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We discuss certain global features of colliding plane-wave solutions to Einstein s equations. In
particular, we show that the apparently local curvature singularities both in the Khan-Penrose solu-
tion and in the Bell-Szekeres solution are actually global. These global singularities are associated
with the breakdown of nondegenerate planar symmetry in the characteristic initial data sets.

I. INTRODUCTION

In general relativity, self-gravitating plane waves have a
number of unusual properties. In this paper we shall be
concerned with elucidating some of these properties, par-
ticularly global ones. It will be found that in both the
Khan-Penrose' solution, and in the Bell-Szekeres solu-
tion, global singularities develop in the future of the
plane-wave intersection, with the result that these space-
times are globally hyperbolic. This property is in contrast
to certain single plane-wave solutions which have no
singularities and are not globally hyperbolic. Our
analysis, together with previous work by Tipler and by
Centrella and Matzner, suggests that such behavior is
generic for colliding plane waves.

In Sec. II, we shall give a brief review of the known glo-
bal properties of self-gravitating plane waves, and develop
some new techniques which will prove useful in studying
the global properties of plane waves.

In Sec. III, we shall use these techniques to analyze the
Khan-Penrose and the Bell-Szekeres colliding plane-wave
solutions. We shall attempt to demystify a few rather
strange properties of the Bell-Szekeres solution. In Sec.
IV, we shall state and prove a singularity theorem con-
cerning the existence of global singularities in the collid-
ing plane-wave solutions. We shall use the notation of
Hawking and Ellis.

a =Pa =0~ gab =ab . (2.2)

It can be shown that the Einstein-Maxwell equations
combined with (2.2) imply N, =P, =0 everywhere.

The 45' (null) lines u =0,v =0 are the wavefronts of
gravitational radiation. Hence for v &O, u &0 one has the
standard plane-wave metric

II: (v &O, Q &0)

M=M(u), V= V(u), U= U(u),

where

(2.3)

starting form for the "colliding plane-wave spacetimes"
which are solutions of the Einstein equations that satisfy
certain boundary conditions.

The boundary conditions and the resulting spacetimes
are diagrammed in a standard way in Fig. 1. These space-
times represent plane gravitational waves moving into an
initially flat region. Thus region I is flat space, i.e.,

I: (u &O, v &0)

II. COLLIDING PLANE-WAVE SOLUTIONS

Consider a spacetime which admits globally a pair of
commuting spacelike Killing vectors, say B/Bx, B/By.
Such a spacetime is said to be plane-symmetric. It has
been shown (e.g., Refs. l and 6) that a plane-symmetric
spacetime admits a coordinate system Iu, v,x,yj (du, dv
null), so that

ds = —2e du dU+gbdx dx

+N, du dx'+P du dx', (2.l)

where M =M(u, v ), N, =N, (u, v ), P, =P, (u, v ),g,b

=g,b(u, v), and a, b=2, 3. This metric, together with the
assumption that (u, v, x,y) are globally admissible, is the

FICx. 1. The standard representation of a colliding plane-
wave spacetime.
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M =M(v), V= V(v), U= U(v),

g,b ——diage (e,e ) .
(2.4)

Continuity of the metric and first derivatives (the
Lichnerowicz conditions) requires continuity of the func-
tions U, V,M (and of their derivatives) on the join sur-
faces; imposing the continuity of U at the join surfaces de-
fines the solution in region IV. In the case of colliding
electromagnetic waves, Bell and Szekeres show that these
join conditions must be relaxed to allow certain derivatives
across the join surface to be discontinuous; these are the
O' Brien-Synge conditions, which we will use in Sec. III.

There is no requirement that the waves in regions II and
III be of finite duration. However, if they are, the
analysis becomes considerably simpler. The waves before
collision are then sandwich waves, and the parts of regions
II and III behind the wave sandwich are fEat. The sim-
plest example of this type was one given by Khan and
Penrose, in which the waves have a 5-function impulsive
profile.

