppressed, and a factor of —,

' should be present if the
quantum field q is real). To within additive constants, Eq.
(7.1) integrates to

where the background fields are zero, and I2 ' is the part
of the action which is quadratic in the quantum fields.
From the Lagrangian of Eq. (3.1), it follows that I2 ' can
be written as a sum of terms of the general form

and

dory/dt = c„g~ +c,2gttg

+bi(gy pi )g +b2(gH p2)g (6.11)

I'"=XiTr lnH, (7.3)

where K is 1 for complex boson fields, —,
' for real boson

fields, and —1 for complex fermion fields, and Tr in-
cludes integration over the spacetime indices. Now,

dgttldt = c2ig~ +c22gttg

+b3(ky p3)g'+b—~(ka p4)g'— (6.12)
5I'"= Ki 5—Tr f ds s 'exp( isH)—

0
(7.4)

where b;,p; are given numbers, and t =in(pleo). The
two-loop generalization of Eq. (6.1) at dimension 4 (a=0)
will have the form

so that one can let

I "'= Ki f d—u„ f dss 'tr(x
~

exp( isH) ~x—), (7.5)

dgl« = Pog'+P—ig'+ ' ' ' (6.13)
where tr is over indices other than spacetime indices.

The coincidence limit of the proper-time expansion is

where Po is given in Eq. (6.1).
Then, substituting Eqs. (6.10) and (6.13) into Eqs. (6.11)

and (6.12), we find that the resulting equations can be
written in matrix form as

(x
~
exp( isH) ~x)—

=exp( im s)—i (4iris) " F(x,x;is), (7.6)

where d is the spacetime dimension, and
Mr+terms of order g =u, (6.14) F(x,x;is) =1+isfi(x,x)+(is) f2(x,x)+ . . (7.7)

where M =C+2poI, r is a column matrix with com-
ponents r~, r2, and U is a column matrix with components

1 1 1
ui ———bi( —,—pi) —b2(6 p2) and u2 b3(6 p3)

b4( —,
' —p4). —We do not expect the p; to equal —,

' be-
cause, even in the example of A,P interaction with addi-
tional coupling to the scalar curvature, the corresponding
constants ' do not equal —, (although at the one-loop
level one does have factors of g ——,

' as here). For large p
or t, the terms of order g in Eq. (6.14) can be neglected.
Then one has the solution

r =M 'U, (6.15)

provided that detM is not zero. The latter condition is
clearly satisfied for the values of the c;1 and po in the
present theories, so that a solution having the form of Eq.
(6.10) for large p does exist. Thus, in the asymptotically
free theories under consideration, there exists a solution to
the renormalization-group equations in which the g s ap-
proach zero and the Ps approach —,

' (the so-called confor-
mal value) in the limit of large p.

VII. GRAVITATIONAL COUNTERTERMS
In order to renormalize the gravitational and cosmolog-

ical constant, as well as the couplings a; to the quadratic

Z, =f,—m f, + —,m2 i 4 (7.9)

Here, m refers to a mass term of the usual sign. For the
Higgs fields, the m term appears with the opposite sign.
In Eq. (7.8), the dimension d has been set equal to 4 except
in the pole involving e=(4~) (d —4).

Typically, the operator H has the form

H =5,'0+Q', (7.10)

where i,j denote the appropriate spacetime or spinor in-
dices, depending on the type of field under consideration.
Let

[Vp, Vv] Wpv (7.11)

The form of Wz„, of course, depends on the type of field
under consideration. It can be shown that, in general,
for an operator H of the above form

Substituting this into Eq. (7.5), one finds [see, for exam-
ple, Eq. (5.69) of Ref. 56, but with the sign conventions of
our Appendix A] that the pole part of I'" is

P.P.(I'")= —e '2K f du„trE2, (7.8)
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trE2(H)=trI(360) '[( —12CIR+5R 2—R""R&„+2R""pRp p~)I+30W&"Wp„+180Q —60RQ +607'~V'~Q]] .

(7.12)

(7.13)

and

It should be noted that in the case of spinors, Vp includes the appropriate spin connection. In Eqs. (7.11) and (7.12), in-
dices i,j have been suppressed.

For the real scalars (P) and complex scalars (H), the operators H appear in Eqs. (3.7a) and (3.7b), respectively. In
these cases, W» ——0, and one obtains from Eqs. (7.8) and (7.10)—(7.12) the results

P.P.(l ~")= e—'N f du„[ ,' p& —(g~——, )p—~ R + —,(g~ ——, ) R „,—R""R„„+„R""pR„„]

P.P.(I ~')= e'—2ND f dv„[ ,'p~ —(gH———,') —,'p~ R+ —,'(g~ ——,
'

) R », R—"R»+», R~"p R»p~], (7.14)

where No is the number of real scalar fields P;, and No is
the number of complex scalar fields H'. For SU(n),
No ——n —1 and No ——n. In the above, the terms involv-

ing R do not contribute because they integrate to zero.
The operator Hfor the vec'tor fields Ap appears in Eq.

(3.19). Any physically relevant quantity should be in-
dependent of the gauge-fixing parameter co. This holds, in
particular, for the components of the expectation value of
the stress tensor, since they are measurable at least in prin-
ciple. But in fact P.P.(l '") is given by the same trE2
coefficient which determines the trace anomaly, and so
the expression for trEq must be independent of co, which
implies that the gravitational counterterms necessary to
cancel P.P.(l '") are independent of co. We may there-
fore work in the Feynman gauge co= 1 so that H has the
form of Eq. (7.10) with Q corresponding to R"„. Then
trQ R=and Tr(Q )=R~"R&„. Also

[V„,V„]A = —Rp„+P, (7.15)

so that

(7.16)

and tr(W~"W»)= R""P —Rp„«. Then from Eq. (7.12)
we obtain for each vector field

rE ~ = 3~ {12CIR —40R + 1 72 R~"R
p 22—

(7.17)

(Note that here trI =P'p 4 )F——or. each vector field, we
must also include a ghost field, which is a complex scalar
field with H =CI. For each scalar ghost field, one has

trE2 ——,~ ( —12 R +5R 2R" R&„—+2R""p R„„).
(7.18)

Because the ghost fields are complex scalar anticommut-
ing quantities, the constant K in Eq. (7.10) is —1 for each
ghost field. Therefore, including a complex ghost field
with each vector field Ap, we have for the contribution of
the vector fields to the pole part of the effective action

P.P.(I „"„'„,) = e'Ni f d—u„(trEz —2trE2 )= e'N& f du„—( ——,', R + ,",R""R~ , 8—'o R~ p R„„—), (7.19)

where N, is the number of vector fields. For SU{n),
N) ——n —1.2

For the Dirac spinors, the operator H appears on the
left-hand side (LHS) of Eq. (3.15). It can be shown that
in this case

I

trE2(H') =,~ (12OR +5R 8R" Rp„7R""P—Rp„p~), —

(7.23)

and, with K = —1 and the factor of —,
' from Eq. (7.20),

Eq. (7.8) gives, for Ni &2 Dirac spinors,

trlnH = —,
' Trln(H'), (7.20)

1 a bO'„„=——R „-y ypvab
(7.21)

where the caret indicates a vierbein index, and y' refers to
the ordinary y matrices. Then

tr(WpvWP )= 2RpvpaRP P (7.22)

and Q = —,RI, where I is the 4X4 unit matrix. Hence,
Eq. (7.12) yields

where H'=0+ ~ R is the operator appearing in Eq. (3.17).
[The derivation just uses Eq. (B60).] This operator is of
the form of Eq. (7.10), so that Eqs. (7.11), (7.12), and (7.8)
can be used. Applying (7.11) to a Dirac spinor, one finds

[see Eqs. (B55) and (B58)]

P P (I 'D„,). =.e 'Ni~2 f du„(+R —4, R""Rp„

R Rp~p~ ) (7 24)

