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We consider the possibility of identifying the Peccei-Quinn (PQ) symmetry as also the flavor sym-
metry in multigenerational grand unification schemes. The essential ingredient, a global, axial U(1)
symmetry in the PQ mechanism to avoid the strong CP-violation problem provides useful con-
straints on the fermion —Higgs-boson couplings in the theory, thereby leading to identical "canoni-
cal" forms for fermion mass matrices in both the charged sectors. These forms are the conjectured
Fritzsch-type matrices exhibiting the "nearest-neighbor" interactions in generation space. From
among the popular schemes for grand unification, SO(10) emerges as one which has several advan-
tages over the others for constructing multigenerational grand unification models. Reasonable as-
sumptions regarding the quark masses lead to unique PQ quantum-number assignments for the fer-
mionic generations. These quantum numbers combined with the hierarchy in quark masses lead to
a picture in which the lighter generations are composite in nature. One can then show qualitatively
that the hierarchy is such that logm varies linearly with respect to the generation index.

I. INTRODUCTION

The Peccei-Quinn (PQ) mechanism was originally in-
troduced at the standard SU(3)XSU(2)XU(1) level with
the primary purpose of solving the strong CP-violation
problem. A global Abelian degree of freedom was in-
voked to rotate away the potentially dangerous OFF term.
However, in doing so, it was quite necessary to assume
that the corresponding global U(l) symmetry was axial,
leading to color anomalies, and to enlarge the Higgs sys-
tem so that at least two scalar doublets with opposite PQ
assignments are included. With the above ingredients, the
strong CP-violation problem is essentially solved. But one
is faced with the axion problem and the necessity to ex-
plain its experimental invisibility. The recent proposal of
Dine, Fischler, and Srednicki (DFS) does exactly that by
including a complex Higgs singlet in addition to the two
scalar doublets. The axion mass and its coupling strength
to normal matter are both inversely proportional to the
vacuum expectation value (VEV) of the additional singlet;
and if this VEV is large enough, the DFS axion is practi-
cally invisible. It is then only a phantom, harmless axion.

While the DFS scenario may by far be the best solution
to the strong CP-violation problem, it is highly artificial
within the SU(3) X SU(2) XU(1) framework to assign an
arbitrarily large VEV to one of the Higgs multiplets in the
theory. This, however, is not the case when one contem-
plates the PQ symmetry along with grand unification.
The strong CP-violation problem then can be embedded
within the more general gauge-hierarchy problem. Indeed,
several grand unified versions of the DFS idea have been
proposed. In this paper, we attempt to tie the axiality of
U(1)t~ together with the complex irreducible nature of the

fermionic family. From our point of view, SO(10) and

E(6) are preferable to SU(5). It turns out that the same
physics which dictates the axiality of U(1)p& also requires
the desired pair structure of the Higgs doublets. We thus
argue that the essential ingredients of the PQ mechanism
are actually a signature of proper grand unification.

Recently U(l)p& symmetry within the framework of
grand unification was suspected to lead to difficulties with
constraints from astrophysics. However, more recently
several authors have proposed variations of the basic DFS
mechanism which can avoid this problem. A soft break-
ing of U(l)p~ by Higgs-boson mass terms may be simplest.
Grand unified models combined with U(1)po thus remain
very attractive.

Now, one of the most striking features associated with
the idea of grand unification is its possible realization al-
ready at the so-called single-generation level. This leaves
aside the overall flavor problem. Moreover, the unique-
ness of the possible candidate theories when one considers
some requirements on the fundamental fermions, along
with the existence of general no-go theorems, " which
practically forbid simple multigenerational grand unifica-
tion, undoubtedly signify the special role played by
theories such as SU(5) (Ref. 11), SO(10) (Ref. 12), and E(6)
(Ref. 13), despite the "superfluous replication"' or the
generation problem' they are not capable of dealing with.
This is where the PQ symmetry may play an extra impor-
tant role. Namely, U(1)p~ symmetry can be successfully
utilized' as also the horizontal flavor symmetry Such an.

idea is strongly supported by the one-to-one correlation'
between the axial character of the horizontal group factor
and the canonical structure' of the fermion mass matrix.
Indeed, we demonstrate how horizontal U(1)p~ leads to a
variety of fermionic mass relations and allows us to ex-
press the generalized Cabibbo-Kobayashi-Maskawa mix-
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ing angles in terins of quark-mass ratios. The relative de-
formation of m (u) vs m (d), which is known' to accom-
pany local U(1)z horizontal models, is neatly avoided.