The generic behavior of these solutions includes the
evolution of a singularity in the future in region IV. For
colliding gravitational waves, the Weyl tensor of one wave
induces shear in the wavefront normals of the other as
they pass through one another. Each wave emerges from
the collision with nonzero shear, and since the square of

g.b
—diage ~(e ~,e

—~)

(obviously this definition can be extended to the entire re-
gion v &0 so long as U= V=M=0, wherever u &0). The
metric in region III is

the shear is a source for the convergence in the Sachs
equations, each eventually develops convergence as well.
(Prior to the collision, the expansion and shear vanish in
each wavefront. ) One then anticipates the appearance of
singularities at least on the extended initial wavefronts, as
they are converged to a focus, with consequent infinite en-
ergy density. Examination of the solution via the Green's
function shows that in fact in the vacuum case the singu-
larity extends as shown in Fig. 2 across the future of re-
gion IV. In the case of electromagentic wave collisions,
convergence —and not shear —is induced directly by the
energy content of the wave; focusing again occurs. This is
the case for the Bell-Szekeres solution in Sec. III below.

The appearance of the singularity on the wavefronts
u =0, v =0 appears precisely where these waves focus.
Penrose has given a proof that for a single plane wave (not
colliding) there exists no global Cauchy surface for the
evolution. We will address the question of global hyper-
bolicity in colliding plane-wave spacetimes in Sec. IV.

—2t du dv z r+q w+p z
z +t dx

rw(pq+rw ) r —q w —p

+t r+q
w —p
w +p

III. AN EXAMPLE:
THE KHAN-PENRGSE SGLUTIGN

Khan and Penrose' presented a solution in which two
impulsive plane waves intersect. The Khan-Penrose
metric is

where

p=u8(u), q=v8(v),

(1 2)1/2 (1 )
/2

(1 p2 2)1/2 (
2 2)1/2 (w p2)1/2

(3.1)

Figure 2 plots the naive singularity structure of this solu-
tion. Analysis of the Green's function for the solution
shows' that curvature singularities occur at coordinates
u +v =1. It is our intention to investigate the behavior
of the regions v = l, u & 0 and u = l, v & 0. Because of the
overall symmetry of this solution under the interchange
u~v, it will suffice to base our investigation on the
behavior of the solution in the "strip" v & O, u (0. In this
region, the metric is simply

ds2= —2du dv+(1+v) dx +(1—v) dy (3.2)

(We emphasize that this form holds even on u =0, for
v ~ 0. This is a consequence of the demand for continuity
of the metric. ) As asserted in Sec. II, (3.2) is a metric for
flat space. The transformation to standard null-
Minkowskian coordinaf es x is

X

1+v 1 —v
(3.3)

FICx. 2. Naive singularity structure of the Khan-Penrose
solution.

v=v, Q =0+ Tx
1 —v 1+v
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not have any particular pathology, as surfaces, near the
line y =u =0,U = l. However, the slices U =constant of
these surfaces, which represent wavefronts of the propaga-
ting wave, do have an infinite principal curvature there
(Fig. 4).

In fact, Eq. (3.3) may be manipulated to give

(u —u )(u —1)= —,y ——,x (U —1)/(u+ 1) . (3.5)

whence the metric is

ds = —2du du +dx +dy (3.4)

On the surface v = 1, the coordinate transformation (3.3) is
singular; nonetheless there appears no a priori reason
preventing the continuation of the x to U & 1, at least for
Q (0.

Let us investigate some of the properties of the surfaces
u =constant. This is straightforward because we can
work in the flat-space, null-Minkowski coordinates x
Figure 3 gives a diagram of slices u =constant,
U =constant, projected into the u,y subspace (i.e., of the
lines u constant, U constant, x constant). They are nested,
similar downward-curving parabolas for constant U,x [cf.
Eq. (3.3)]. For U~ 1 the curvature of these slices diverges.
The surfaces u =constant, considered as embedded in the
three-space x =0, consist of nested two-surfaces. They do

FIG. 3. The surfaces u =u ~
——constant, v =constant projected

into the u, y subspace of Minkowski space. As v ~1, the surface
u =u

&
has a similar shape, but the principal curvature of the

surface is greater.