The argument is similar for the left-handed Weyl (two-

component) spinors. Now the operator H appears on the
LHS of Eq. (3.9) and the operator H' appears on the LHS
of Eq. (3.12). Equation (7.20) is also valid in this case.
We find [see Eq. (B48) for W&„] that

(7.25)

Also, Q = , RI, where now I is the 2X—2unit matrix, so
that trI =2, trQ =R/2, and tr(Q )=R /8 Then.
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trE (H')=, ' (6PR+ 'R—2 4—R"R„—R—l'"t' R&„~ )

(7.26)

This is half the result for a Dirac spinor, in agreement
with Refs. 60 and 61. Therefore, if there are N&/q Weyl
spinors,

P.P.(l ~w,'y&)=~ 'Ni~/2 f dU„(,„'R'——,', R~"R„„
—

72p R Rpvpa) .
(7.27)

Adding together the previous results, we find that for a
grand unified theory with IVY real scalars, Xo complex
scalars, N] vectors, N»2 Weyl spinors, and 2Vii2 DiracD

spinors, the pole part of the one-loop effective action is

.(&"')=e ' f dU„I 2pp—No 4pH—No+[No(gt, 6)p—p +Np((H ——,
'

)pH ]R

+[—2'Np(g~ 6i) No(CH ——6) + 36N&+,44Nt/2++2Ni/2]R
R i C 22+ [ 180 Np + 90 Np 45 NI 9p N1/2 —

gg N &/2]R ""R„„
R i C 13 7 p' 7 D @vs[ 180 0 9o 0 + iso Nl 72Q N]/2 36o N ]/p ]R R++~+ ] (7.28)

Then

P.P.(I~+ I "')=0 with

16+d (p~ ) /dt =z ig p~

yields the counterterms for the coupling constants A, K,
and the a; appearing in L,„ofEq. (2.1). Here, Iz is the
action containing the bare coupling constants, such as
A~ ——A+5A, where A denotes the renormalized coupling.
We thus obtain

zi ——12.634 34 .

Using Eq. (6.2), the solution is found to be

p~ (t)=p~ (0)[l+z(2m) gp t] '

(8.3)

(8.4)

5A=e ( 2Npp& + ,Nope), ——1 & R 4 & C 4
(7.30)

(7.31)6 )py +No (~& 6 )pH ]
5a& ——(720m) '(4Np +8Np —52N&+7Niy2+14Ni/2),

(7.32)

5a2 = ( 1 806) ( —Np —2N p +88N ] +2N ] /p +4N ]/2 )

(7.33)

and

5a3 =(144')[72(gy —'6 ) Np + 144(gH —
6 ) Np —20Ni

—N &n —2N1/2] ~ (7.34)

VIII. RENORMAI. IZATION-CxROUP EQUATIONS
FOR GRAVITATIONAL COUPLINGS

The counterterms 5A and 6~ involve p~ and pH .
Therefore, we must obtain the dependence of the Higgs
masses on the renormalization-group parameter p. The
renormalization-group equations for the Higgs masses are
given for the N =3 model in the second paper of Ref. 11.
They use the relation

pH (t) = —0.927 207p&2(t), (8.1)

where t =ln(p/pp). Then the renormalization-group
equations that they write reduce to

For minimal SU(5), one has Np ——24, Np ——5, Ni ——24,
N»2 ——0, and N&/2 N(5+ 10), wh—e—re N is the number of
generations of light fermions. In the fully asymptotically
free SU(5) theory, all the above numbers are the same, ex-
cept that N &/2

——(5+24).

For the N =3 SU(5) theory, one has z =3, so that
z&/4z =1.05286.

At arbitrary dimension d, we have

Kg ——P "(K+5K),

Ag ——p (A+5A),

a;~ =pd (a;+5a;),
(8.5)

dK/dt = (4~) eK+P„—
with

P„=—(4~)-'5K'",

(8.6)

(8.7)

where 5K'" is defined as the coefficient of e ' in Eq.
(7.31). Setting d =4 (@=0) and using Eqs. (6.10) and (8.1)
then gives

dK/dt =(417) Xg py

with

(8.8)

K=Npr& Npr2(0 92—720—7) . . (8.9)

[See Eq. (6.10) for the definition of r i and r2.]
In view of Eq. (8.2), this can be integrated at once to

give

K(p) =Kzi 'pp (t)+const, (8.10)

where ~ has mass dimension 2, A has mass dimension 4,
and the u; have dimension 0. The bare and renormalized
Higgs masses, of course, have dimensions of mass for all
d. Let us consider first the renormalization-group equa-
tion for K. From Eq. (7.31), at one loop, 5K is a function
of the Ps and the Higgs masses. Then a standard
renormalization-group analysis, as in Sec. VI, gives
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d A/dt = (4n.—) eA+Pt, (8.11)

P~ ———(4n. ) Lpp

where

L =——,
'
N]] + —,

'
N]] (0.927 207)

At d =4, Eq. (8.11) has the solution

(8.12)

(8.13)

A(p) =— p~'(0)
2g]] (2z+z])

1+z& /2z

1+ g0 f
4m.

—1 +Ao, (8.14)

where AD is a constant of integration. The constant L is
positive, so that A(p)~ —ao as p~ao.

For a; (i =1,2, 3) we find

da; /dt = —(4m. ) ea; —(4]r) 5a,'", (8.15)

where 5a';" is the coefficient of e ' in the equation for
5a; [i.e., Eqs. (7.32) through (7.34)]. At d =4, the solu-
tions for a] and a2 are

a;(p)=a;0 (4') a;t —for i =1,2,
where

(8.16)

a] ——(720) (4No +8No —52N]+7N]y +214N]/2)

(8.17)

and

a2 ——(180) '( No —2ND+—88N]+2N)g2+4N]y2) .

(8.18)

After using Eq. (6.10), the renormalization-group equation
for a3 at d =4 has the form

da 3 /dt = —( 4m ) [(c ]r ] +c2 r3 )g"+c3 ]
where

R CC1= 2%0 ~ C2=%0

and

(8.19)

(8.20)

where it will be recalled that t =ln(p/po). Then for large
p/po, the quantity ]r(p) is proportional to the square of
the Higgs mass.

Similarly, we find from Eq. (7.30) that

IX. RELATION OF THE RENORMALIZATION GROUP
TO THE HIGH-CURVATURE LIMIT

I [q (p»p g,.(s)]=+[p 'q;(p»p'g, .(s)] (9.1)

where p is the renormalization-group parameter of dimen-
sion mass. Because I' is dimensionless, it must be possible
to write it as a functional of the dimensionless combina-
tions appearing as the arguments of I'. The metric g„„(s)
has not been quantized, so that it has no dependence on
the renormalization-group parameter p. The effective ac-
tion I is also independent of p, as the bare quantities
from which it was originally formed can have no p depen-
dence.

The high-curvature limit is that in which g»(s) ap-
proaches zero as s approaches infinity. It is convenient to
let g»(s) approach zero in such a way that

s g»(s):—g» (9.2)

remains constant. Then g" (s) is proportional to s and
R»(s) is independent of s. It follows that R (s) is propor-
tional to $2 and RP ($)Rp.($) and RP"P ($)Rp.p. ($) are
proportional to s . Thus, the invariants formed from
R t]rs(s) approach infinity in the large-s limit.

Replacing p by ps in Eq. (9.1), and using the p indepen-
dence of I, we obtain

In this section we wish to discuss the physical interpre-
tation of the results which have been obtained from our
renormalization-group analysis. It was asserted in Refs.
18, 21, and 23 that the curved-spacetime renormalization
group is related to the high-curvature limit of the theory.
Here we give a detailed argument which shows under
what circuinstances the renormalization group yields the
high-curvature behavior of the theory. Our discussion
will bring out some important points not previously no-
ticed, and will show more precisely how the rescaled
values of the running couplings are related to the high-
curvature limit.

