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Causal cosmological perturbations and implications for the Sachs-Wolfe effect
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Gravitational perturbations in a Robertson-Walker (RW) universe induce Auctuations 5T!T in
the microwave background due to the Sachs-Wolfe effect. We find that in RW spacetimes there ex-
ist general-relativistic generalizations of energy-momentum conservation for perturbations; pertur-
bations must satisfy certain integral constraints. When the constraint conditions are applied to
causal perturbations, there is a decrease in the predicted magnitude of the Sachs-Wolfe effect, of the
order (1+z) '. Here z is the red-shift when the universe becomes matter dominated. Exact solu-
tions in position space of the perturbation variables are found by construction of a Green's function.
In this form the solutions are manifestly causal.

I. INTRODUCTION

In Newtonian physics and special relativity, arbitrary
perturbations of the stress energy are not possible; they
must obey conservation of energy and momentum. By
contrast, in general relativity energy goes into the gravita-
tional field, so there is no Gauss's law for the balance of
energy and momentum. However, we prove in a subse-
quent paper' that in Robertson-Walker (RW) spacetimes,
arbitrary perturbations 5T"„and h&„of the stress energy
and metric are not possible. Rather, there exist integral
constraints on allowed perturbations. These can be
thought of as a general-relativistic generalization of
energy-momentum conservation. In this paper we will
impose the constraints on perturbations which are loca1-
ized in space.

Gravitational perturbations lead to anisotropies 5T/T
in the temperature of the microwave background. Obser-
vations show that 5T/T(10 . One contribution to
5T/T is the change in a photon's four-momentum from
the zeroth-order value, as it propagates on the perturbed
null geodesic. Sachs and Wolfe computed this effect for
a fiat, pressureless RW universe. Suppose a photon is em-
itted at (tz, xz) and received at (to, 9). They find
5T/T= »A(x@), where A is the gravitational potential in
a Poisson equation for the density perturbation 5p/p. For
example, for a plane-wave perturbation with comoving
wave number k,

Now, instead of plane waves, consider a perturbation
that is created by a causal process. Causality implies that
the resulting perturbation is strictly zero outside the for-
ward light cone of the initial disturbance. Figure 1 illus-
trates the Sachs-Wolfe effect for such a localized density
perturbation 5p that is created by a pressure fluctuation at
t&. The disturbance evolves in some complicated way
while pressure is important, but stays within its horizon.
After the universe becomes effectively pressureless at tz,
the spatial dependence of 5p remains constant, though
gravitational waves still propagate along the forward light
cone.
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[Here a(t) is the scale factor of the universe and
H(t) =ala is Hubble's constant. ] Of particular current in-
terest are inflationary-universe scenarios which predict a
Z'eldovich spectrum: ' if tII is the time when the scale k
crosses its horizon (Ha/k)(tH)=1, then the ampltiude
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FIG. 1. A perturbation 5p is created by a pressure fluctuation
at t&. At t~ the universe becomes effectively pressureless. A
photon is emitted at (tF. , xF) and received at (t0, 0). The null
geodesic is perturbed from the background path, which causes a
perturbation in the observed photon energy (see Sec. V). During
the time when pressure is important, 5p propagates along the
sound cone dr!dt =c(t)!a(t), where c(t) is the speed of sound
(see Sec. VI).
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%'hen the emission point xz is outside a perturbation,
which is localized in space, we can write r4( x@) in a mul-
tipole expansion. The interesting point is that the con-
straints on R%' perturbations imply that the monopole
and dipole terms vanish, and consequently the magnitude
of 5T is smaller than if 5T were computed without the
constraints (wo). Explicitly, let 1/k be the coordinate
length scale for 5p, so the proper length scale is
L(t) =a(t)/k. Then we will see that

2
5T 1 ~5 Ha ~pap

(t) (t)T 8 p k k

=4~10- 5p M
(to)

p 10' Mo

5T 1 ~pap
T 4 k

since (Hoaolk) «1 whenever the multipole expansion is
valid. If the universe has been RW since t=0, then
causality implies (Hoao/k) &(1+z~) '=10 . z~ is the
red-shift when the universe becomes effectively pressure-
less.

The quantity that is measured in observations is the
correlation in temperature between two source points x&

and x2, separated by an angle (9 at the observer. Based on
the galaxy correlation function, Peebles finds

t(Z, Z )2 &n
=2&16 s1n—

T

To apply the constraints we will need solutions for hz
and 5T in which causality is manifest. The usual
method (Refs. 3 and 7—9) is to write h~ as a sum of sca-
lar, vector, and tensor modes, and then fin solutions in
an eigenfunction expansion. Sachs and Wolfe also
transform each mode back to position space. However,
when solutions are separated into modes, each mode has a
long-range, action-at-a-distance part.