Because the x terms act near U = 1 simply like a constant
added to u, we consider only x =0. Equation (3.5) is thus
an equation describing a null cone in 2 + 1 Minkowski
space (u, U y) with apex at a7=u, v = l. The y homo-
geneity of the space is expressed in its action on the null
rays lying in and generating this cone. The y Killing vec-
tor simply moves one null ray into another through the
same apex, in such a way that homogeneity-equivalent
points lie along a v =constant curve. (It is no surprise
that the U =constant curves, slices of a cone parallel to one
side, come out to be parabolas. ) The whole 2+1 cone is
swept out under this action. One of the generators of the
cone is the ray U = 1, x =y =O. The surface u =0 can be
embedded in flat space, is homogeneous under the group,
but it intersects the singularity at u =0,v = 1 . The image
under the homogeneity of this u =O, U = 1 singularity is
the "line" U = 1. More carefully stated, either the homo-
geneity breaks down or v = 1 is a singularity. We note
that because of the impulsive nature of the Khan-Penrose
solution, the Riemann tensor is divergent (5 function) in
the surface u =O. However, this divergence could be re-
moved by smoothing the data. The amplitude, multiply-
ing the 5 function, diverges even after smoothing as the
point u =0, U = 1 is approached. This amplitude could be
measured by its focusing effect, for instance. When U =0,
the focusing effect on a bundle of parallel null rays cross-
ing u =0 is impulsive but finite; the rays can travel a fi-
nite distance before focusing. As we consider rays cross-
ing nearer v = 1 the focusing becomes stronger, and at
u =0,U = 1 this focusing would diverge. '

We can show that the "surface" U =v = 1, u =constant
in region III is not merely a coordinate singularity, but in
actuality is a singularity of spacetime in the sense that
there does not exist a C ' extension from region III to this
surface. The proof is by contradiction. Suppose, on the
contrary, that a C ' extension existed. Then, by continuity
the Killing equations could be extended from region III to

=U2

FIG. 4. A nested sequence of u =constant hypersurfaces,

+3 Q Q2 Q Q f ~ The surfaces coalesce at v = 1.

FIG. 5. The true singularity structure of the Khan-Penrose
spacetime is shown in this two-dimensional slice through the
solution.
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y =constant =yo,
u =constant=uo,

(3.6)

the surface v =1; the vectors B/Bx, B/By would in fact be
Killing vectors (possibly degenerate) there also. But the
above analysis shows that these symmetries would identify
the v=1 surface with the singularity u =O,v=1. Thus
the surface v = 1 is actually a singularity. We call a singu-
larity like that at v =1 (and the similar one at u =1) a
"fold" singularity. The singularity structure in the
Khan-Penrose solution is (as those authors pointed out) as
given in Fig. 5.

This figure is a bit misleading in one respect, however.
It suggests that the fold singularity whose existence was
demonstrated above is distinct from the curvature singu-
larity at u =O, v =1, whereas actually the latter is just one
representative of the homogeneous set v=1. The above
argument suggests this point, but does not prove it.

To investigate this question further, refer first to Fig. 4.
In region III, the surface u =0 is a u =constant surface,
identical, say, to Q =Qz in Fig. 4. But u =0 is the future
boundary of region III; u &0 surfaces lie, by definition, in
the nonflat region IV. The fiat region III is bounded by a
pastward curving cap u =0 (Fig. 4). This important point
lets us understand the singularity at v =1. We consider
null geodesics initially in region III with dvldA, &0 (A, is
an affine parameter). The null ray x =y =0, 0 ) u
=constant crosses the boundary from region I to region
III making a 45' angle in the diagram [Fig. 6(a)] and end-
ing, apparently, at the v =1 singularity. Consider a null
congruence of geodesics that are specified by giving their
"initial" coordinates x =0, y, u & 0 near v =0 in region III
with their initial momenta chosen so that the congruence
is nonexpanding (and nonrotating) and parallel to the ray
x =y =O, u =constant. This latter ray can then be treated
by taking limits within the congruence. (From the x-
Killing property of the metric we see that we lose no gen-
erality by picking x =0.)

Because region III is fIat, the null rays constituting this
congruence are easily written down, using the natural
Mlnkowsklan coordinates x,y, u, v of Eq. (3.3):

(a)

(b)
FIG. 6. (a) The description of null rays by projection into the

plane x =y =0, under the homogeneity group, distorts the causal
structure. We plot two null curves (geodesics) which are parallel
in the Minkowski sense in the flat region III. The curve marked
y =0 lies in the x =y =0 subspace. It remains in the flat region
III until it hits the singularity at v=1. The curve marked
0&y =e has x=0, but nonzero and constanty [see Eq. (3.6)].
When projected to the u-v plane, it appears curved; it crosses
u =0 into the curved region IV before reaching the singularity
u =1. (b) Curves with nonzero y can be continued in region IV
and intersect the singularity (u +U = 1) in a finite affine
length. In a sequence of curves with y —+0, the curves with
smaller y stay close to the y =0 curve longer, and turn across
u =0 more abruptly, and cross u =0 at a point where the wave
amplitude (measured by its focusing power) is stronger. The
limiting ray (y =0) crosses into the curved part of the space-
time precisely where the gravitational wave amplitude is infinite
and immediately runs into the curvature singularity. The U =1
and the u +U =1 singularities are thus seen to be in fact the
same singularity. The apparent noncausality of diagrams like
Fig. 6 is an artifact of the projection to the u —v plane, which
does not in general preserve causal relationships.