The effective action I' is a dimensionless (in units with
fi=c = 1) functional of the renormalized background
fields, coupling constants, and masses. Let us denote
those quantitites collectively by q; (we omit the caret on
background fields). The metric, which may be regarded as
a background field, will be denoted separately as g».
Consider a family of metrics g»(s) parametrized by a di-
mensionless parameter s. We will work throughout this
section at spacetime dimension d =4. Suppose that q; has
mass dimension 5; (i.e., dimq; =mass ). We can write

c3 ———(144) '(20N]+N)g2+2N]gi) .

The solution is

a3(p ) =a30 (4]r) c3t + (4z) '(c]r] +c2r2 )go

)& I[1+(4m') ]zgo't] ' 1] . —

(8.21)

(8.22)

I'[q(p»p g, (s)]=+[p '$ 'q(ps»p'gp ] *

where Eq. (9.2) has been used. Thus, comparing the
right-hand sides (RHS's) of (9.3) and (9.1), we find

I [q;(p),p,g„(s)]=I[s 'q;(ps), p, gp ] . (9.4)

The coefficient c3 is negative so that a3(p) approaches
+ Oo as phoo. The physical interpretation of these re-
sults will be taken up in Sec. IX.

To find the relation between the behavior of q;(ps) and
the effective couplings at high curvature, consider the ac-
tion

I [qI],g„„]=J dv„[A&+x&R +a]&R""p R„„+a@&R~R„+a3&R +L~(qa],g„)+Lc(J],p,g„,u )], (9.5)
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Lc(p,p, gP„,u ) = ,
'

(p—+p)u"u "g„(p—+3p), (9.6)

where I.& is the Lagrangian containing the bare quantities
q;z. We have also included a classical Lagrangian L ~ to
facilitate the subsequent discussion. We can, for example,
take I.~ to correspond to a perfect fluid,

The first term on the RHS of Eq. (9.8) has the same func-
tional form as I in Eq. (9.5), but with the bare quantities
q;~ replaced by the renormalized quantities q;(1M). Because
I [q;~,gP„] is dimensionless, it must satisfy the units scal-

5;
ing relation I [U 'q;~, v g„„]=I[q;s,gp„], where U is any
dimensionless number. Therefore, we must also have

which leads, upon variation of the action with respect to
g&„ to the energy-momentum tensor

5;I[U 'q;(p), u g„]=I[q;(p),g„„], (9.11)

TCP"= (p+p) u "u" pg P— (9.7)

1 [q;(V),e,g„.]=I[q;(S ),g„.]+I'"lq, 4 ),S,g,.],
where

(9.8)

I [q, (1 ),g„„]=I [q,„g„„]+p.p. j r'"[q,„g„.] } (9.9)

[q1(tu')&p&gpv] =~ [qis&gpv]

—P.p. tr'"[q,„g„.]j . (9.10)
I

(The constraint gP„u "u"=1 has been imposed after varia-
tion. ) Because p and p are classical they do not depend on
p, and there is no distinction between these bare and re-
normalized quantities at d=4. We regard p and p as
parametrized by s in such a way as to make gP, (s) a solu-
tion of the equations of motion [but for brevity we will
write p for p (s) and p for p(s)].

Working to one-loop order (the argument is readily ex-
tended to arbitrary order), the counterterms 5q; are chosen
to cancel the pole part of 1 "'. We have

as can be explicitly verified. Alternatively, because p ap-
pears in q;(p) in a dimensionless combination, one can
write Eq. (9.11) directly from dimensional considerations.
However, the final term of Eq. (9.8), and hence the total
effective action, need not obey the analogous scaling rela-
tion.

From Eqs. (9.4) and (9.8) with g„„replaced by gP„(s),
we have

—5;1 [q (p»p g (s)]=I[s 'q (ps»g„]
+I'"[s 'q;(ps), p,g„„]. (9.12)

Using Eq. (9.11) with U =s, this becomes

&[q;(1M),1M,g„(s)]=I [q;(ps),g„„(s)]
+I"'[s 'q, (1Ms),p. ,g„„]. (9.13)

Qnly the q; which are in I-& appear in I'" because it arises
from renormalization of quantum fields.

Varying Eq. (9.13) with respect to gP„(s), and using the
explicit functional form of I in Eq. (9.5) with the ap-
propriate arguments, we obtain

—&1[q(1»S g, (»]
5g„„(s)

=&—g (s)[—, A(ps) g""(s—)+~(ps) G""(s)+a3(ps )' "IIP"(s)

+a2(ps)' 'H" (s)+a1(ps)II" (s)+ , Tg"(q;(ps), g„—(s))

+ ,' Tc""(p,p,g„„(s),—u'(s))+ ,' s'7'"P"(s "q;—(ps),p,g„„)], (9.14)

where TcP( pp, g P( )s, u(s)) is given by Eq. (9.7) with g„and u replaced by gP (s) and u (s), respectively, and

Tg"(q, (ps),g„„(s)) = —2[ —g (s)] ' 'M& [q, (ps),g„(s)]/5g„, (s)

with

I~[q;(1Ms),gP„(s)]= f du„(s)Lg(q;(ps), gP (s)) .

Also

'q;(ps»S, g, ]= 2( g) '"&I'"[—s '—
q 4 s»u g,.]~&g,

I

(9.15)

(9.16)

(9.19)

The factor of s in the last term of (9.14) appears because
(9.13) was varied with respect to gP„(s) and [—g(s)]'
was factored out. We have defined

(1)IIPv ( )
—1/2 f d R2 (9.17)

5g.-

( ) 1&
dU RP&R (9 18)

II""=—( —) ' —f du R 'P R
gpv

a~ = —["a~ +4['~a~". (9.20)

The gravitational field equation is obtained by setting Eq.
(9.14) equal to zero [recall that p and p are parametrized
by s in such a way that gP„(s) is a solution of the field
equation].

In the absence of quantum fields, T~~ and T'"" would

(G""=R„——,RgP" is the usual Einstein tensor. ) As a
consequence of the Gauss-Bonnet theorem in four dimen-
sions the following relation holds:
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G(ps) =[16m.a(ps)] (9.21)

A, (ps) = —A(ps)[2a(ps)] (9.22)

The behavior of the couplings and masses in this theory is
reminiscent of variable-mass and variable-G classical
theories. 3

not be present and A, a, and the a; in Eq. (9.14) would be
independent of s. In that case the a; could be chosen
to equal zero, and one would recover the usual classi-
cal theory of Einstein, with a = (16m.G) ' and
A= —(8mG) 'A, where A, is the cosmological constant.
When quantum fields are taken into account, the picture
is greatly altered at high curvature. The coefficients
a;(ps) of the quadratic curvature terms are in general
nonzero and grow in magnitude with increasing curvature,
as do A(ps) and v(ps). The functional forms of these run-
ning couplings are given by Eqs. (8.16)—(8.18), (8.22),
(8.14), and (8.10} with p replaced by ps [thus, in those
equations we put t =ln(sp/po), where p/po is a dimen-
sionless constant]. We are free to set p=po if we like; in
this case t =lns. It should be noted that s is given in
terms of the ratio of two curvature invariants, for exam-
ple, s =[R&"(s)R»(s)/Ri' R& ]' . When the effective
action is written in terms of the rescaled coupling con-
stants, it may appear that s may introduce a metric depen-
dence into them, so that they will give additional contri-
butions to (9.14) when varied. However, we are
guaranteed by the method that s is in fact a constant.
Thus, the running coupling constants appearing in the ef-
fective action really do have no metric dependence. The
tensor Tg has the same form as the classical energy-
momentum tensor of the particle fields, with the back-
ground fields replacing the classical fields. The dynamical
equations obeyed by the background fields are obtained by
variation of the effective action with respect to the back-
ground fields. In the fully symmetric vacuum state,
which is assumed to be the relevant ground state in the
high-curvature limit, the background fields vanish. In
that state, Tg (q;(ps), g~ (s)}=0.