An extremely interesting further result that emerges is
the fact that the PQ assignments of all the particles which
make their appearance in the theory are uniquely deter-
mined up to an overall arbitrary scale. In particular, the
fermionic generations exhibit the quantized PQ assign-
ments

1,—3,5, —7, . . .

respecting some special discrete subgroup of U(1)pq. We
interpret the uniqueness and the special characteristics of
the multigenerational extension of the PQ mechanism as a
signature of "horizontal compositeness. " Only one family
of fermions and its associated Yukawa-interacting scalars
need be regarded as fundamental constituents. Other fer-
mionic generations can be viewed as composites of the
basic family and appropriately coupled Higgs doublets of
the theory. The associated fermion mass matrix and the
iterative structure of the theory then tell us that the lighter
the family the more composite it is, in the sense that more
scalars go into inaking it. From this point of view, the
muon is more elementary than the electron. Thus, the
picture of compositeness that emerges from our considera-
tions is very different from those that are currently
described in the literature.

To proceed further and understand the full generation
structure one needs dynamics. At present, we have no de-
tailed dynamical scheme. Nevertheless, we show by
analyzing the dominant effective Feynman graphs that the
combination of U(1)pq and the horizontal compositeness
idea leads to a qualitative understanding of the fermionic
mass hierarchy. In fact, in a very crude approximation,
logm varies linearly ivith respect to the generation index.
We use quite strongly the facts that only symmetrically
coupled Higgs bosons can trigger the mass-generating pro-
cess, and that only real scalars under the gauge group al-
low for a composite family structure. Consequently, apart
from severely restricting the Higgs system, U(1)p~ also ac-
quires the power of choosing its grand-unifying group
partner. G =SO(10) emerges as the only tenable candi-
date.

Altogether, we attempt to provide in this paper a link
among various physical phenomena, our major observa-
tion being that the strong CP-violation problem, minimal
grand unification, the generation puzzle, and even the
conjectured horizontal compositeness are very tightly
correlated by means of the PQ symmetry.

This paper is organized as follows: In Sec. II, we dis-
cuss PQ symmetry in the context of single-generation
grand unification schemes SU(5), SO(10), and E(6). In
Sec. III, we first consider a U(1) horizontal symmetry in
the generation space and show how a simple requirement,
namely, that the U(1} assignments distinguish the dif-
ferent generations, leads to severe restrictions on the forms
of the inass matrices. We argue that in order to have non-
degenerate, nonzero eigenvalues for the quark masses, a
minimum of two Higgs doublets are necessary and thus
link the U(1) symmetry with the U(1) symmetry necessary
to implement the PQ mechanism. We then examine this

symmetry in conjunction with grand unification schemes.
Section IV is devoted to some phenomenological aspects
such as the mixing angles, mass hierarchies, and the idea
of "horizontal" compositeness. We show, albeit qualita-
tively, that the mass hierarchy is one where logm varies
linearly with the generation index.

II. PECCEI-QUINN SYMMETRY
AND SINGLE-GENERATION

GRAND UNIFICATION SCHEMES

where a is an arbitrary parameter and xq, x„, and xd are
the U(l) hypercharges. The global U(1) symmetry is to be
identified with the PQ symmetry required to solve the
strong CP problem, in which case it has to be axial.
Hence,

xe = —x~ = —xd =x+0 . (2.2a)

From the above relation it follows that the color anomaly
associated with the U(1}p&, namely,

2xe —xg —xg =4x+0 . (2.2b)

Thus, the postulated, global U(1) symmetry has the re-
quired anomaly to remove the masslessness of the associ-
ated Goldstone boson once the symmetry is broken. Were
the U(l) symmetry a local symmetry, the nonvanishing
anomaly would spoil the renormalizability of the theory.

The axial nature of the U(1)p& symmetry also leads to
the requirement that there be at least two distinguishable
Higgs doublets if both the up and down quarks are to ac-
quire tree-level masses. To see this, we write the
fermion —Higgs-boson coupling terms in the Lagrangian

W i' =Pg gI fg Q Ii +Pd gI pd de +H. C. (2.3)

and observe that, while P„and Pd have identical
SU(2) &&U(1) quantum numbers, their U(1) hypercharges
h„,h~ must satisfy

hg = —xq +XI = —2x hp ——xq —x„=2x . (2.4)

Therefore, they carry opposite PQ assignments and hence
are distinguishable. The need for two Higgs doublets thus
originates from quark-mass considerations.