So we start in Sec. I by finding exact solutions in posi-
tion space for h„and 5T", in a k =0, p =0 universe, by
constructing the Green's function for the gravitational
wave equation. Section II discusses the integral con-
straints on perturbations. In Sec. III, the late-time
behavior of the perturbations is derived, as well as the
solution for pure scalar modes. The simple example of a
quadrupole source is worked out. The implication of the
perturbation constraints for the Sachs-Wolfe effect is cal-
culated in Sec. IV. Section V considers the case when
pressure is nonzero.

II. EXACT SGLUTIGNS FOR PERTURBATIONS
GF A k =0, p =0, ROBERTSON-WALKER

BACKGROUND BY CONSTRUCTION
GF A GREEN'S FUNCTION

A. Background model and choice of coordinates

We shall consider perturbations from a k =0
Robertson-Walker (RW) universe with metric

ds2= dt +a (t)5—;~dx'dxj

8S1Il—
2

L

1/2
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' 3/2
and a perfect-Quid stress-energy tensor

&~o)~ = (p+7 )& (o)&(o)~+pg~ .

1 'Ho&o

T 2 k

,
2

P p

In the calculation Peebles assumes that 5p is uncorrelated
on some scale which is less than

I
7x

Now, let 5p be a sum of randomly scattered perturba-
tions, each which is localized in space and has coordinate
length scale 1/k. Then 5p must satisfy the constraint con-
ditions, and this changes the calculation of ((T~ —T2) ).
We find

Here p is the background density, p is the background
pressure, and u~o~ is the unperturbed fluid four-velocity.
In the coordinate system (1), u~~o~ ——(1,0). Latin indices
run from 1 to 3 and Greek indices from 0 to 3. Also,
f=df/dt, f'=df/dg, where dt=a dg.

The Einstein equations are

a 8

25T5T '"=1 ; 7/2
Hpap 5p . 8S1Il-

p

The second quantity is divergent in the case Peebles con-
siders.

In the computation it has been assumed that 5p is un-
correlated on the scale

~

x ~
—x2 ~, that is,

k
~

x1 —x2
~

&& 1, or equivalently, sin(8/2) && ,Hoaolk. —
If the universe has been RW since t =0, this just says that
we are comparing the temperature between two points
that were causally disconnected at the emission time. Nu-
merically this is 8)2, for zz —10 .

(& p)= 3pa ci . —
dt

ap
p =ppa =ap

tp

or, in terms of g,

When p =0 the solutions are
2/3 3
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1tp= 3 apgp .

%'e can always choose synchronous coordinates in
which the time direction is the tangent to the geodesic
which is perpendicular to a family of spacelike hypersur-
faces. ~ 9 Then

ds = —dt +g J.dx dxJ .

(p)g„=g„+h„„hog ——0

T = T(p) +5T
5Tp ———5p, 5TJ =5pgJ',

5T; =(p+p)aalu',

U'=5u' .

(7)

Comoving coordinates are coordinates fixed to the fluid
particles. So to have coordinates which are synchronous
and comoving, the fluid paths must be geodesics which
are perpendicular to the spacelike surfaces. The equations
of motion for a fluid are T","=0, .or, for a perfect fluid,

Substituting into the linearized Einstein equations

M~~ =8'f765(Tp~ —T~gp~T) gives '

h+ 2—h = —8~6(5p+ 35p),a

(p+p)V u= —Vp —p. u u,

p. u +(p+p)V u=O.
When p =0, these become

V„U=O,

(pu "V'—g ) =0 .

(4)
5p+3 (5p+—5p) = —(p+p) —+U,';

a 2

a
la'U'(p+p»)] = 5p,;,—

h; — h;k k
——16m-Ga (p+p)U',

a

1
\ ~ ~ ~

04 a a a
h; kk+h;. ——h; —2——h-

2 EJ& &J gJ gJ

Therefore in the pressureless case the fluid trajectories are
geodesics. A necessary and sufficient condition for the
fluid geodesics to be, in addition, perpendicular to a fami-

ly of spacelike surfaces is that the fluid is irrotational:

(i) For x"~x"—a (O, CJ(x)),
2

g 1+' (C (i+CJ i
»

(ii) For x&~x~ — C(x),C(x) ~ja2
a

(6)

2 t d$2a
gj —+gtj+ 2a

~
C(x) ~; ~J+ g JC(x) .

a a

Here C(x) is an arbitrary function and CJ(x) is an arbi-

trary three-vector both of which depend only on x. C;
~

J.

is covariant differentiation with respect to the metric of
the spacelike hypersurface g;J.

B. Perturbation equations

Now consider perturbations from a flat R%' back-
ground (1) and perfect-fluid stress energy (2),

Qg'IJQJog0 0

So in general we cannot have coordinates that are both
synchronous and comoving.

We will use the synchronous gauge

gp~=o .

Also, we will see that by choosing coordinates which are
comoving with the irrotational part of the flow, the per-
turbation equations simplify.