It is clear from Eq. (9.14) that the effective gravitation-
al constant G(ps) and cosmological constant A, (ps) de-
pend on s. In the absence of further significant renormali-
zation effects coming from T"'"", those effective cou-
plings are given at high curvature by

Suppose we take s to be sufficiently large so that the
ln(sp/po) terms in Eq. (9.21) are dominant. From Eqs.
(8.4) and (8.10) it follows that, if the constant X defined in
Eq. (8.10) is positive, then G approaches zero like
(lns) ' =(1ns) '. In this case the effective Planck time
(or length) would approach zero. On the other hand, if K
is negative, then before a can go to —~ it must pass
through zero. As ~ passes through zero, 6 first ap-
proaches + 00 and then jumps to —oo. However, quan-
turn gravitational effects are likely to become important
before this jump in the value of G occurs. In any event, in
these theories the role of the usual Planck scale seems to
become obscure.

Similarly, from Eqs. (8.14) and (9.22) and the behavior
already discussed for ~, it follows that the cosmological
constant A, becomes large and positive. This is clearly
true when K is non-negative which ensures that 6 always
remains positive. If X is negative, then the growth of G as
sc approaches zero will force A, to become large and posi-
tive.

Finally, we note that for arbitrarily large values of s the
dominant terms in the gravitational field equation (9.14)
can be given explicitly. In a fully asymptotically free
theory, the running gauge, Yukawa, and Higgs couplings
(which all have 5; =0) approach zero, so that

{1) v ~iT"'&"(s 'q;(ps), p,g&„} approaches its form for a free-
field theory. Although the effective Higgs masses grow
large as s increases [see Eq. (8.4)], it is the quantities
s p~ (s) which enter T")'", and these expressions ap-
proach zero at large s. Therefore, we may neglect the
Higgs masses in T'"& in the high-curvature limit. In ad-
dition, we have shown that g~(ps) and g~(ps) go over to
their confo~al values of 61. Hence, for arbitrarily large

{1) v ~ivalues of s the expression for T'"""(s 'q;(ps), p, g& )
goes over into that which would be obtained from a free
massless, conformally coupled theory (with the appropri-
ate number of fields). Let us denote this contribution by
Tf~l)P (gp„), where fc refers to the free confo~al value.
Also in the limit of arbitrarily large s, the quadratic cur-
vature terms "M""(s),which scale as s, will dominate in
Eq. (9.14) over the terms involving Gi' (s) and g»(s),
which scale as s and s, respectively (the logarithmic
scaling of the couplings does not alter the conclusion).
Thus, in the limit of arbitrarily large s, the gravitational
field equation in the symmetric phase reduces to (in four
dimensions)

[a3(ps) —ai(ps)] '"H""(s)+[a2(ps)+4ai(ps)] ' 'H""(s)+ ,
' TP'(p, p, g&,(s),u—(s))+,' s Tf,"" (g„„)=0 . —(9.23)

Note that Eq. (9.23) only depends on the number and
types of fields present and not on the details of a particu-
lar asymptotically free grand unified theory.

Using the results for the a; obtained in Eqs.
(8.16)—(8.22), we find that in the limit of large s (or large
p) the first two terms of Eq. (9.23) become

(a —a )"'a~ +(a,+4a, )'"a»
=A( ,

' Hi'"+2"'Hi' ), —(9—.24)

where

A = —(4n. ) ~ln (120) '(No +2NO +12Ni
Po

+ 3N ) ~2 + 6N i gz ) .
(9.25)

Noting that the square of the Weyl tensor is

we observe using the definitions in Eqs. (9.17) and (9.18)
that
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L,„=/IC ~r (s)C ~ra(s)+BG(s),

where

(9.27)

8 = (4m ) ln (720) '(2NP) +4N() + 124N)
pp

+11N)/z+22N)/2) ~

(9.28)
This result for L,„ is valid quite generally, provided that
g'~ and gH approach —, in the high-curvature limit (as in
asymptotically free GUT's), or else that scalar fields are
not present at all. In such theories, the high-curvature
limit will have field equations which are invariant under
conformal transformations [g& ~Q (x)g„„]. It is also of
interest that B is positive [see Eq. (9.28)] and /I is nega-
tive [see Eq. (9.25)] regardless of the numbers of fields of
each type that are present in the GUT.

Lagrangians of the general form of Eq. (9.27) have been
considered as candidates for a possible fundamental gravi-
tational Lagrangian in induced gravity. (See, for example,
S. L. Adler in Ref. 67.) If Eq. (9.27) were to be adopted as
a fundamental gravitational action, then the negativity of
A would ensure that the generating functional converges
for metrics of Riemannian signature.

The ca,se of conformal flatness requires special con-
sideration. In conformally flat spacetimes such as the
Robertson-Walker universes, one has (see p. 183 of Ref.
61)

T(1)t v(g ) g (1)Hpv+g3(2)Hpv (9.29)

where a ~ and a3 are known numerical constants which de-
pend on the numbers of fields of each spin present, and

~ H-= —'Rg- R R-"-.aP (9.30)

' 'H+" is a locally conserved tensor in conformally flat
spacetimes, but cannot be obtained from the variation of a
geometrical term in the action. The quantity ' 'H" does
not appear explicitly in Eq. (9.29) because in conformally
flat spacetimes the identity

(9.31)

holds.
As a consequence of this last identity, Eq. (9.24) van-

ishes. Therefore the logarithmically growing terms

H~ +2"'H~"
3

= —( —g) '/2 f dU„C ~r C pcs . (9.26)
5g„„

[The Gauss-Bonnet identity (9.20) has been used here. ]
The result in Eq. (9.26) implies that the gravitational

part of the Lagrangian at very high curvature must be a
linear combination of C @r C I)rs and the quantity

6 =R ~~ R~p 5 —4R ~R~p+R

which is the integrand of the Euler characteristic, and
therefore a topological invariant. In fact, it is easy to see
that in this limit (keeping only the dominant terms)

present in a;()Ms) cancel in Eq. (9.23). For the asymptoti-
cally free theory, it follows from Eqs. (8.16)—(8.22) that at
very high curvature in conformally flat spacetimes, we are
left with Eq. (9.23), but with the coefficients of "'H""(s)
and ' 'H""(s) constants involving the a;0. Because the
"H""(s)are quadratic in the curvature, we have

S T(f,'I' (gp ) = T(f'c~I'"(g&„(s)) (9.32)

for conformally flat spacetirnes.
The identity given in Eq. (9.31) will also hold in many

nonconformally flat spacetimes. For example, in any Ein-
stein space (Rz„——Ag&„with constant A) both ")H&" and
' 'H" vanish identically. In such cases, the terms involv-
ing 1n()Ms/)Mo) in Eq. (9.23) will cancel, even if '"H""and
' 'Hi" are nonzero.

Nevertheless, it is important to point out that in a gen-
eral spacetime the logarithmically growing terms in the
a;(ps) will be present in Eq. (9.23) and give the dominant
contribution to the effective coupling constants. It would
require a detailed analysis to reveal the relative impor-
tance of the various effective coupling constants at the
GUT scale. It seems likely that the running couplings
A(ps), a()us), a;()Ms), and g()Ms) all play an important role
in the evolution of cosmological models containing grand
unified fields.

X. DISCUSSION AND CONCLUSIONS

In the preceding sections we have discussed how the
curved-spacetime renormalization-group method could be
used to analyze the high-curvature behavior of a gauge
theory. We were particularly interested in the behavior of
the coupling constants in Eq. (2.1) which are not present
in flat spacetime. We considered gauge theories which are
totally asymptotically free. A similar renormalization-
group analysis based on perturbation theory should be
applicable to other gauge theories, such as the Georgi-
Glashow theory, if as is usually assumed, the nonasymp-
totically free couplings do not grow too large. We studied
a particular class of totally asymptotically free theories
based on the gauge group SU(5) which are due to Chang,
Das, and Perez-Mercader, " although we believe that the
results which have been obtained are fairly general.