While the PQ mechanism solves the strong CP-violation
problem, it creates the well-known axion problem. Within
the original framework, the pseudo-Goldstone boson asso-
ciated with the breaking of PQ symmetry leads to a tiny-
mass particle, the axion, which should have been seen ex-

Consider a single generation of fermions. In addition to
the customary gauge transform ations of
SU(3) &&SU(2) &&U(1), let the Lagrangian be syminetric
under a global continuous U(1) symmetry. The most gen-
eral transformation laws of the quarks under the latter
symmetry are given by

u
q

d L L (2.1)

~ MxQu d ~ Icxdd
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perimentally if it existed. As noted earlier, the latter diffi-
culty can be avoided if we modify the original PQ frame-
work and introduce, in addition to the two Higgs doublets,
a complex Higgs singlet with a sufficiently large vacuum
expectation value. By this modification one can suppress
to any desired degree the couplings of the axion to ordi-
nary matter, making it an "invisible" or "phantom" axion.
However, the required huge magnitude of the VEV of the
singlet makes no sense at the SU(3)XSU(2)XU(1) level.
But within the framework of grand unification schemes,
the presence of a singlet with exactly the required proper-
ties is necessary for other reasons. Thus, if we temporari-
ly ignore the hierarchy and fine-tuning problems with
which the grand unified theories are beset, we are no
worse off than before with the added advantage of having
eliminated the strong CP-violation problem.

Therefore, we proceed now to discuss in some detail
single-generation grand unification schemes based on
6 XU(1)pq, where the symmetry group G can be one of
the currently popular grand unification groups,
G =SU(15), SO(10), or E(6). Our principal aim is to see
which one provides the required features of U(1)p~ being
axial, the pairing of Higgs doublets, the suppression of the
axion couplings in the most natural way possible once we
accept the above group structure.

A. G =SU(5)

(2.5)

where C is the antisymmetric charge-conjugation operator,
P„and P~ are two independent scalar multiplets which
transform as 5 or 45. Note that P„has to be a 5, other-
wise m„=0 as a consequence of the antisymmetric nature
of the $45 couplings. As in (2.3), P„and P~ have to have
opposite PQ assignments once we let $~0, g~, have the

same assignments in order that U(l)p& be axial.
Thus, neither the axial nature of U(1)p& nor the two

Higgs multiplets with opposite PQ assignments follow
naturally in the case of SU(5). However, it does provide
the necessary framework for suppressing the axion cou-
plings along with its mass in a natural way. The
SU(2) XU(1)-singlet scalar with a large VEV, assumed in
the DFS mechanism, is present in the theory to begin
with. It is an element of the Higgs multiplet Pq4, com-
plexified to accommodate U(1)p~, which is responsible for
the spontaneous breakdown of SU(5) into its maximal
SU(3) X SU(2) XU(1).

The basic set of fermions QL, characterized by their
left-handed helicity states, belong to a reducible combina-
tion of two representations 10 and 5~ of SU(5),
QL g&c+$5, . ——The PQ assignments of $~0 need not be the

same as those of $5. Consequently the axiality of U(1)p~
is guaranteed only for the up quarks. For other flauors it
has to be imposed. The up quarks are special since both
uI and uL belong to the same irreducible representation
10 and consequently carry the same PQ assignments. uL

and utt then in turn must carry opposite PQ hypercharges.
The minimal fermion —Higgs-boson couplings in SU(5)

theory is given by

,=r„y'„c4„4„+r,4,',c

10=5+5*,
120=(5+5*)+10+10'+45+45',
126= 1+(5*+45)+10+15*+50 .

(2.7)

We observe that for each Pd (5 representation) there exists
P„(another 5) with exactly opposite PQ assignments, be-
cause in each of the above irreducible representations,
which are the only ones that couple to the P&6, there is a

(Pd+P„) combination. This property exhibits a natural
link between SO(10) and U(1)p~.

C. G =E(6)

Finally, we will examine briefly G =E(6). As in
SO(10), E(6) admits a single lowest-dimensional complex
irreducible representation, namely 27, to which the basic
set of fermions belong. Under the decomposition of E(6)
with respect to SO(10), 27= 16+10+ l. It has the disad-
vantage, of course, that just to start with it contains more
than the known low-energy fermions and symmetry break-
ing has to be invoked in such a manner that they acquire
heavy enough masses to have escaped observations. Fur-
ther the relevant Higgs multiplets that can couple to the
fermions and give masses to them are 27, 351, and 351'.
In contrast to SO(10), where some of the relevant Higgs

B. G =SO(10)

Grand unification based on G =SO(10) has the follow-
ing three main features that distinguishes it from SU(5):
(i) The theory is automatically anomaly free. (ii) It allows
for more than one way in which the symmetry can be bro-
ken down to SU(3) XSU(2) XU(1). It allows, for instance,
an intermediate left-right-symmetric substructure. (iii)
The single-generation fermionic states belong to a single
irreducible complex representation.