I yo
2

"=" +
2 1 —v

(3.7)

Obviously, the ray leaves region III when

Because the homogeneity group sweeps out all directions,
we can, by using the group to pick the particular ray
x=y=0, define a congruence in any direction in the
hyperplane x =0.

Using the homogeneity coordinates x,y, u, v, via Eq.
(3.3), we have in region III, i.e., so long as u (0,

23'ov=1— —Qo
(3.8)

~e have plotted, in Fig. 6(a), the path of the portion of
such a photon path that lies within region III, projected
under the action of the homogeneity to the x =y =0 plane.
This ray should be compared to the ray which has
x=y=0 precisely. They are both null rays; the homo-
geneity projection does not preserve conformal relations for
null rays that are not homogeneous to the x =y =0 ray.

Let us follow the geodesic after it crosses u =0. The
components of its four-velocity are continuous at the
crossing because the metric components Eq. (3.1) are con-
tinuous at u =O, v &0. Thus, just after entering region IV
the tangent to the null ray has components
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dx/dA, =O,

dy/dX=yo/(1 —v)',
du /d A, = —,yo /( 1 —v ) & 0,
dv/dk, = 1,

(3.9)

2
du dv Py—&guv d~ d~

= (3.10)

Now g», as given by Eq. (3.1), is nonpositive and
bounded below in region IV. On the other hand,
(g„y) '& 1 and (gy„) '~co when u +v —+1. Therefore
the product (du/dA, )/(dv/dA, ) cannot change sign and
cannot go to zero in region IV. Hence the geodesic

where v has the value given by (3.8).
In region IV the metric has the form (we again ignore

x)

ds =2gg„(u, v)du dv+gyy(u, v)dy

Because the metric is independent of y we have the im-
mediate first integral py=gyydy/A, =constant. The null
condition gives

reaches the singularity u +v = 1 in a finite affine param-
eter. This behavior is schematically shown in Fig. 6(b).

It can be seen from Eq. (3.8) that goedesics with smaller
yo cross the u =0 boundary with larger values of v, and in
the limit yp~0 the crossing occurs at U =1. This is also
indicated in Fig. 6(b).

We thus see that no extension is possible beyond U =1;
the singularity marked along U =1 is actually an inaccu-
rate diagrammatic representation of the singularity at
u +v =1. Except for the special ray with y=0 exactly,
the geodesics moving in region III leave region III (to re-
gion IV) and begin to feel (finite) curvature effects, which
eventually diverge as they approach u +v =1. There is
nothing noncausal in this behavior. It appears noncausal
because the projection under the homogeneity does not
respect the complete conformal structure. Those null geo-
desics with smaller y defer their depature from region III
until a larger U, and their departure appears more abrupt
on this diagram. As they cross the boundary u =0, they
feel a larger Riemann tensor. In the limit y ~0 the
departure appears discontinuous as the ray exits region III
exactly at the curvature singularity of the u =0 wave-
front.

Professor R. Penrose has drawn this figure giving a three-dimensional picture of the Khan-Penrose solution (three-
dimensional version of Fig. 5). Because the principal curvatures of the u =constant and U =constant surfaces jump on crossing the
wavefronts, we must "glue together" —i.e., identify points on opposite sides of the wave front that lie in surfaces with intrinsically
different geometry. Notice that this applies too on crossing from region II or region III into the (curved) region IV. Note that near
U =1(u =1) we have a (mirror) copy of Fig. 4. The line marked "amplitude constant" is the locus of points where the amplitude of
the waves and the principal curvature Ey[cf. Eq. {3.7) and Sec. IV] a're constant. As Fig. 4 and Eq. {3.3) show, these quantities
diverge at the "fold" singularity.
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CuRVATURE S]NGULARiTV

AT v = m/2b, u=O
CURvATURE SINGULAR]TY

AT v =0, u =m/2o

FIG. 8. Naive singularity structure of the Bell-Szekeres
spaeetime.