There remain the following coordinate transformations
that are compatible with the synchronous gauge (Refs.
7—9):

=h,j aah5, &+—SmGa 5;z(5p 5p)—
1, (hkk, +hp„t, ) .

a

A standard way of proceeding is to write h,j as the sum
of scalar, vector, and tensor modes, write the equations for
each type of mode, and find solutions in Fourier space
(Lifshitz and Khalatnikov follow this procedure for
k =+ 1, so they expand in spherical harmonics rather than
plane waves. ) Sachs and Wolfe fourier transform back to
real space; one then has a solution of the form

h,j (Ag;J. +8——;))+(E;1+EJ;)+Cga,
where A,B are scalars, E; a vector, C,J. a tensor, and

(9)

Now, we are particularly interested here in the Sachs-
Wolfe effect due to perturbations which are localized in
space, so we will find solutions in position space not
Fourier space. Further, we want the solutions in a form
in which the causality of the Einstein equations is rnani-
fest. As will be shown, when solutions are written as the
sum of modes the causality is hidden; the scalar modes
have a long-range Coulombic part, for example. [This is
like writing electromagnetism in the Coulomb gauge. The
theory is causal although the scalar potential is written in
an action-at-a-distance form (see, e.g, Jackson, Classical
Electrodynamics 2nd ed. (Wiley, New York, 1975), prob-
lem 6.18)]. So we will not decompose hz„ into a sum of
modes.

Finally, a further choice of gauge is possible in the p =0
case which simplifies the equations. A velocity perturba-
tion can be generated by a scalar or vector perturbation

5Q =U +s
jl

Ug' =0,
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Therefore, curls =0, and we can choose coordinates that
are synchronous and comoving with the scalar-generated
(irrotational) part of the flow. In these coordinates
5u'. ;=0'.;=0. With this choice of gauge there are only
essentially trivial degrees of coordinate freedom left,
namely relabeling the coordinates within a hypersurface
Eq. (6 i) and changing the time origin [C=constant in Eq.
(6 ii)].

Integration along null geodesics for computing the
Sachs-Wolfe effect is done most easily in terms of the con-
formally related metric

ds =a [ dg +—(5ij+hj)dx'dxj]

sidered further in Appendix A.
Finally, we need to solve (1 le),

a 4 a
@hIJ:— —V + +— h;~=S,) .

an' n an

D. Construction of the Cireen's function

Let 6( xg
~

x 'g') be defined by

WG(xg
~

x 'il') =5' '(x —x ')5(g —g'),

(14)

(15)

hij ——a 'hij, h =h

(10) G( xg
~

x 'g') =0,
Then the solution to

Finally, the linearized k =0 Einstein equations for p =0,
v'; =0, in the time variable n, are Pu(x, g)=s(x, g) for g&go,

I
h"+ h'= —8~65pa',a

a' h'5p'+»p= —pa 2

(a'pu') =0,

h;k k ———16moa pu'+h;,
dn ''

(1 la)

(1 lb)

(1 lc)

(1 ld)

u =0 for n & no

u ( x, i) ) = f d x' f dg's ( x ', g') 6( xg
~

x 'g')+ uk,
Y/p

where uk is any solution of the homogeneous equation.
By integrating (15) across the impulse time g', the prob-

lem to be solved for 6 can be restated as

( hi k, kj +hj k, ki ) ( 1 le)

I

V h&j +h jg+2 h j'h 5j'+h j'+ 87TGa 5P5Ija " a
WG(xg

~

x'g')=0,

G(xg
~

x'g')=0 for g(g',
a„G(x~

~

x & ) =5i'i(x

C. Solutions A solution to WG=0 is

The solutions for (1 la)—(1ld) are

"'(x,rj) =bi(x)g+b2(x)g

h(x, g) = —,
' bi(x)rl ——,

' b (x)g —+b3(x)

5p(x, g) = —,
'
p( ——,

' b, rj'+ —,
' b, rj

—'),
i

a p

h;kk= —16~6a'(x), +h,.+p,.(x) .dn
o a

(12)

The functions bi, b2, b3, a', and p; are determined by the
initial conditions. Note that coordinates can always be
chosen such that b3 ——0 by one of the remaining allowed
transformations (6 i).

In terms of proper time t,

h(x, t)=Ci(x)t ' +C2(x)t

6( )
1 8 D(x i))

n an.
where

I

i)+(x,g') =
4m

/

x —x'/

(19)

The solution
3+(x,g') =g is'

to (5„—V )D =0, D(x, g') =j;

where

I(v —n')t [f]I +(n n')j [g]—
an

(20)

(8„—V )D=O.
The initial conditions (17) on 6 will hold if D satisfies the
initial conditions

I2

D(x,g') =
4m

i
x —x'i

5p(x, t)= —,p[ ——,
' Ci(x)t +C2(x)t '] .

The time dependence of 5p is the same as for perturba-
tions in a Newtonian anlaysis. This agreement is con-

iM[g](x, rl) = f dQg[x+ Q(g —g')], Q.Q =1

is the spherical average of g.
Therefore we need the integral
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/
w rQ—

/

4m 4m
H(

/

w
/

r—)+ H(r —
/

w
J

) .