It is mainly the last feature which provides a link be-
tween grand unification and the strong CP-violation prob-
lem. It also allows, as we shall see in Sec. III, a unique
multigenerational extension. Since ft and fr both are
members of the same complex irreducible representation

they must transform alike under any additional
direct-product symmetry. If such an extra symmetry hap-
pens to be a global U(1)p~, fL and f~ must carry opposite
PQ assignments. This conclusion is valid for any arbi-
trary representation. Thus, the axiality of U( 1 )z& is not a
free choice It is. dictated by the pure generation structure
offlauor chiral SO-(10). The PQ assignments can then be
thought of as the common "family name" for all quarks
and leptons which belong to the same family.

Let us next consider the fermion —Higgs-boson cou-
plings which have the compact form

~a=I fi6CAi6 (2.6)

where P is either 16, 120, or 126. If more than one Higgs
multiplet contributes, they all must have the same PQ as-
signments. Now under the decomposition of SO(10) into
SU(5) XU(1) [with U(1) being the local T3++ , (B —I.)], —
we discover the desired pair structure in the Higgs system,
namely,
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multiplets are real under the gauge group, all the above
multiplets of E(6) are complex. This property turns out to
be detrimental to multigenerational extension of U(1)PO,
leading to SO(10) as the most preferable candidate for G.

III. PECCEI-QUINN SYMMETRY
AS HORIZONTAL FLAVOR SYMMETRY

In this section we shall consider some features of an ax-
ial U(1) symmetry acting as a horizontal symmetry on the
generation. We shall see that it has all the characteristics
of a PQ symmetry. The identification of the two can thus
be made. The initial part of the discussion can be made at
the SU(3) X SU(2) XU(1) level.

Let the left-handed spin- —, chiral fields g'L belonging to
the ith generation transform as

(3.1)

under some global, axial symmetry U(1)~. To distinguish
the different generations and thereby avoid the "superflu-
ous" replication, we impose the condition that the axial
charges x; satisfy

values numerically equal. And in the general
dimensional case, the mass matrix will have at most
[(N + 1)/2] different eigenvalues .Our present knowledge
regarding the quark masses requires that the mass matrix
has N nondegenerate, nonzero eigenvalues. This can be
achieved by having more than one Higgs multiplet; the
minimal requirement is two. If we have two Higgs dou-
blets P and P', which transform under U(l) as

e""4, 0' e""'y',

the matrix X has the form

(3.7)

h'
h' h'

(3 &)

The condition (3.2), to avoid superfluous application, im-
plies that h&h'. With two Higgs doublets, the form (3.8)
for X is unique up to permutations in generation space.
The corresponding mass matrix then has the "canonical
orm

xi+xj ~ i+2 (3.2)
. 0

m (d) = —we'~ 0
0

-Ue ia 0 (3.9)

eiahy (3.3)

and consider its implications on the form of the mass ma-
trix. For this purpose it is sufficient to consider a specific
quark sector with charge —', or ——,

' at the SU(2)XU(1)
level. In what follows we shall consider the down-quark
sector.

We note that if a Higgs doublet P, which transforms as

0
0

-Ue ia 0
-we 8 -UeiB ia

and for general u, w, a, and P it will have in general N
nondegenerate, nonzero eigenvalues. Further, the above
form leads to N inhomogeneous equations for the N un-
known U(1)~ quantum numbers x;, i = 1,2, . . . , N in
terms of h and h',

x;+xj ——h . (3.4)

is to be coupled to quark fields transforming as (3.1), a
Yukawa-type coupling q L, gqz is allowed if and only if 1 100

01 10
x]

h'

(3.10)

The above condition which is symmetric between i and j is
a direct consequence of the axial nature of the assumed
U(1) symmetry. Were the U(1) symmetry vectorial, we
would have the condition x; —xj ——h.

It is convenient for the following discussion to intro-
duce a symxnetric matrix X given by

0000 . . . 2 xg
h'

h

leading to a unique solution,

xk ———,
'

(h +h')+ ~ (2N —2k +.1)(—1) "(h —h'),

Xij xg +x e (3.5)
and the explicit form for X,

(3.11)

We note that the trivial-looking condition (3.2) imposes
severe restrictions on the mass matrix. Thus, at most one
element which equals h can appear in any given row,
column, and along the principal diagonal of X and the re-
sult is that a given Higgs doublet can have at most N dif'-

ferent entries in an N-dimensional mass matrix. For
N =3, as an example, the matrix X has the form

. 4h' —3h h'
h' 3h —2h'

3h' —2h h

2h' —h 2h —h'

3h' —2h 2h' —h

h 2h —h'

2h' —h h'
h' h

(3.12)

X= h

h

with the dots representing entries different from h.
If there were only one Higgs doublet P with U(1)z hy-

percharge h, the corresponding mass matrix m (d) corre-
sponding to (3.6) will have, at the tree level, two eigen-