Observe from Eq. (3.3) that the coordinate transforma-
tion connecting x and x is not the identity on the sur-
face U =U =0. Immediately after the wave is encountered,
the surfaces u =constant take on a curvature as evidenced
by the last equation in (3.3). If, instead of relying on Fig.
5, a two-dimensional picture, one wants to continue Fig. 4,
which is a three-dimensional picture of part of the solu-
tion to show the entire spacetime, trouble must be expect-
ed at the wavefronts. One will have the part of the solu-
tion near U = 1 represented as in Fig. 5, and its mirror im-
age near u=1. But at the wavefronts, one will have to
connect up the intrinsically flat u =constant (or U

=constant) surfaces on one side to intrinsically curved
constant-coordinate surfaces on the other. The best one
can expect is to indicate by arrows the points to be joined.
Figure 7 is such a picture. (This is a previously unpub-
lished diagram by Professor R. Penrose, and we thank
him for his permission to use it. )

In the initially flat region the u =constant and
v=constant surfaces are planes. At the wavefronts one
has to identify ("glue together" ) points on that plane with
points on the curved u or U surfaces after the wavefront.
Also, there are jumps in curvature in going from region II
into region IV, and in going from III to IV, since these
also cross wavefronts (region IV is not flat and so cannot
be accurately pictured as in Fig. 4). Hence the region-IV
"cap" has to be glued onto the wavefront. Notice that, as
advertised, we have a copy, and a mirror copy of Fig. 4 at
U = 1 and at u = 1. Finally, the lines "amplitude constant"
here corresponds to the loci where the principal curvature
Kyy [Eq. (3.13) and Sec. IV] is constant. They are also
homogeneous images of points on the u =constant,
x =y=0 lines, i.e., they are the wavefronts of the waves.
This principal curvature and the amplitude of the waves
diverge as the "fold" singularity is approached, as we have
already seen from Fig. 4.

We should point out that if the 5-function Riemann-
tensor profiles of the wavefront were spread slightly, there
would be a continuous distortion of the u =constant sur-
face on passing through the wave, in place of the discon-
tinuous distortion here.

In order to proceed in general, we wish to extract a
geometrical characterization of the surface bending of the
Khan-Penrose solution. Intuitively, this a problem in the
embedding of a three-surface in an enveloping pseudo-

Riemannian space. There is a straightforward way to
Ineasure the principal curvatures of the two-surface, as
embedded in the (u, x,y) null three-space. Define a vec-

10

'e (y) =(g")' '()y . (3.11)

This is a (metrically) unit vector pointing in the y direc-
tion. We also use the coordinate basis vectors —written
sans superscript 0:

8 8 8 8
Ie (a) I

= Ie (u)~e (U)~e (x)~e (y) I
= '

ou ov ox oy

e (y) ~yye (a)
0 yy a

—(y)

{)+g

)+ yye( ) ~ (3.12)

The connections appearing here are the coordinate-basis
Christoffel symbols. On the left of Eq. (3.12) we have the
classical definition of the curvature of the orbit of ()»."
Because the x-y part of the metric is diagonal, the norxnal-
ization (3.11) is simple, otherwise see Ref. 10; we also use
in (3.12) the plane-wave property that the u-u block of the
metric is separate from the x-y block—no g„„for instance,
and we use the fact that there is homogeneity in the x and
the y directions. Thus Vo e(„) and 7'o e (y) are the

—(x) —(y)

principal curvatures of the x,y subspace of the (u,x,y)
null three-space. "

Apply this to the Khan-Penrose solution in the region
we have just analyzed, U & O, u (0. Then I yy

——0, and

0 yy Qe (y) g (~»ye (u))—(y)

2 gyy, ue (u)

1 8
1 —U Bu

(3.13)

As one compares a unit y-direction spacelike vector at a
point in the x-y surface to a parallel-transported copy of a
nearby such vector, one finds that they deviate by a pro-
trusion into the null direction u. This can be simply seen,
graphically, by referring to Fig. 4. And, clearly, one has a
divergence of this protrusion as U~0. This infinite curva-
ture along the whole "line" —Do (y( oo for x=0, u (0
when U=1 provides the "fold singularities" already dis-
cussed in the Khan-Penrose solution. (As may be expect-
ed, one finds Vp, e („)———[1/(1+v)]B/BU, which is fi-

—(x)
nite at u = 1.)