(21)

G(xzy
~

x 'g')=-
'ry c)zy zy

3 H(dry bx—)
4m.

K(z) is the Heaviside function. Then the solutions for D
and G are

zy' 5(b,zy
—hx)

~2

D(x, zy) = — —H(b, ry
—M)1

4m

H(M —
hazy)

1
(22)

where b ry—:zy
—ry' and bx—:

~

x —x '
~

. Notice that G—:0
outside the forward light cone of the source point (x ',y').
To check solutions (22) and (23), see Appendix B.

Finally, the solution to (16) is

u(x, ry) = 1

4~
d'x' —,I dg's(x ', zy')+, '

(zy —Lb& ) +—1 &—~. . . 1 s(x', zy
—hx) 1 5 D

where (de V)D =—0. The last term is the solution to the homogeneous equation. Now u is manifestly causal; the solu-
tion at (xz,yz) is determined by the source at points inside and on the backwards light cone of (x~,zy~ ).

Using (12), (1 le) becomes

8'h;J. =f z(x);J.g +f0(x);J.+fz( x )cj.ry

where

E. The solution for h;~

fz(x)pj:zbf'(x) fj

fo(x) J
—— (a;1+aj;) z

—(p;y+pJ, ) —b3(x);J —Sb~(x)5&,
16m G '9o

Qo
(25)

f z(x)ij ———
4

16m.G '9o
(a; +a;) + —,bz(x);

Qo

Suppressing indices, the solution to (25) is

u(x, vy)= I d x'
I
—f z(x')[(zy —dec) ' —zyo ']+—,

' fz(x ')[zy —bx) —zyo ]+—,
' fo(x ')[(zy —due) —

zyo ]I)be &hq

+ z [f z(x ')(zy —&x) +f0(x ')(zy —&x) +fz(x ')(zy —~)1 1 2 4 1 8 D
g2 AX n an . n. (26)

The importance of writing h;1 in this form, instead of in
Fourier space (e.g., Refs. 8 and 9) or as a sum of modes
will become clear when we want to apply integral con-
straints on perturbations.

Here G is a three-dimensional volume in flat space with
boundary BG. When the surface terms vanish, and assum-
ing the perturbation is zero at some initial time, these be-
come

III. INTEGRAL CONSTRAINTS
ON PERTURBATIONS

In special relativity, time and space translational invari-
ance imply the conservation laws

a, I d'x 5T'. = —I da„5Tk .

fd'~ 5p=o,

Jd x x5p=0.
By contrast, in general relativity there is no gauss's law

for the conservation of either T" or 5T". However, as is
proved in a separate paper, ' some spacetimes do have in-
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a
V(p) = — x

a (27)

tegral constraints on perturbations. Here we will simply
state the results which have interesting implications for
the Sachs-Wolfe effect.

Definition. Let G be a spacelike hypersurface with nor-
mal n and boundary BG. (Possibly BG=0, as in a closed
RW universe. ) An integral-constraint vector is a vector V
such that

f du Vi'5T„n = f dai8'

for arbitrary perturbations h„„and h„„.
The boundary term 8 is a function of h;~ and V", and

is zero if h;i vanishes on the boundary. The conditions for
the existence of a constraint vector V in a given back-
ground geometry follow directly from the linearized Ein-
stein equations, and depend only on the background and
the slicing G chosen. V is independent of the type of
stress energy assumed for 5T"„and of the choice of gauge
for h». It is important to emphasize that most space-
times do not have constraint vectors. However, we prove'
that the RW k =0, + 1, —1, and de Sitter spacetimes
each have ten integral-constraint vectors.

Explicitly, let G be a subset of a t =constant surface in
a k =0 universe, in the coordinate system of (1). Then the
following are integral-constraint vectors:

hij =- 0

t =to
local
per turbation

(in the choice of gauge used). Also, we see in this section
that at late times the growing (scalar) mode in 5p dom-
inates the vector mode in-5Tk. Therefore, either for irro-
tational flow, or at late times,

0= f du 5p= f du 5p„.„,„, . (28a)

FIG. 2. A perturbation h;~ has local initial conditions at to.
In a spatially infinite universe, at any later time tj, we can al-
ways choose the region 6 large enough such that h;J

—=0 on the
boundary BG. Then the boundary term in the integral con-
straints is zero.

Bt a

Similarly, using V(&), V(z), and V(3) gives

0= f du x 5p= f du x5pg„„;„g . (28b)

Also, the purely spatial Killing vectors

+(k) Ox'

Therefore in a k =0, p =0 RW spacetime, we recover the
special-relativity results that the monopole and dipole mo-
ments of 5p vanish.

R(k) =6 x . ~ k = 1~2~3axj'

are integral-constraint vectors. We will call a perturbation
local at time tp when there exists an R such that
h;i(i, to) =0 for

~

x
~

& R. If a peturbation has local ini-
tial conditions, then we can always take BG big enough
such that h;J =0 on BG, as is clear from the solutions in
Sec. I (see Fig. 2). Then the integral constraints become

f du V"5T„=O .