Note that so far we have used only the axial nature of
U(1)~ symmetry. It could be global or local without af-

(3.6) fecting the form of the mass matrices or the determina-
tion of the quantum numbers xk according to (3.11). The
difference between global and local U(1)~ becomes ap-
parent, however, when we consider the mass matrix in the
charge ( —, ) —sector (up sector). We observe that if
x;+xj ——h or h' is the criterion for determining the non-
vanishing matrix elements in m (d), the corresponding cri-
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terion for the up-quark mass matrix m (u) is

x +x.= —h or —h' .J (3.13) ) = —3x, x~ 2=5x
Since x;,xJ are determined uniquely by specifying m (d), it
should be possible to determine the structure of m(u)
from (3.12) and examine whether, by suitably restricting h

and h ', one can obtain m (u) with all the desirable
features, namely, with nondegenerate, nonzero eigen-
values. Indeed, if we go back to X in (3.12), identify some
of its elements as —h and —h', and check whether the
corresponding mass matrix m (u) has nondegenerate,
nonzero eigenvalues, we find, after some algebra, that
there are only two possibilities:

(a) The local solution:

m (d) = d2ve+'

d Ue+'
1

d2we'~ d 5«

u, we-'~

x i ———( —1) (2N —1)x .

For % =3, the two mass matrices are given by

(3.18)

(3.19a)

h =0 (N odd), h'=0 (X even) . (3.14)
m (u) = u2we 0 u3« (3.19b)

In this case,

gx;= gx =0, (3.15)
u, ue

-' u, we -'~

implying the absence of triangular anomalies. The associ-
ated U(l)~ symmetry has to be a local gauge symmetry to
avoid a true Goldstone boson. It can then be looked upon
as a purely horizontal symmetry factor in flavor-unifying
attempts with gauge groups larger than SU(5), SO(10), or
E(6). Such a possibility has been examined before; the ac-
companying mass matrix m(u) has the desired features,
but it does not possess a canonical structure identical to
the one for m (d). ' The nonvanishing elements in m (u)
are shifted around relative to those in m (d).

(b) The global solution:

h +h'=0. (3.16)

—3h

—h —5h —3h

5h h 3h

h —3h —h

3h —h h

(3.17)

&he associated U(1)„symmetry has anomalies; it must be
global in order that the theory be renormalizable. It can
be identified as the global, axial PQ symmetry with the

U(1)p~ quantum numbers determined uniquely in terms of
h = —h'=—2x. The matrix X has the form

where d~, d2, . . . , d5 and u ~, u2, . . . , u5 are arbitrary Yu-
kawa couplings and (P) =ve', (P')=we'~. Note that
both m (d) and m (u) have an identical structure; they are
not independent, but correlated with the following
correspondence:

m (d)~ -ve' or we'~~m (u)J -we 't' or ve (3.20)

These interesting features of the mass matrices along
with a unique set of quantum numbers for the fermionic
families at the SU(3) XSU(2) XU(l) level leads us to con-
sider the global U(1)p& symmetry as also the horizontal
flavor symmetry in the context of grand unification. Let
us consider the symmetry group 6 XU(1)p&, where G is
the single-generation, grand unification group, and ask
whether the additional U(1)p&-symmetry requirements
leading to the desirable characteristics of the mass ma-
trices place any restrictions on the choice of G. The case
of G =SU(5) has been discussed in Sec. II A. Even at the
single-generation level, it fails to provide a natural setting
for U(1)p~. Next if we consider SO(10) and a single
Higgs-scalar representation P, the Yukawa couplings
which give rise to the canonical form for the mass ma-
trices (3.19a) and (3.19b) can be written as

L y ——Gig (x)C[p(2x)] p(x)+. Gzg (x)C[p(2x)]g( —3x)+G21i ( —3x)CQ(2x)g(x)

+63' ( —3x)C[P(2x)] P( 5)x+G$3(5x)C[P(2x)]tg( —3x)+ . (3.21)

Note the alternating of P (2x) and P(2x) in the above
form, which follows from the requirement of U(l)p& sym-
metry. If now P(2x) is real, it will decompose pairwise,

$(2x) =Pg(2x)+$„(2x)+

giving rise to the mass matrices that have the correlated
forms (3.19a), (3.19b). If it is complex, the correlation is
in general lost. In the case of SO(10), the Higgs represen-
tations that can occur in (3.21) are 10, 120, and 126. We
known that 10 and 120 are both real. Further, 10 is sym-

I

metric while 120 is antisymmetric. The 126 representa-
tion is complex and symmetric. Hence, it follows that for
/=10,