We may apply a similar analysis to the Bell-Szekeres
solution. This is the solution which describes the collision
of two self-gravitating electromagnetic waves. The princi-
pal feature in such a collision is that one expects only con-
vergence, not shear, to be induced as the waves collide.
The solution is displayed in Fig. 8. The metric is
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0 yy ~ yy u

—(y) Bg Bu
(3.14)

where we again use the explicit properties of the metric to
simplify the right-hand side.

Hence

Vo e („)
——

2 ( —,cos bu) „0 1

COS bv Bu

= —b tanbv
3

BU
(3.15)

(The V() e („) curvature in this case is identical. ) We
—(x)

see that again, the surfaces u =constant harbor infinitely
strong principal curvatures, here at bu =n /2. Again, this
would be only a coordinate singularity, except for the fact
that there is a curvature singularity at u=0, u=m/2b.
The sign of the curvature in this case is the same as we
found in studying the Khan-Penrose solution. If we could
draw a picture like Fig. 4 for this Bell-Szekeres solution, '

we would see the surface containing u =O, u=m/2b fold
downward as in Fig. 4. When one realizes that the sur-
faces u &0, for u &0, also fold do(un and warp down to

region I, flat: ds = —2du du+dx +dy

region II: ds = —2du du+cos au(dx +dy ),
region III: ds = —2du du+cos bu(dx +dy ),
region IV: ds = —2du du+cos (au bu—)dx

+cos (au+bu)dy

No loss of generality is suffered by taking a &O, b &0.
Notice that the region-III metric is valid on the segment
u =O, v & O. In the Bell-Szekeres solution, one finds by ex-
plicit calculation that there are curvature singularities at
u=0, u=m. /2b and at v=O, u=n/2a . A. naive (local)
analysis finds no others. We will again study the
geometry of the u =constant hypersurfaces (u (O, v &0)
to determine if a fold singularity occurs in this solution
also. The Bell-Szekeres solution obeys O' Brien-Synge
boundary conditions; e.g., across u =0 the derivative
g p „has a jump, while g p „, which is related to the
geometry in the surface u=0, is continuous. In region
III, compute Vo e (y)—(y)

the curvature singular point, one realizes that the entire
line u =m/2. b is, in fact, singular. Repeating the argument
for u =m. /2a, the actual structure of the Bell-Szekeres
solution is shown in Fig. 9, and is topologically equivalent
to the singularity structure in the Khan-Penrose solution.
The apparent metric degeneracy at au +bv =~/2 has been
shown by Bell and Szekeres to be removable by a coordi-
nate transformation. It is, however, the location of zeros
of the length of the spacelike Killing vector 8/By. We are
unable by our techniques to discover whether this homo-
geneity failure leads to a true singularity, as .occurs for
other apparent coordinate singularities. We do note, how-
ever, that the singularities at v =m /2b and that at
u =n/2a are separated by a nonzero spatial distance in
this hypersurface.

IV. COLLIDING-WAVE SPACETIMES IN GENERAL

Because the general colliding-plane-wave metric has no
cross terms between the u, v and the x,y blocks, we have
the important symmetry of the connection

with similar equations when u is substituted by u and/or x
is substituted by y. This allows us to connect our princi-
pal curvature calculation to a calculation involving the op-
tical scalars of the u and u congruences. The vector 8/Bu
is proportional to the tangent of a ray lying in the surface
u =constant. Hence it describes how the photon in the
null trajectory evolves as it travels to larger U. We thus
propose to consider

8
—(x) ()V

(4.1)

Vo — ——(gyy)'~ I y„e ( ) .
—(y) Bv

(4.2)

(As before, we need consider these quantities only in a re-
gion where metric variables only depend on u. ) Because of
the (at least block) diagonality of the colliding-wave
metrics, we have here

x 0 aE ~ e(„)=—Voe—(x)
(4.3)

aE y e(y)=VOy 0
—(y) BU

0[g ~yyu ] e(y) (4.4)

FIG. 9. True singularity structure of the Bell-Szekeres space-
time.

[In general one may have y-metric cross terms, whence
(4.3) and (4.4) contain on the right a linear combination of
e („) and e (y).