FOI' V= V(p) (27), this is

dU 5&o ——5rkx =0,
a

valid for any pressure and any 5T"„. For the p =0 case
considered in Sec. I, 5Tk ——0 when the flow is irrotational

IV. LATE-TIME BEHAVIOR OF SOLUTIONS
AND EXAMPLE OF A QUADRUPOLE SOURCE

A. I.ate-time solution

Assume the source terms in the integrand of (26) are lo-
cal, so f;(x)=0 for

~

x
~
)R. Theil for Ii —7/0)

~

x
~

+R
the integration in (26) can be extended to all x. We use
the integrals

1 f 3, f(x')
4'Ir

/

x —x'
/

f d x'f(x')
i

x —x'i =P 4f .

[To evaluate the second integral one subtracts a zero-point
divergence:

'I

16m. V f= f d zf(z) f d'y + f "& f d3zf(z)
/x —yf' [x—y['

The second integral is zero for sources f whose integral over all space vanishes. In the case above this is true by the in-
tegral constraints (28a) and (28b). The first integral is done with the help of (21).] Substituting the definitions (25) of
the source terms, one finds
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16mG 0hj(x, g)= ,'r—iV b&(x);J+55JV b&+V b3,&+56, b~,j+V (p; J+p~;)—
2 V (a;J+aj;)+O(1/g) .

ao

(29)

The important point is that h,J looks like a scalar per-
turbation at late times, independent of what mixture of
modes is present in the initial data. Also notice that the
next-order terms in g are g, and are a mixture of vector
and scalar modes. The g' terms vanish upon integration
by parts. Tensor modes enter the solution in the solution
to the homogeneous equation.

B. Solutions for scalar modes

Next we want to compare the late-time solution (29) to
the solution if one assumes hJJ is a scalar perturbation.
Choose comoving coordinates, so v =0 in (11). As indi-
cated in (9), and using the notation in Ref. 11, let

h;J =5;JA+B;J,
h =3A+V B .

Then ( 1 1d) becomes

A j——0

and (1 le) implies"

~ ~ a .
A+3 —A =0,

a
~ . a . AB+3—B=

a g2

(Ref. 12).
The solutions for h;1 and 5p, using (1 la) and (1 lb) are

2 —3
hgJ ]P g A

&j +A5fJ +co fJ 6 fJ Q
(30)

For a purely scalar perturbation, it is impossible to have
local initial conditions for h,J. Suppose we pick three lo-
cal functions I., M, and % for the initial data on 5p, h, and
h'. Then h,J has a long-range part, since A, b, and co are
related to I., M, and Xby the inverse Laplace operator. In
particular, the integral constraints with zero boundary
term cannot be applied to such perturbations. So, if we
want to consider localized lumps (see, e.g., Fig. 1 in Sachs

5p= —,'p( ——,'~q V A+ri V b) .

Here A, co, and b are arbitrary functions of x only which
are fixed by the initial conditions. One these are fixed
then the six components h,J are determined.

With some changes of notation, this agrees with the
scalar modes part of the solution of Sachs and Wolfe.

Comparing to the previous solutions (12), we see that

b~ ———,
' V A, b2 ——3V b, b3 ——3A+V co .

and Wolfe), we must include all modes.
From Sec. I, we known that if the initial conditions on

perturbations are local, then the solution is strictly zero
outside the forward light cone of the initial data. There-
fore the integral constraints (see Sec. II) with zero boun-
dary term must hold. However, calculationally it is diffi-
cult to use the exact solution (26) for h,j, and we have seen
that at late times the growing scalar modes dominate h,J.
So when we compute the Sachs-Wolfe effect which de-
pends on (8/Bg)h J, we will use the integral constraints,
which are exact statements, and approximate h,J by the
growing scalar part only when doing the calculation. In
this approximation the calculation can be done explicitly.

As a check, suppose that only scalar modes are present
in the initial data. Then the Green s-function solution (26)
must reduce to the scalar solution (30). Indeed, with
a'=0, (12) implies P;= —2A;. Then with the change of
notation (31) the late-time solution (29) agrees with the
leading terms in (30).

C. Example of a pure quadrupole source

Here we calculate the solutions for the simplest local
source that is allowed by the integral constraints, a quad-
rupole. Assume that only the growing mode is present
and the flow is irrotational. Then the integral-constraint
statements (28a), and (28b) are exact. So we want to solve
(11) with the initial conditions

5p(x no) =

4pr)o'bib-

h(x, go)= —,go b),
h '( x, go) =gob i,
b &( x ) =A5(z)5(x) [5(y —~)+5(y+ I )]

—A,5(z)5(y) [5(x —&) +5(~ + I )],

where I is the coordinate quadrupole length and A, =el .
The condition

~
5p/p

~
&& 1 is equivalent to ego && 1. For

simplicitly take P; =0, and choose any local initial condi-
tions on h,j and h 1 consistent with those on P;, h, and h'.
Then for q —go &

~

x
~
+ I, h,J is given by (29) with

b2=b3 =p; =a; =0 .