In Sec. VI, the effective couplings g~ and /II were cal-
culated. We discussed two possible ways which these con-
stants could approach the conformal value of —,

' in the
high-curvature limit in an asymptotically free theory. The
first is that the eigenvalue conditions imposed on the cou-
pling constants in the flat-spacetime part of the theory
which ensure asymptotic freedom could naturally lead to
solutions of the renormalization-group equations with —,

as an ultraviolet limit. This was the condition that A, j,i,2
in Eq. (6.6) be both positive. Although this was not true
for the particular examples which we examined, it is pos-
sible that other models could have this behavior. A
second way, which is in the spirit of a one-coupling-
constant theory, is to look for solutions to the
renormalization-group equations which are proportional
to some power of the gauge coupling. We argued that
such solutions should always exist and are such that the g
parameters approach —,

' in the high-curvature limit. In
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addition, because of asymptotic freedom, the other in-
teractions approach zero. It should be noted that in gauge
theories with this behavior, particle creation will be
suppressed in isotropically expanding universes.
This may, however, not be a generic feature of gauge
theories, since nonconformal values of g as well as interac-
tions can give particle production.

The behavior under the renormalization group of A, ir,
and a; appearing in Eq. (2.1) was discussed in Sec. IX.
Although zero or very small today, the effective cosmo-
logical constant A, can become large and positive at high
curvature. This may have implications for inflation in
the early universe. Similarly, the a;(ps) coupling con-
stants, which multiply terms in the action which are quad-
ratic in the curvature, are expected to make a significant
contribution to the effective Einstein equations at early
times, even if their values today are small. The behavior
of the effective gravitational constant requires a more de-
tailed analysis. However, if our result for ii' is used in the
limit of arbitrarily large curvature, then the effective value
of G would be significantly altered from its present value.
In order to quantitatively study the detailed behavior of
the above effective coupling constants in the early
universe, it would be necessary to start from the low-
energy limit of the theory with the known values of the
coupling constants and to integrate the renormalization-
group equations up to and beyond the GUT scale. We are
presently investigating this.

The behavior found here is similar to the basic idea
behind induced gravity ' in which the A and vR terms
are not present in the initial gravitational action, but are
induced by quantum effects. The main difference between
the renormalization-group method and that of induced
gravity is that we examine the high-curvature limit of the
theory, whereas it is the low-curvature limit which is ob-
tained in induced gravity. (Also, to obtain unique predic-
tions for the low-curvature values of A, and G, Higgs sca-
lars are generally excluded. )

The necessity of including curvature-squared terms in
the bare Lagrangian in Eq. (2.1) for purposes of renormal-
izability was first pointed out by Utiyama and DeWitt.
There have been several studies of the effects that nonzero
values of these constants can have in cosmology. We
discussed in Sec. IX that in the limit of arbitrarily large
curvature, the effective action involved only the combina-
tion AC ~r C~~&s+BG. [See Eqs. (9.27), (9.28), and
(9.25).] This leads to field equations with interesting con-
formal properties. The a; would lead to no effects in the
gravitational field equations if the effective gravitational
action were to approach only the topological invariant in-
volving G. However, this can never occur in any grand
unified model since all of the particle species present con-
tribute to A in Eq. (9.25) with the same sign.

A number of cosmological consequences of superheavy
fermions in the asymptotically free GUT theory of Frad-
kin and Kalashnikov' have been investigated by Kalash-
nikov and Khlopov. These superheavy fermions will
also influence the effect of an initially anisotropic expan-
sion of the universe on the baryon-to-entropy ratio of the
universe. The effect of initial anisotropy on that ratio was
studied by one of us, and the discussion can be extended

to include superheavy fermions. In that discussion, it
was assumed that the particles entering into the GUT
mechanism for generating baryon number were created by
the gravitational field of the expanding universe at about
the Planck temperature. Our present results indicate that
the effective coupling constants at that time (in the
asymptotically free GUT theory of Chang, Das, and
Perez-Mercader") may be values which suppress the pro-
duction of Higgs and gauge bosons in isotropically ex-
panding universes. As the decay of those bosons are prin-
cipal sources of baryon-antibaryon asymmetry, an initially
anisotropic expansion of the universe may be required in
order to produce the observed value of the baryon-to-
entropy ratio.

We have not considered what effects there might be
coming from graviton loops, since quantum gravity is not
renormalizable or asymptotically free, at least within the
standard perturbative context. One possibility is to in-
clude quantum-gravity effects in our analysis, and in the
spirit of the fully asymptotically free theories, look for a
solution of the renormalization-group equations in which
a, a;, and A involve some appropriate power of the gauge
coupling. We also note that because there are large num-
bers of matter fields present in grand unified theories it
may be possible to use the 1/N expansion to justify the
neglect of graviton loops.

Interesting work of Fradkin and Tseytlin ' has indicat-
ed that quantization of a theory which includes
curvature-squared terms in addition to the basic Einstein-
Hilbert gravitational action may result in an asymptotical-
ly free theory of gravity. They also suggest that the in-
clusion of such quantum gravitational effects may change
the behavior of the nongauge couplings in GUT's, which
do not normally exhibit asymptotic freedom to be asymp-
totically free. A renormalization-group analysis of the
gravitational coupling constants is presented, but without
the curved-spacetime interpretation of the renormalization
group which we considered here. In addition, we have ex-
amined in detail the effects of matter interactions in a
realistic GUT, and exhibited explicit results on the g cou-
pling constants. It would be of interest to see whether or
not the quantization of gravity would result in the full
asymptotic freedom of the Georgi-Glashow model (or any
other GUT) in the manner suggested by Fradkin and
Tseythn.
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APPENDIX A: SUMMARY OF GROUP NOTATION

Our metric and curvature conventions are taken to be
(———) in the notation of Ref. 82. Explicitly, our metric
has signature —2, and the Riemann curvature tensor is
defined in terms of the Christoffel symbols I &~ (in a coor-
dinate basis) by

(A1)
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The Ricci tensor is defined by R„=R „~ .
The generators for the Lie algebra of the gauge group

are denoted by T' and are chosen to be Hermitian and
satisfy

F„',=a„A'. a~—„'+gf'&"A jA.". (A15)

It proves convenient to also consider a matrix-valued
gauge connection

[T', TJ]=if'l"T" (A2) Ap ——ApT' (A16)

Here i,j,. . . = 1,2, . . . , N where N is the dimension of the
gauge group G and f J are the structure constants which
are assumed to be antisymmetric. The quadratic Casimir
invariant is defined by

T'T'= Cq(GIi )I,
where T is in a representation G~ of G of dimension d~
(i.e., T' are dz Xdii Hermitian matrices). The generators
also satisfy the identity

and field strength

F„=F„' T'.
Then

F„„=B„A dQ~—ig—[Ap,A ] .

Defining

U(g) is, (x)T'

(A17)

(A18)

(A19)

tr(T'TJ) =N C2(GJi )dg &'j . where the 0;(x) are the group parameters, A„and F&„
behave like

If we let L' denote the generators in the adjoint repre-
sentation then the matrix elements of L ' are (L ')J»

if'l". F—rom (A4) the structure constants are seen to
satisfy

A„UA„U ' ——(B„U)U
g

Fp ~UFO' U

(A20)

(A21)
filmfjlm C (G )gij

f'~ f'~ =NC2(G, d; ),
(A5)

(A6)

under a gauge transformation.
If tP(x) is any set of fields transforming like

fiJkfiJk n (n2 '1) (AS)

The fundamental representation Gz of SU(n) has dimen-
sion dz ——n. The quadratic Casimir invariant for the fun-
damental representation is C2(GF) =(n I )/2n—. If F'
denote the generators in the fundamental representation,
then from (A4)

tr(F'FJ) = —,
' 5'J .

From (A3),

(A9)

where G,d&
denotes the adjoint representation.