'

This generalization is immediate. ' Be-
cause we deal with diagonal examples, we continue to as-
sume diagonality here. ]

Equations (4.3) and (4.4) are the components of a null
extrinsic curvature as defined by Hawking and Ellis; they
are also expressible as the optical scalars p, cr (or )((,,A, ), as
defined by Newman and Penrose' (see below). The im-
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portant point to notice is that

(4 5)Vp, I vyy)( —guU) e (y)
'

—(y) BU

the coefficient of ( —g„, e ~y~) is exactly the magnitude of
the y-principal curvature of our warping two-surface,
when we consider a region with metric dependent on U

only. Also notice that g» ———1 can always be chosen
consistently in a region where the metric components only
depend on v, simply by rescaling v (only); the choice that
makes g„„=—1 is the choice that makes v affine. We as-
sume that this has been done subsequently. This also
eliminates any ambiguity arising from comparing the
coefficients of Vo e ~y~ rather than the vector itself.

+ (y)

The O' Brien-Synge junction conditions require that
g„„„,which is the derivative determining the affineness of
t)/I)v, be continuous at the join u =0; hence affineness is
guaranteed on u =0 also.

With this choice, (4.3) and (4.4) are a null generalization
of the formula for the extrinsic curvature for a spacelike
three-surface. For that spacelike case, one computes V n,
where n is a metrically normalized normal to the three-
surface. ' One finds in that case that this tensor has no
projections out of the three-surface. For the null case con-
sidered here, if c)/Bv is affine, then the metrically raised
contravariant form of du is t)/Bv; and one may take the
affine condition as the null analog of normalization. In
that case one may proceed as in (4.5) by considering V'adu,
where du is the (affinely) normalized normal to the null
three-surface. One then finds also that this tensor has no
projections out of the null three-surface, and in fact none
out of the x,y two-surface, and (4.3) and (4.4) are a com-
plete characterization of the embedding of the u, x,y sur-
face, entirely analogous to the spacelike three-surface
embedding problem.

The connection between the optical scalars and the null
extrinsic curvature allows us to prove a theorem which
suggests that the collapse of a null surface into a singular-
ity is a generic feature of colliding plane-wave spacetimes.
By "physical singularity" we shall mean a singularity
through which there is no C' extension.

Theorem. Suppose on the null hypersurface u=con-
stant there is a physical singularity at v = l. If the conver-
gence p~+ ap or p~ —oo at this singularity, then either
(u & constant, v =1,x,y) or (u ~ constant, v = i,x,y) also is
a physical singularity, provided the spaeetime ean be ex-
tended that far.

The proof is immediate from the fact that p is equal to
the trace of the components of the null extrinsic curvature
of the u =constant hypersurface. Since p diverges at the
singularity, it follows that at least one of the K"„orK"z

also diverges at the singularity. Our geometrical analysis
then implies that either the half-hyperplane (u & constant,
v = l,x,y) or the half-hyperplane (u & constant, v = l,x,y)
is actually a singularity.

The singularities which collapse the null half-
hyperplanes in the Khan-Penrose and in the Bell-Szekeres
solutions make these spacetimes globally hyperbolic. This
is in contrast to the nonglobally hyperbolic nature of the
single gravitational plane-wave geometry. In the single
plane-wave case, the analog of the singular null half-
hyperplane is a surface -"all it S on which the planar
symmetry breaks down. Since there are no singularities
anywhere in the single plane-wave geometry, this surface
also is nonsingular, and so one can extend across it. Let p
be a point in I (Q), where Q is the gravitational plane
wave. Then SC:I+(Q), and all the null geodesic genera-
tors of I +(p)—with one exception —intersect Q and are
focused by Q onto a region on S or in I+(S). The excep-
tional generator of I+(p) is the null geodesic which pro-
pagates parallel to Q. Since it never encounters the curva-
ture in Q, it is never focused. This means that there is al-
ways a null generator of I (q), for all q in the region
where the generators of I+(p) are focused, which never
intersects I +(p) (see Penrose' for details). Thus
I+(Ii)UI (q) is not compact, which implies that the
spacetime is not globa11y hyperbolic. One has a break-
down in global hyperbolicity only if S or the region
beyond it is included in the spacetime.

The singularities in the colliding plane-wave spacetimes
we have studied collapse the surface S onto a singularity,
and thus prevent a region to the future of S from existing.
This means that the maximally extended colliding plane-
wave spacetimes we have studied are globally hyperbolic.
Our results suggest that global hyperbolicity is generic for
colliding plane-wave spacetimes.
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