For the source assumed here, we interpret

V bi,j. — f dv'bi——B(dj.

An expansion in I/r yields
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1 A,t
h;J = —g2

8vr r5

—6 105xy(y —x )/r 30xz/r
6 —30yz/r

20(y x—) /r

15 At'
+

8m r5

r

—,
' —(y' —x')/r ,' (y' —x)x—y /r ~

—, —(y —x )/r2

xz/r

—yz/r 2

7(y —x) /r —2
+O A,

6 +O(1/g) .
r6

V. INTEGRAL CONSTRAINTS
AND THE SACHS-WOLFE EFFECT

ds =a ds =a (g&„+h~, )dx&dx

A photon is emitted at E=(gz, x~) and received at
R=(bio, 0). The photon four-velocity is k"=(1/a )k"
and the four-velocity of the observer is u"=(1/a)u".
The geodesic equation is

[(g p+h p)k P]= —,'(g„+h„)k"k"
dc'

and the zeroth-order null geodesics are

x~(o)(co) =(go —co, neo),

(32)

k ~(o) ——( —1,n ), n. n = 1 .

The first-order geodesic equation is

(g p5k p) g„, 5k "k(o)= —"p, k(o)k(o)—
dco

p—2h p k (p)

The observed isotropy of the microwave background is
one of the strongest reasons for using a RW model as a
zeroth-order approximation to the Universe. Perturba-
tions lead to anisotropies 5T/T in the background tem-
perature. There is a contribution to 5T from adiabatic
perturbations and Doppler-type scattering due to peculiar
velocities on the last scattering surface. ' ' A second
contribution to 5T is the Sachs-Wolfe effect: there is a
perturbation to the photon four-momentum as it pro-
pagates on the perturbed null geodesic. ' ' ' Here we
wi11 compute 5T due to the perturbation of the geodesic.
Sachs and Wolfe calculated the temperature anistropy for
k=0, assuming only growing scalar modes were impor-
tant. We will apply the integral constraints to the k=0
case, and see that there is a decrease in the predicted ef-
fect. In a separate paper, ' we will consider k =1 as well,
so here we will summarize the relevant formalism with
greater generality than Ref. 3 (see also Ref. 17).

As in Ref. 3, integrate the null geodesics in the confor-
mally related metric g„„,

[1 5k (Ag—)+njuJ(E) —nju~(R)],
aE

where b, ri =go —gE. Substituting the solutions (30) or (26)

gives

5T 5T 5T
(n) = (grav)+ (Dop 1)+ (Dop 2),5T

(grav) = —,'o (2[0]—A [6,g]) (Ref.3),

(Dop 1)= ('o (yon'A;[0] gF.n'A;[brj]) (—Ref. 3),
(35)

5T njuj njuj
(Dop 2) = '

(go) — ' (g~)T a a

In evaluating the path integral (34), h;J has been approx-
imated by the growing scalar modes, as was discussed in
Sec. III. This will be a good approximation when
Y/E Q) 'Qp so that in the range of integration h;J is a late-
time perturbation. In ihe gauge of Sec. I, the scalar velo-
city field is zero, but in some other coordinate system grad
A would be related to the velocity of the observer; there-
fore (as in Ref. 3) the grace term has been called a
Doppler effect.

The scenario is summarized in Fig. l. (go and to are
understood to label the same spatial hypersurface. ) A lo-
cal perturbation is centered at xp. The initial data are
given at gp, and we assume the p =0 solutions apply for
'Q )Yfp.

3 is the gravitational potential in the Poisson equation
(30) for 5p. If we write the solution for A in a multipole
expansion, then the integral constraints (28a) and (28b)
imply that the monopole and dipole terms vanish. There-
fore,

—0 1 s
5k (s) = —— h;.n'n J da) .

0 Qg (0)

The subscript (0) means that the integrand is evaluated on
the unperturbed path (33). Now,

TE (k u)E

TI( (k.u )~

+hp~ ~k (p)k (p) ~

In the synchronous gauge, substituting (33) gives

A(x) — (Ha)k'[ x —x, ]' )o

whereas without the constraints

(36a)
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/I(x), — (Ha)2 5p

kIx —x~I p
(36b)

On the other hand, ( ( T
& T2-) ) is dominated by

(5TI )+ (5T2 ). This is the contribution to the variance
which is independent of 8:

If t& « tp, then
I
x~ —xp I

=2/'(Hoao) and the anisotro-
pic part of 5TS„„is

(nE)= —(OA(x~)
5T
T

r

1 5p Ha Hpap
(t) (t)

40 p k k

3

10 Is 5P

p 10' Mo

5/3

since (Hpaplk) ((1 whenever the multipole expansion is
valid. The effect of the "energy-momentum" constraints
is to reduce the magnitude of 5T.