G2. ——G2, G3 ——G3,
leading to the desired forms (3.19a) and (3.19b) for m~
and m„, respectively. For P=—120,

G) ——0, Gp ———G2, G3 ———G3

These lead to mass matrices with pair degeneracy in the
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mass eigenvalues. For P = 126,

6, =63——63 —— . - ——0, 62 ——62, 64 ——64 ——. . .

or

(1) With some reasonable assumptions concerning the
quark mass hierarchies (which we will discuss a bit later),
the canonical structure leads to the well-known formula

' 1/2

G2 ——62 ——64 ——64 . ——0, G3 ——G3. . . tanOc—
m,

(4.1)

This also leads to a pair degeneracy in the mass eigen-
values. Thus, in a minimal picture, where only one Higgs
field couples to fermions, the Higgs representation must
be 10. $~20 or /~26 alone would lead to a pair degeneracy
in the mass eigenvalues, due to in the first case, the an-
tisymmetric and in the second case, the complex nature of
the representations. In general, unless a minimality condi-
tion is imposed on the Higgs system, the existence of more
than one Higgs multiplet is permissible without affecting
the canonical structure of m (d) and m (u).

If G =—E(6), the allowed Higgs representations 27, 351,
and 351' are all complex. Hence, none of these representa-
tions has a pairwise decomposition P=Pd+P„+ as
in the case of 10 of SQ(10). Consequently m (d) and m (u)
are not correlated, that is, the same expectation values do
not enter these mass matrices. To the extent that this is a
desirable feature, SO(10) emerges as a preferred candidate
for G. Besides, as noted in Sec. II C, E(6) has other prob-
lems even at the single-generation level. We shall relegate
the general features of the preferred SQ(10)XU(1)p~
model, as well as numerical details concerning mass ma-
trices and mixing angles, in a sequel to this paper, and
conclude this section by summarizing the salient results
discussed so far.

An axial U(1)z horizontal symmetry leads to the canon-
ical form of the mass matrices. The U(1) quantum num-
bers are completely determined. If U(1)~ is global, the
symmetry can be identified with U(1)p&. Further, if the
accompanying single-generation grand unification group
is SO(10), the opposite quantum numbers of P„and Pd,
the scale of U(1)p& breaking, and the correlation of the up
and down mass matrices are automatic. The number of
generations unfortunately is still arbitrary.

IV. PHENOMENOLOGICAL ASPECTS,
MASS HIERARCHIES,

AND "HORIZONTAL" COMPOSITENESS

From Secs. II and III, it should be evident that U(1)p~
provides, both at the SU(3) X SU(2) X U(1) and at the
grand unification level, constraints that restrict the forms
of the mass matrices, and hence lead to phenomenological
consequences. Of particular interest are the canonical
forms (3.19a) and (3.19b) for m (d) and m (u) generated by
a single rea/ Higgs representation. The canonical form as-
sures nondegenerate, nonzero eigenvalues for the masses,
and the single real representation provides a simple corre-
lation between the up- and down-sector quark mass ma-
trices. This situation, realizable only in the
SO(10)XU(1)p& grand unification scheme due to the ex-
istence of a real representation 10 that can couple to 16
representation of the fermions, makes it an attractive
minimal scheme. But is this minimal scheme a satisfacto-
ry one~ The following brief and qualitative comments are
in order concerning this question:

for the Cabibbo angle Oc. The current quark-mass values
of md-7. 2 MeV and m, —150 MeV, which are the
presently accepted values for these masses, lead to a value
of Oc which is in excellent agreement with experiments.
More generally, the canonical form enables one to elim-
inate the VEV's and the Yukawa-type couplings in favor
of quark masses leading to expressions for the generalized
Cabibbo-type mixing angles in the Kobayashi-Maskawa
matrix. We wi11 discuss this in more detail in a sequel to
this paper. But to the extent that the mixing angles are
directly related to the quark masses, the canonical forms
provide a predictive framework which can be tested
against phenomenological analyses.

(2) In the minimal scheme with mass matrices com-
pletely correlated, the Cabibbo-Kobayashi-Maskawa ma-
trix Uc is real and orthogonal. Therefore, the convention-
al celebrated phase 6 vanishes leading to no weak CP
violation in the charged-current sector. The situation
remains unaltered even if we make the Yukawa-type cou-
plings complex. Weak CP violation has to be then relegat-
ed to the Higgs sector. This in itself is an attractive prop-
erty of the U(1)p~ scheme. The need for two distinguish-
able Higgs doublets [at the SU(3)XSU(2)XU(1) level]
leads to flavor-changing neutral currents mediated by
Higgs scalars. There is a good possibility of correlating
and explaining the smallness and the superweak character
of weak CP violation and the smallness of flavor-changing
neutral currents in a more satisfactory way than currently
possible. These features can be attributed to the relatively
heavy masses of the mediating Higgs scalars.