Of special interest to us is the gauge group 6=SU(n)
In this case the group has dimension & =n —1, and the
Casimir invariant of the adj oint representation is
Cq(G, dj ) =n, so that for SU(n) Eqs. (A5) and (A6) become

filmf jim ngij (A7)

g(x)~Ug(x) (A22)

under a gauge transformation then the covariant deriva-
tive of g is defined by

D„g(x)=Vpg(x) igA„(x—)g(x) (A23)

and transforms as g does. Here V& is the spacetime-
covariant derivative. This is the case for the Higgs field
H in (3.2), which is a complex scalar field in the funda-
mental representation of SU(n). We have

(D„H)'= d„H'(x) igA&(x)(F')'i, H—(x) (A24)

in component form, where (F')'b denotes the matrix ele-
ments of the fundamental representation with
Q)b 9 ~ ~ ~ 1p ~ ~ ~ p no

The other set of Higgs fields occurring in (3.2) are a set
of real scalar fields denoted by N and transform under the
adjoint representation:

F'F'= n —1 I. (A10) U@U (A25)

(A12)

It is straightforward to use these results to derive a
number of identities which are needed to evaluate the
counterterms. These required expressions are

2
tr(FFjF F ) "$~J- (Al 1)

4n

tr(F'F»FJF») — PJ
4n

D„@=Bq@ ig[Ap, 4] . —
If we define (n 1) real s—calar fields P' by

PiF j

then

(A26)

(A27)

These are the fields responsible for breaking the SU(5)
symmetry. The covariant derivative of N is

tr(F'F JF»)tr(F'F'JF l)=-
4n

(A13) @)i g yi+gfij»Aj yk (A28)

2 —2r(F FjF»)tr(FjFF'i) Qkl
Sn

We now explain the terms occurring in our Lagrangian
(3.1)—(3.3). F&„is the usual Yang-Mills field strength:

Because of the normalization of E' in (A9) we have

tr[D„@)(D&@)]= —,
' (i) itp'+gf'j"A j p")

X (a~y'+gf ™A'~y-) (A29)
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which is the standard kinetic term.
Spinor notation is dealt with in Appendix B.

APPENDIX B: SPINOR FIELDS
IN CURVED SPAGETIME

where e- =e- —I& e- .
bv;p bv, p ~ b A.

The Dirac y matrices satisfy

and ys is defined by

(811)

In order to deal with spinor fields in curved spacetime,
one possible approach is to refer everything to a local
orthonormal frame using the vierbein formalism.
Because the spinors occurring in the unbroken Georgi-
Glashow model are all either right handed (RH) or left
handed (LH) we shall treat them as two-component Weyl
spinors. In addition we shall treat them as anticommuting
which is not done in standard classical treatments of two-
component spinors in curved spacetirne.

Let I 8'(x) I be orthonormal basis one-forms with

ds =g -8'(x)8b(x) . (81)

Here we use Latin indices with a caret symbol to refer to
local orthonormal frame or vierbein indices. In terms of
g&„, ds =g&„(x)dx" dx" so that we may define

0'(x) =e'z(x)dx", (82)

0 I
0 1

r 0

0

0
(813)

where

0 rv 3=
0Ty

0

0
I

0 1

x 1 0

0

(812)

For two-component spinors, the Weyl representation for
the y matrices is the most useful:

where
Py 4 0

g&„(x)=e'z(x)e „(x)g„-. (83)

The Ie z(x)J give the vierbein (or tetrad) field which
transforms like a contravariant vector under 1ocal Lorentz
transformations, and a covariant vector under a general
coordinate transformation. The inverse of e'z we denote
by e;& and take it to satisfy

rl~ ——e;"(x)e-"(x)g„„(x).

Any tensor with spacetime indices may be referred to the
local orthonormal frame by contracting it with the ap-

propriate number of vierbein fields (e.g., T'"=e'zeb„T& ).
Define connection one-forms co - with components

b

0

are the Pauli matrices. In this representation,

I 0»= 0 —r
Let 4 be a four-component Dirac spinor and define

'pl. =
2 (1+ys)'p,

O'R ——,
' (1—)'s)'p .

With the Weyl representation we may write

(814)

(815)

(816)

8 +=8 + dX
b bp

(85)
R

(817)

by

d8'+e1'-AO =0 .

The curvature two-form R'- is defined by
b

=ds +co @co
b b c b

(86)

(87)

where gl and pR are two-component spinors which give
the LH and RH parts of 4', respectively. The adjoint spi-

nor is defined by %'=%~y which in the Weyl representa-
tion has components

'P=(A gati. ) . (818)

and has components

(88)

where R'- is the Riemann curvature tensor. [For more
bp, v

details see, for example, Ref. 82. Note that our conven-
tions differ from this reference (see Appendix A).] From
(82) it is easy to show that

We now adopt the two-component index notation

L —
y2

R

(819)

(820)

co- =e e-av
bp bv;p

a a a c aQ) ~ Q) ~ +Q) ~ 6) ~ Q) ~ Q
bIJV b'av hvar &~ bp &P' bv '

(89)

(810)

so that pz carries contravariant undotted indices, and pR
carries covariant dotted indices. We use capital Latin
letters A,B,. . . to run over 1,2. The complex conjugates
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are defined by (Pl)*=f1 and (g . )*=@~. The an-

tisymmetric e",eA& are used to raise and lower indices by

B ~ A ~BA (821)
~ ~

where e' =1, eiz ——1. e =(eA&)*, e =(e" )* are used
AB

to raise and lower dotted indices. [Note that e
=(ivy ) .]

The charge conjugate of a Dirac spinor is defined by

O'=C% T, (822)

where C is the charge-conjugation matrix which may be
chosen to be C =i y y [C. is defined by Cy'C
= —(y') .] In terms of e, it follows that

e'~ 0
C 0 (823)

AB

Defining in the Weyl representation

%pe" =0, V'pcs ——0, (833)

(834)

where o. . =e- o' . . The first condition allows us to
raise and lower spinor indices inside of a covariant deriva-
tive, and the second condition implies that V'~i =0. It
then follows from (832) that

~I A =dpi' I'i,A'—ita

P yA g pe+I A yB

(835)

(836)

(837)

V„P=a„P+I.„",g, (832)

where I & B is the spin connection. Vz is taken to be real
and obey the usual rules for a covariant derivative. (See,
for example, Refs. 85 and 86.) In addition it satisfies

we have

C
L
C
R

Coupled with the Liebnitz rule which V@ is assumed to
obey, Eqs. (833) and (835)—(837) tell us how to take the
covariant derivative of any spinor.

From (833) it is easily seen that

is,

41."=4~ (824)

Because one-spinors are treated as anticommuting, that

I A (838)

An explicit expression for I „"s may be found from the
condition (834). It is

(825) ~ A & aAC bB= 40 0 ~ CO
BC abp

(839)

although we still have pXA ———1(AX", it no longer fol-
lows that pfA ——0 as in the usual approach.

Every four-vector V; is associated with a Hermitian
two-spinor V . byAB

r ', = —,'~ - (z")", .
abp

Then

(840)

where co„- was defined in Eqs. (85) and (89). Define
abp

AB AB
(826)

where o' . is Hermitian and transforms as a contravari-
AB

ant vector on its Lorentz index. (The Hermiticity proper-
ty is o'. =o'. where the order of dotted and undotted

AB AB
indices is unimportant. ) Take

(gab)A &

(
aAC b bAC a

4 CB CB

Taking the complex conjugate of (840) gives

(841)

(842)

~a ~bAB 2 ah
AB

aAC b + bAC a 2 aha
CB CB

The connection between o' and y' is

ay— 0 aAB

where

which means that V V . =2V'V;. We also have

(827)

(828)

(829)

where

(Jab)A [(J'ab)A ]a
B

aAC b bAC a
4 CB CB

(843)

Both J' and J' satisfy the commutation relations for
the Lorentz group. [See Eq. (845) below. ]

It is possible to show that

[~„~]i)r'= —
~ & -b(~")"aP (844)

using the basic definition (832) along with (840), the com-
mutation relation

tJ ~ =(I, 7,7y, —1 )— (830) [Jab Jcd] acjdb+ adgbc+ bcgad+ bdgca (845)
o' =(I,—r„,—ry, —r, )