We note that if the universe has been RW since t =0,
then causality implies a ( tz ) /k & tz and therefore
(Hoap/k) & (1+z~) '=10

The measurable quantity is correlations in temperature
between two points xl and x2 separated by an angle 0.
Let g be the correlation function

t(*)= (u+z( (U()
p p

f d'u (u+z) P (u),
V "pu 'pu'

where Vis the coordinate volume.
Consider the case when 5p is the sum of uncorrelated

separte lumps, each which is localized and has length
scale 1/k. Then g(z)=0 for z»1/k. This is equivalent
to noting that points separated by an angle 8 with
sin( 0/2) » , (H pa p /k ) are u—ncorrelated. Now,

((TI —T2) ) =(5T, )+(5T~ )+(25TI5T2),
if each of these integrals exists. In fact, the integral
(5TI5T2) has a divergence which can be subtracted out
when the monopole moment of the source vanishes, which
is true for the scenario being considered. With repeated
use of the constraints (28a) and (28b), and expanding in
(k

I xl —xq I
) '= , (sin8/2) '(Hpa—p/k), we find

7/2 —3/2r

Hpap

16 k

26T16T2 5p . 0
sin

p p 2

The time-dependent quantities can be evaluated at any
convenient time t. M is the time-independent mass con-
tained in a sphere of coordinate radius 1/k,I=

3 ~p(a/k)'=(Ho'/2G)(ao/k)'.
The important point is to compare 6T to the value one

would predict without the constraints

Hpap 5T, 5T,
T

(38)

(T( —T2)»2 1 Hpap

2 k

2

6p

P p

=SX10 '
10"Mo

' 2/3
6p

P p

(40)

again valid for sin(8/2) » 4 (Hpa plk).
Peebles computes ((TI —T2) ) in terms of the galaxy

correlation function. In this calculation the constraints
are not imposed, and (5TI5T2 ) is divergent. In fact, Pee-
bles' leading term depends on the monopole moment of
the source, and was zero in our computation (40):

(T T )2 1/2 g=2X 10 sin—

Hp
X

100 km sec ' Mpc

aos f dr r g(r)
X

960 Mpc
I/2 ' 3/2

g Hpap
s1n

k

3/2

compared to

(T T )2 I/2 g=(1+zIt)'" sin—
WO

1/2

(ttt) .
p

VI. PERTURBATIONS WITH NONZERO PRESSURE

So far we have assumed that perturbations are local on
some initial-value surface where p =0. However, the for-
mation and early evolution of such a peturbation will
occur when pressure is important. Here we will show that
local initial conditions do result from a pressure Auctua-
tion at earlier times.

Consider a scenario where all perturbation quantities
are zero for t & ti, and then there is a pressure impulse at

(41)

Again, the effect of the constraints is to decrease the
rms temperature fluctuation, and to change the depen-
dence on 0.

As an example, evaluate (40) and (41) at the horizon
crossing time for the scale 1/k. (This would be relevant,
for example, if there existed causal fluctuations during a
period of inflation. ) Then

(» —Tz( )'r' ( 5p— (tH )T 2 p

=10-' M
10I5Mo

7/6
6p

P p

0sin—
2

—3/2

(39)

5p=f(5p)+F(x)5(t —t, ), t&t, . (42)

f is the equation of state for the perturbation and F is a
function which is localized in space.
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A 5 function in the pressure and hence in the accelera-
tion implies a step in the velocity and in 6p, since the
overall volume expansion means p du work is being done.
Precisely, put (42) in (8) and integrate across ti to derive
the initial conditions

h(x, ti)=0,
h ( x, ti ) = 24'—rGI',

(43)

aP ~l ~E

p+p c

and define the six-vector of unknowns

z=(h,y, 5,w', w, ic ) .

Then (8) becoines a sixth-order linear hyperbolic sym-
metric system

L(z) =A&z &+Bz=0 .

The A" are 6)& 6 symmetric matrices,

5p(x, ti) = 3 F—, —
a

a (p+p)U'(x, t, )=—+; .

Next, linearize the equation of state and assume that the
speed of sound c(t) is independent of x,

5p=c (t)5p .

Let

2

a

There are six roots which decribes six modes of propaga-
tion. Two sound-wave modes propagate along the bi-
characteristics

dr c=+—(t) .
dt a

The fourth-order root of stationary modes corresponds to
two vorticity modes and the two independent coordinate
degrees of freedom (6) that are compatible with synchro-
nous gauge.

To recover the p =0 case, put p=c =0. The sound-
wave bicharacteristics degenerate to the double root
P 0

——0, which represent the growing and dying modes
(12) of 5p found before.