(3) In the minimal scheme, there is no satisfactory ex-
planation for the smallness of the left-handed neutrino
masses.

(4) There are at most [—,'(N+1)] arbitrary Yukawa
coupling constants in the minimal version of
SO(10)XU(1)p&. This means, renormalization effects and
higher-order loop corrections aside, there are (N —1) mass
relations between X up quarks and % down quarks, in an
N-generation model. These are in addition to the obvious-
ly unsatisfactory mass relation m (e) =m (d). Examina-
tion of the relations between up- and down-quark masses
in the case of three generations shows that they are not
realistic, some of them being violated rather badly.

The above considerations suggest that the minimal
scheme of SO(10)XU(1)p& with only the 10 representation
for the Higgs bosons generating the quark and lepton
mass matrices is not adequate to explain the known
features of the relevant masses and weak CP violation. It
is necessary to enlarge the Higgs sector by adding 120 or
126 or both. The addition of these representations does
not affect the canonical forms, but releases us from the
tight correlation between the up-quark, down-quark, and
lepton masses. As stated before, we shall take up these
considerations in a sequel to this paper.
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We shall now turn our attention to the question of mass
hierarchy or the gradation of masses from the first to the
third (and perhaps the Nth) generation in the canonical
form. We shall speculate on how the mass hierarchy can
arise. Undoubtedly, computations of any predictive value
are still very far, but a number of qualitative arguments
can be made.

We shall start by considering how the mass eigenvalues
change when we go from n generations to (n +1) genera-
tions. Consider first n =2, and a mass matrix of the form

0 8
B 3 (4.2)

as an example. The eigenvalues are

A,B /A for A »B,
-A, -A for A -B,
-B,-B for A &~B .

(4.3)

To avoid near degeneracy of masses we have to choose
A ~~B. This feature of the last diagonal term in the mass
matrix being dominant should persist for n generations to
give the desired hierarchy of eigenvalues. Notice that this
term corresponds to the heaviest generation. In terms of
PQ quantum numbers, this is the generation with the
lowest quantum number (magnitude only). The lighter
generations must carry higher PQ numbers. Starting with
a basic unit x for the heaviest generation, these quantum
numbers, as we noted earlier, go like —3X, 5x, —7x, etc.,
with the Higgs fields carrying 2x. As we go up in PQ
quantum number towards lighter generation the terms in
the mass matrix become smaller and smaller. In fact, if
B/A=a, for n generations, the terms go as l, e, e . . in
units of A. Such a mass matrix is consistent with the ex-
perimentally observed hierarchy of quark masses. We
shall return to a more detailed discussion of this point
after introducing the idea of horizontal compositeness
which, as we shall see, helps to understand in a simple
way how such a hierarchy might arise.

Now the Higgs field can couple nearest-neighbor gen-
erations. The additivity of the PQ quantum number sug-
gests that perhaps one could think of the higher, lighter
generations as bound states of a fundamental generation,
which is the heaviest, and the Higgs field N. Copies of N
or @* are sequentially added to the fundamental genera-
tion to get the increase of PQ quantum number in steps of
2x.

The idea that the lighter generations are more compos-
ite than the heavier generation certainly seems counter to
intuition but does not in any way contradict experimental
information. Experimental bounds on compositeness
from the anomalous magnetic moment of the electron and
muon or the p~e transition rates only tell us that the
scale of the postulated binding should be beyond TeV's.

We now turn from U(1)p& and check whether this idea
of compositeness is consistent with the group theory of
grand unification. The basic diagonal Yukawa coupling
term is

Wy ——Gi [ g (x)CPt(2x)g(x)

+ft(x)CP(2x)g*(x)]

To second order this produces a term like

g (x)P (2x)g*(x)P(2x) .

(4.4)

(4.5)

We can identify this with a term like g (x)CP(2x)g( —3x)
provided P*(x)P (2x) is bound to P( —3x). The grand
unification group theory to be checked is whether the
product representation of g with P contains the basic
fermion representation. For SO(10), P = 10, 120, 126.
/=16 and

16*&(10=16+144,

120= 16+144+560+ 1200,

126= 144+672+ 1200 .