AB

Define the covariant derivative of a spinor P by

(831)
and the definition of the curvature tensor in (8.10). Be-
cause a spinor index may be lowered inside of a covariant
derivative,
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[VP V.]PA =
2 R„„.-b(~")A 08 . (846) Contraction of (855) with yi'y" and use of the identity

[Equation (838) and definitions (821) have been used to
obtain this. ] Taking the complex conjugate of (844) and
(846) yields

R ~~/

/PAL

= —2R

leads to

(859)

[V V ]/A ~ R (Jab)A $8 (847)

~vCAf(ab) DR R gD
BC pvab B

leads after some calculation to

,~"' v„v„y =(n+. ,' R)y„-

(849)

(850)

where 0=V"V&.
The analogous results for a four-component Dirac spi-

nor follow in a straightforward manner from the two-
component ones above. From (817), (832), and (837),

r

A

~~~= v- (851)
pY ~

A+I A
q

8

RA pA ~R8

If we define the spin connection for Dirac spinors by

V O'=Op%'+ 1"p%

we may immediately read off from (851) that

p A p

p p B
pA

(852)

(853)

Using the two-component results in Eqs. (847) and (848)
we have

[V„,v„]%=
——,'R =(J' ) 8/1.pvab

(854)

[V„,v„]g„=—,'R =(J' )„. (848)

Contracting (848) with W. o" and using (828) and the
BC

identity

y"y'VpV„ql = ( + 4 R)%', (860)

(D~XI ), =VpXra+igXLb(F') aA~ (862)

where again spinor indices have been suppressed. (XL,a
carries contravariant undotted indices. )

The spinor fields occurring in Eq. (3.3) are those intro-
duced by Chang, Das, and Perez-Mercader" in order to
obtain an asymptotically free theory. e' is a set of n
four-component Dirac spinors transforming under ihe n
representation. The covariant derivative of e' is

(D„e)'=v„e'—igA„'(F')', e", (863)

which is analogous to the two-component result in (850).
To complete this appendix we describe the fermion

fields occurring in the Lagrangian (3.2) and (3.3). The fer-
mions in the Georgi-Glashow part (3.2) of the Lagrangian
are placed in a reducible n'e ,'n(n ——1) representation
of SU(n). The ,

'
n (n ——1)representation is formed from

the antisymmetric tensor product of two n representa-
tions. $1 =QL'—denotes the LH Weyl spinor which
transforms under this representation. Because of our in-
dex conventions in (819) it has a contravariant undotted
spinor index. (Recall that a, b =1, . . . , n here. ) The co-
variant derivative of this spinor is

(Dphil ) =vs/I igAq(F—')', Qi igAq(F—'),PL',

(861)

where V'„ includes the spin connection and is defined in
(832). (We have suppressed the two-component spinor in-
dices. )

The spinor PL, is taken to be a LH Weyl spinor which
transforms under the n* representation of SU(n). (Equal-
ly well one may take the charge-conjugate RH %'eyl spi-
nor which transforms under the n representation; see Ref.
49.) Its covariant derivative is

We may define

[v~, v„]%=——,R =g' %', (855)

where V&e' was defined in (852), (857) and (858). The
spinors denoted by B; are (n 1) four—-component Dirac
spinors. If B =B;F', then B is taken to transform under
the adjoint representation of SU(n). Its covariant deriva-
tive is like that for the Higgs field N in (A26) and (A28):

where from (854) it is apparent that

(gab)A ()

gab
(gab) 8

A

(856)

1 ab~@= z~-" )abp
(857)

From Eqs. (841), (843), and (829) it follows from (856)
that

(858)

Note that with this definition the Dirac spin connection in
(853) becomes

DpB =VERB ig [Ap, B], —
(D„B)'=V„B'+gf'J"A~~B" . (865)

In this section we derive a number of results concerning
the Green's functions which are needed in order to calcu-

For the relationship with the notation used by Chang,
Das, and Perez-Mercader" see Appendix D. The various
factors of i occurring in the Lagrangian (3.1) ensure that
the action is real when the spinor fields are treated as an-
ticommuting.

APPENDIX C: NORMAL-COORDINATE EXPANSIONS
AND POLE PARTS OF GREEN'S FUNCTIONS
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late the counterterms in the main body of this paper. The
method used is the momentum-space representation of the
normal-coordinate expansion of the Green's function
which was introduced by Bunch and Parker. '

Let 6'j(x,x') be a Green's function which satisfies

[5'kV"V&+Q'k(x))G "j(x,x') =5&5(x,x') . (Cl)

Here we use labels i,j,. . . to indicate any appropriate in-
dices carried by the fields of interest (e.g., spinor or vec-
tor). Q k(x) is any function with indices of the indicated
type. 5(x,x ) is the biscalar Dirac distribution defined on
a test function f (x) by

f du„5(x,x')f(x)=f(x') . (C2)

[Feynman boundary conditions are understood in (Cl).]
The covariant derivative V„ is taken to act upon the x
dependence of G "j(x,x') in (Cl) and is defined by

VpG'j(x, x')=BpG'j(x, x')+I'p'k(x)6 j(x,x'), (C3)

where I &'k(x) is the appropriate connection for the given
spin. The results for scalars, spinors, and vectors in the
co=1 gauge all involve Green's functions which satisfy
(Cl).

The idea now is to study 6'j(x,x') for x in a neighbor-
hood of x'. The method which we use is to introduce a

I

Riemann normal-coordinate system with origin at x'; that
is, define x"=x'"+y". The following results are re-
quired:

I CT
'lie TRss y y +

g""(x)=g""+—,
'

R&p "y~y +
I ~ (x)= —,'(R "—p „+R~„„)y+ ~

[—g(x)]' =1+—,'Rz yea+
I „' (x)= —,R =(J' )' y +4 Ijpab

Q'J(x) =Q'j+

(C4)

(C5)

(C6)

(C7)

(C8)

(C9)

[Jab Jcd] +acJdb+ +adJbc+ ~bcJad+ +bdJca

A straightforward expansion of (Cl) leads to

(Clo)

Here all quantities occurring on the right-hand sides of
(C4)—(C8) are evaluated at the origin of the normal-
coordinate system (viz. , x') where only the lowest-order
terms are retained. In (C8) R „- is the Riemann curva-

Ijj,pab

ture tensor with two vierbein indices, and (J' )'j is the ma-

trix element of the Lorentz generator J' = —J ' for the
representation appropriate to the field under consideration
(e.g., spinor or vector). Qur notation is such that

[g" cj 8 G' + —,'R" "yj'y a d„G' + ,'R" =(J' —)'Iy'd„G' + ', R"„y"&„6—' +Q' Gj'j+ ' ' ]=5'.5(y), (Cl 1)

where 6'j denotes 6'j(x'+y, x') and is regarded as a function of y. [Derivatives in (Cl 1) are with respect to y.] Follow-
ing Bunch and Parker' we solve (Cl 1) by substituting a momentum-space expansion for 6'j ..

d
6'j(x,x')= f d

e'"'"(62'j+63 j +64' j+ . ), (C12)
(2m )"

where k.y =gz„k y". The quantities 6„'j are taken to fall off like k " for large k (n )2). By substituting (C12) into
(Cl 1) and equating terms on both sides with the same large-momentum behavior it is not difficult to show that

(C13)6'j(x,x')= f d
e'"" + —[—,'5jR„„] +O(k ')

(2~)d k'+iO (k'+iO)' ' " (k'+iO)'

(Feynman boundary conditions are denoted by k +i 0 which is to be interpreted as k plus a small positive imaginary