In addition to Eqs. (44) for the unknowns z, there is the
equation in (8) for h;J. If z is known, then the right-hand
side of this equation is known. So, by considering the
homogeneous equation we check that the gravitationa1
waves propagate on the null geodesics

dr 1=+-
dt a

In Secs. I—IV, we have examined perturbations on a
p =0 background, assuming local initial conditions for 5p
and h,j.. This section shows that such initial conditions
will be established by impulsively striking a background
with nonzero pressure which was previoulsy smooth.

aA' '=diag 1, , 2, 1,1, 1
p+p c

g (1)34 g (1)43

g (2)3S g (2)S3

g (3)36 g (3)63

2
B = —1, B =2-1z zz a 1 3zB

a p+p 2
T

2 4

8 = +3—(1+c ), B =8mG(1+3c )s,
c p+p a

VII. CONCLUSION

Perturbations in a RW universe cause fluctuations in
the temperature of the microwave background. If 5p is
the sum of randomly scattered perturbations each which
has zero monopole and dipole moment, then the magni-
tude of 5T/T is decreased by a factor of order
(Hoao/k ) « 1 compared to the magnitude of 5T/T
when 5p does not obey these conditions. The rms tem-
perature fluctuation is also changed,

—1/2 1/2
Hoao

[a'(p+p )]dss 66 c d a dt
a dt c a5(p+p)

A'J'"=B' =0 otherwise .

Then the solution z to the system (44) with initial condi-
tions (43) exists, is unique, and is nonzero only within the
forward sound cone of the initial disturbance E(x).' (see
Fig. 1). The solution at any point P depends only on L (z)
inside and on the backward ray cone from I', and the ini-
tial data inside the cone.

The sound rays, or bicharacteristics, are the directions
along which surfaces of discontinuity, or wave fronts, pro-
pagate. The equation which determines the characteristic
surfaces P(t, x ) for the system (44) is

This means that a perturbation with a given length scale
can have a larger amplitude

~
5p/p

~

and be compatible
with the observational limits on 5T.

A disturbance which is created by a causal process is lo-
calized in space. Local perturbations in a R%' k =0
universe must in fact obey certain integral constraints,
which in the pressureless case reduce to the statements
that the monopole and dipole Inoments are zero. There-
fore the anisotropy in the microwave background is quite
different if 5p is a bunch of causal, uncorrelated distur-
bances or if 5p is a pure plane wave.

Finally, we note that in a Ostriker-Cowie -type model
for galaxy formation, there is no anisotopic Sachs-Wolfe
effect from scalar perturbations. In this model perturba-
tions are created at late times z &100. This implies that
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3 (5g) =0 in (35) and hence the contribution to 5T& —5T2
from scalar modes is zero.
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APPENDIX A: Newtonian Peturbations

h —3hl
l

—f 5du = f — =4m 1
~ 3 hl 2hl

& l b,t

APPENDIX B: CHECKING THE GREEN'S FUNCTION

Rewrite the solution (22) for D as

H(M —Art )

4~ + ~x

The solutions for 5=5p/p in a Newtonian analysis are
identical to the solutions for 5 in the gauge of Sec. I (syn-
chronous and u'; =0). Call these Sl coordinates. In some
other choice of gauge 5 will have a different time depen-
dence, ' but having chosen the S1 coordinates, the t
and t ' modes represent the physical degrees of freedom.

The Newtonian equations for p=0, in comoving coor-
dinates x', for p =0, are

+H(g g )
(kg M)

hx

Then D is the sum of three terms each of which satisfies
the wave equation. This is checked easily, using

H(A, ) =5(A, )

and

5+2—5=4mGp5,
Q

5+u';=0,
where

(A 1)

A,5(A, )=0 .

Each of the three solutions yields a term in 6, which in-
dependently satisfy WG =0.

To verify that the initial conditions are satisfied, one
must show, for example

as

dx
u

dt

The linearized relativistic equations (8) can be rewritten

'g
G( xg'

1

x 'g') =5' '( x —x ') .

That is, for a test function P( x )

lim f d'x'P( x ') G =P( x ) .
g —+g' 8'g

From (23),
5+2—5=4+Gp5,a

~ h5+—+u'; =0 .
(A2)

I

G( x9 I
x '9')

8'g 4m.

3
H(heal M)—

+ 5(b,g —M)1 M —2g'

Once we pick S1 coordinates at to, then we stay in this
coordinate system. On the other hand, if we tried to make
(Al) and (A2) identical by choosing h=0, this would
necessitate a new change of coordinates on each time slice.

In the Newtonian picture, a time rate of change of 5 in
a region R implies a flux of particles across the boundary
of R, and hence a div u term. In the relativistic model,
the change of 5 inside R implies a change in the proper
volume, and so in h. By comparing these we see that the
physical identification between the Newtonian model, and
the relativistic one in S1 gauge, is that the mean-free path
hl of the Newtonian particle in time step b.t equals the
change in the radius of R in ht:

Newtonian (the radius of R is l):

—f 5du= f der;u'=4vrl

Relativistic:

+ 5'(b,q —M) g'
hx

The third term in this expression gives

lim f dQ u du P(u+ x)1 g' 2 5'(b.g —u )

o4m u

=lim f d&du 5(&g —u) (uP)1 9'
4m Bu

&2

=lirn
2 f dQQ(u+x)1„

4m

(x).
The second term is treated sirnilarily, and yields zero. The
first term goes to zero as g approaches g'.
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