In SO(10), we can use 10 or 120 to form the bound states;
10 as we noted earlier is preferred on other grounds. The
reality of 10 and 120 under SO(10) is crucial in forming
bound states. For between the Yukawa term and the bind-
ing combination /*at there is a conjugation of g. For P,
which are real under SO(10), the group theory is un-
changed and we get a 16 in the final state for the same
reason that the coupling g (x)P(2x)g*(x) is allowed. For
E(6), all the Higgs scalars are in complex representations
and the compositeness picture does not work. Again for
SU(5), we can form bound states but one has superfluous
replication. For instance, bio ( —3x) can be formed in

two ways:

(f1oz )ys(Pd )8 or P5R 0u 85R 0u

There are two generations with the same PQ number.
Thus, to avoid superfluous replication we should choose
SO(10) as the grand unification group. Even in the SO(10)
scheme we cannot allow both 10 and 120 in the Higgs sec-
tor since this would lead to a doubling of all generations
due to binding of 10 and 120. In the decomposition of the
product representation, there are higher-dimensional rep-
resentations. We have to rule out these either on the gen-
eral principle that lower-dimensional representations tend
to be lower in energy or on some principle similar to the
maximal-attractive-channel criterion used in hypercolor-
type theories. It is anyway a detailed question of dynam-
ics.

Thus, the idea of horizontal compositeness along with
the other principles discussed earlier leads to a unique pic-
ture of grand unification, viz. , an SO(10))&U(l)po model
with the Yukawa-type Higgs fields being in 10 and 126.

To go beyond these qualitative results, one needs more
detailed information about the dynamics. While this is
admittedly very difficult, we shall make some estimates
for the various terms in the mass matrix which will help
to understand the starting question to this discussion, viz. ,
the hierarchy of masses. The general higher-order term
which can contribute to the mass matrix is of the form
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where A is a mass scale introduced on dimensional
grounds. Interpreting gp '/Ap ' as the bound-state
fermion corresponding to the pth generation (p =1 is the
heaviest generation), this term gives a contribution to the
(p, q) element of the mass matrix. A is fixed in terms of
p, q by the U(1)po symmetry. tpp and f give a PQ charge
x&+xq at the vertex; since each scalar can cancel only
+2x, the minimum value of 6 is

etc. Ignoring interference effects we then get

P(k —1)

Thus, 1ogm is a linear function of the generation index.
We may note here that Bjorken' was the first to suggest
the use of logm as a smooth function of k; the tree-level
pattern (4.7) has also been discussed by Fritzsch. '

p

2x

p +q —1, p +q even,

p —g, p+g odd . (4.6)

g2 (4.7)

up to an overall normalization. Phenomenologically,

~

m i2/m i i . Let us include b,&0 terms. Replacing
the p's by their VEV's, we get a factor lIA for each p,
where g is a combination of coupling constants and other
normalization factors. We should have ll «e& 1, other-
wise perturbation theory would break down. The (p, q)
element of the mass matrix then looks like

~p +q —2~A —1

g3g 2

(4.8)

E' 6 Yj'

The tree-level mass terms are given by 6=0. The forma-
tion of a bound state has a mass scale A associated with it.
Introducing a normalization factor e for the composite
operator representing the bound state, viz. ,
gP/A EP-( —'3x), PP /A eg-(5x), etc. , we can easily
see that the tree-level mass matrix is of the form

V. CONCLUDING REMARKS

The "superfluous" replication of families of particles
continues to plague grand unification schemes. Various
attempts to incorporate this feature, predict the number of
generations, and derive restrictions on the form of mass
matrices have all had limited successes so far. If we con-
sider quarks and leptons as fundamental constituents all
the way to and beyond the grand unification mass scale,
there does not appear to be any simple way to incorporate
the generation structure.

In this paper we give up the idea of being able to
predict the number of generations. Instead, given the
number of generations, we show how a global, axial U(1)
symmetry will severely restrict the forms of quark mass
matrices leading to testable predictions. The idea becomes
even more attractive when it is realized that the assumed
U(1) symmetry can be the same as the celebrated U(1)pg
symmetry through which one can avoid the strong CP-
violation problem. Further, during the course of deter-
mining the mass matrices with certain desirable proper-
ties, we also determine the U(1)po assignments which is
suggestive of a new interpretation of the generation puz-
zle. It is sufficient to begin with one family of fermions
and Higgs scalars. The other families can be regarded as
composites of fermions and scalars. The quantum num-
bers and the mass hierarchy indicate that the lighter the
generation, the more composite it is. Of course, one needs
dynamics to make this idea concrete, but qualitatively it
appears to be a very attractive and novel way to under-
stand the generation puzzle.

We have shown, mostly from qualitative considerations,
that the most attractive possibility for a multigenerational
grand unified scheme is SO(10)&U(1)pO. In a sequel we
will examine such a model in detail and study its conse-
quences.

Each term m~ can have further corrections -ll m~.
Going back to the mass matrix (4.7) at the tree level we

can extract the rough pattern of eigenvalues. One can
construct symmetric polynomials of the eigenvalues as

=e +G(e ),
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