part. )

A similar procedure may be used to obtain the normal-coordinate expansion for the vector propagator if the gauge-
fixing parameter co&1. It satisfies the following differential equation:

@V~Vp+R "i 1 ——V"Vj„—G „(x,x') =8„'5(x,x') .
CO

(C14)

The analysis of this equation proceeds as described above, but is considerably more complicated due to the presence of
the V~V~ term in the differential operator. An extremely lengthy calculation leads to

cf

6"„(x,x')= f d
e'" ~I —5"„(k +i 0) ' (co 1)k&k„(k—+i 0—) + ,

' [R&„'+(co 3)R—&„](k+i 0—)

+ , [ 5j„"R, k k +(~——1)Rkl'k. +2~RI;—„k&k ](k'+iO)-'

3(co 1)R~ —kl'k k—"k (k'+iO) ~+O(k ')j . (C15)

If the curvature is taken to be zero, then (C15) reduces to the well-known flat-spacetime result. In the case m = 1 it may
be observed that (C15) gives a result in agreement with (C13) when specialized to the vector case. [Note that the spin
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connection in (C3) is just the Christoffel symbol. ]
Another useful result which we use below is that in normal coordinates

a2
[V"V„+—,'R (x)]5(x,x') =g"" 5(y) . (C16)

In order to evaluate the Feynman integrals which arise, we need results for a number of momentum integrals. These
may all be evaluated using standard techniques and the formulas of dimensional regularization. ' We tabulate a number
of useful results below [e= (4m. ) (d —4) and P.P. denotes the pole part of the indicated quantity]:

deP.P. f q
. k„.(k —m +iO) '[(k p—) m—+i 0]

(2m. )
krak„

—21E
—lE P~

ie —'gp„(m —,'p—) —3 ie 'ppp„

(C17)

P.P. f . k„(k . m—+i 0) [(k p)—m—+i 0]
(2m. )

krak„
l

'Qp, v

(C18)

ddk 2 2 —4 L 1P P d kpk~kpk~(k m +i 0) e ( i)p~g~~+ gpp7) ~o+gp~ri~~)(2n. ) 12

Massless tadpoles

d kf d (k +iO)
(2n.)"

are regularized to zero as usual in dimensional regularization.
Using these results, from (C13) it is easily seen that in the coincidence limit

P.P. [O'J(x', x')] =2i e '[Q'~ ——,
' 5l'R ] .

(C19)

(C20)

The quantity in parentheses on the RHS may be recognized as the Ei coefficient in the heat-kernel or Schwinger-DeWitt
expansion. (See, for example, Ref. 57 whose notation for the coefficients we use. ) Siinilarly, from (C15) we find for the
vector propagator in the co&1 gauge:

P.P.[6"„(x',x')]=+ (co+3)e '—(R"„,' 8'R) . ——
2

(C21)

This calculation is equivalent to a determination of the Ei coefficient for differential operators of the form given in
(C14) and we believe provides a new result. The case co= 1 gives a result in agreement with (C20) when specialized to the
vector case.

The scalar field propagator for a massless field satisfies

[V"V„+gR (x)]b(x,x') = —5(x,x'), (C22)

so that Q(x)=g'R(x) and I &(x)=0. [Note the overall negative sign relative to the definition in (Cl).] Thus, from
(C13), the normal-coordinate expansion reads

d "k
b(x,x')= f &e'""[(k +iO) '+(g—,' )R(kz+iO' —) + ,'R„k"k"(k +iO—) +O(k )] .

(2n. )
(C23)

The pole part of the coincidence limit is found from (C20) to be

P.P.[b,(x',x')]= 2ie '(g ——,
' )R . —

Differentiation of (C23) with respect to x'" leads to

d k8„'b(x,x')= f qe'"&[ —ik„(k +iO) ' —i(g ——,
' )Rk (k +iO) z 3iRp k—i'k k„(k +iO) 3+O(k 4)] .

(C24)

(C25)

Up to terms of order k i we have also that

Differentiation of (C25) with respect to x" gives

(C26)
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ddk
B„B„'b(x,x )= J e "«[k k„(k'+i0) '+—(g —,')Rk„k„(k'+i0)—'+ , R—p k k k„k„(k'+i0) '+O(k ')] .

(2m. )"
(C27)

The propagator for a LH Weyl spinor was given in Eqs. (3.11) and (3.12). It is observed that Q = —,R5 so that

(C13) leads to

d k6 (x x')=5 e' '«[ —(k +iO) '++R(k +iO) 3—Rp„—kP'k'(k +iO) +O(k )] .
A

'
A (2~)

Because [see Eq. (B37)]

(C28)

V„G. (x,x')=B„G„. (x,x') —I . (x)G. (x,x')

in normal coordinates we have, using (C8),

V G. (x,x')=B„G„: (x,x') ——,'R= (J' ). y"G. (x,x')+

It is straightforward to use (C30), (C28), and (3.11) and show that

(C29)

(C30)

SAB( r) vAC ik y ~ 5 Bk (k2+ ~ 0)—1+ 5 BRk (k2+ ~ 0)—2

(2m )
v l2 C v

kPk~k (k2+i0) —3 i
(f ~b) BR kP(k2+&0) 2+O(k ——4)

3 c PO' C VPab
(C31)

A similar calculation for Dirac spinors leads to (spinor indices suppressed)

d
S(x,x') = I e' 'y iy'k—;(k +i 0) '+ Ry'k;(k +i 0)

,'iy'Rp kpk —k.-(k'+iO) '+ y'g'dR „=—kp(k2+iO) '+O(k ') (C32)

The momentum-space expansion of the Dirac-spinor
Feynman propagator was first given by Bunch and Park-
er 17

Finally we require the pole parts of a number of expres-
sions involving products of Green's functions. These may
be found by using the momentum-space expansions above
and performing a number of Feynman integrals using re-
sults in (C17)—(C19). Once the pole parts have been
determined in the normal-coordinate system we may im-
mediately write the unique answer in general coordinates.
Details of these lengthy calculations will not be given
here. We merely note the following final results:

P.P.[6" (x,x')B„B'b(x,x')]

P.P.[S" (x,x')S . (x,x')]

2i e '(V"V&—+ —,
' R)5(x,x'), (C37)

P.P. I Tr[S (x,x ')S (x ',x)] I

'[ —,( —I )V"V„+(2cog+ —,
' ——,

' )R]5(x,x'),
(C36)

P P [6""(x,x')&(x,x')]=—(3+co) 'g""5(x,x') (C33)
2 =4ie '(V~V&+ —,'R)5(x,x') . (C38)

P.P.[6""(x,x')8'„h(x, x') ]=—(co —3)e 'B"5(x,x'), (C34)
2

P.P.[6"(x,x')8+(x,x')]= ——(co—3)e 'i)"5(x,x'),
2

(C35)

APPENDIX D: EIGENVALUE CONDITIONS

Here we quote the results of Chang, Das, and Perez-
Mercader" on the eigenvalue conditions which lead to an
asymptotically free theory. Because our notation differs
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from that used in Ref. 11 we summarize the comparison.
In our notation (a, b, A2a. 2»

I y I
4

I

I' I,py' pH') in Eqs.
(3.2»«(~r, ~z, 4,4,~s, ~2

~

h [, ~

h' ~,p, v ) in the nota-
tion of Chang, Das, and Perez-Mercader. " For Eq. (3.3),
[W28;(F')'b, e', W2P'(F')'b, kz, k4, ks, k&] in our notation
are (BI,X,+,kz, k4, ks, ks) in the notation of Chang,
Das, and Perez-Mercader. " (Factors of i in the Yukawa
terms are necessary to ensure reality of the action because
we treat the spinor fields as anticommuting. ) It is then
just a simple matter of using the results given in Ref. 11
and translating to our notation.

The results for the two models given in Ref. 11 are list-
ed below:

Three-generation model

a =0.029 244g 2

b =0.457 611g
X= 1.196053g2
a = —0.006 187g
P=0.454 585g
y = —0.359 784g
I = —0.186693g
k2 ———0.635 486g
k4 ———0.942 053g
k5 ———0.809 565g
k =0.706639g

Seven-generation model

a =0.0]7 20g 2

b =0.662 75g
/=2. 872 32g
n = —0.03007g
P=1.20407g
y = —0.094 158g
I =0
k2 ———0.903 92g
k4 ———1.338 4g
k 5 ———0.965 76g
k 6

——0.692 65g
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