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Critical properties of a one-dimensional nonlinear lattice and hadron physics
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The statistical properties of a one-dimensional system are studied in the Ginzburg-Landau frame-
work, where the most general free-energy density allowing for scale invariance is introduced. The
grand partition function is expressed as a functional integral over the order-parameter function
space and leads to an analytically soluble model. Near the critical point only the constant functions
contribute to the thermodynamic potential, the system is simulated by a classical nonlinear lattice,
and Kadanoff scaling is shown to be equivalent to Koba-Nielsen-Olesen scaling. The relevance of
this lattice to hadron physics is established and several measurable quantities, such as multiplicities
and correlations, are calculated. It is argued that, in the framework of this model, certain aspects of
observable quantities could naturally be attributed to the past hadronization transition of a quark-
gluon plasma.

I. INTRODUCTION

The study of critical phenomena within the Ginzburg-
Landau (GL) framework' has provided insight in under-
standing the physics of complicated systems (ferromagne-
tism, superconductivity) at both the phenomenological
and the microscopic levels. Although the modern micro-
scopic treatment of superconductivity has replaced the
phenomenological GL theory, the latter approach is sti11

powerful since it helps to understand, at the phenomeno-
logical level, the behavior of complicated systems for
which a soluble microscopic theory is missing. Analogous
methods have been introduced in particle physics to
cope with the complexity of many-hadron production
problems.

In this work we adopt the point of view that complicat-
ed hadronic phenomena, for which several signals of an
underlying phase transition exist, may be analyzed at the
phenomenological level in terms of an order parameter y,
related to the density of the produced hadrons and reflect-
ing the as-yet-unsoluble fundamental quark-gluon interac-
tion in quantum chromodynamics (@CD) for small
momentum transfers, in analogy to the order parameter of
the CxL theory which is related to the electron-pair
(Cooper-pair) density and reflects the properties of the mi-
croscopic electron-phonon interaction introduced in the
Bardeen-Cooper-Schrieffer theory of superconductivity.
We shall study a class of one-dimensional soluble models
with the CiL methodology, introducing a critical tempera-
ture T, and imposing explicit scale invariance in the free
energy of the system. For this purpose, in the rest of this
section we briefly review some elements of the GL theory
of superconductivity.

(1.2)

where a and b are constants.
In this model the phase transition is due to the shift of

the stability point for T&T, . In fact, the coordinate-
independent order parameter, which minimizes the free
energy for T & T„is

y;„=—(T, —T) .min ~ C (1.3)

The superconducting electron density (1.3) as a function
of the temperature decreases linearly to zero towards the
transition point.

The whole GL program is based on the assumption that
the regular expansion (1.2) exists. In this work we shall,
instead, study a class of models in which scale invariance
near T =T, is imposed and hence a singularity of the

The basic quantity in this treatment is the free-energy
density of the ordered phase, f(tp(x), T), which is a func-
tion of the (small) order parameter and the temperature of
the system. The total free energy of the one-dimensional
system with length L is given by the sum

L
F(L,T)=F„+f f(tp(x), T, —T)dx, (1.1)

where I'„ is the free energy of the normal state of the sys-
tem, corresponding to @=0. The GL model follows by
approximating the free-energy density near the critical
point T=T, by a few power terms of y and dyldx,
namely,

2
2

f(tp, T, —T)= + +a(T —T, )y + 2btp-
2m dx
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form qr in the free-energy density is tolerated. Within
this class of models several properties of hadron produc-
tion at high energies and, in particular, Koba-Nielsen-
Olesen (KNO) scaling can be understood if the variable x
is identified with the center-of-mass rapidity y' of the
produced particle.

The plan of this paper is as follows: In Sec. II we con-
sider the most general free-energy density allowing for
scale invariance in one dimension. We set up our
mathematical formalism and show how scale invariance
leads to the critical exponents. In Sec. III we show that
Kadanoff scaling at the critical sector of our model is
equivalent to KNO scaling. We calculate particle multi-
plicities, etc., and establish their connection with previous
results obtained in the framework of the Feynman-Wilson
fluid. In Sec. IV we turn to the space-tiine interpretation
of the scaling properties of our model. We argue that
within its framework one can possibly interpret certain
properties of measurable quantities as signatures of the
hadronization of a partonic plasma. Finally, our con-
clusions are given in Sec. V.

f( 7 7) 2(7 7)A, +b2 2k (2.1)

II. THE y MODEL

The most general form of the free-energy density which
allows for scale invariance is

2

C~ — (z —1) ', C~ —(T, —T)
T=T z=1

C

p — (z —1)'~, p —(T, —T)~,
T=T z=1

C

x, — (z —1) ", x, —(T, —T)
T=T z=1

C

X —(T, —T)r,
z=1

G(x —xi) — ~x2 —xi
~

—(d —2+vi)
T=T

C

a' n
P aT2

is the specific heat,

P — gX dx

is the density,

ap
az

is the susceptibility, and

G(x2 —xi) —(q&(x2) q&(xi) )

X2 —X1

Xc

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

(2.7)

(2.9)

(2.10)

where b and c are constants. Introducing the ordering
field (chemical potential) px, the thermodynamic potential
density is found to be

2

Q(qr, z, T)=c (T, —T) +b y" (z —1)p—
dX

where z is the fugacity. Near the critical point px, ——0, we
have p&=lnz —=z —1. The grand partition function of the
theory is given by an integral over the function space,
namely, ' '

1 L
g (z,L, T)= f [dy]exp —f Q(y, z, T)dx

Qo(L, T) 0

is the correlation function with x, the correlation length.
Introducing the scale transformations"

X ~XQ —1

T, —T~(T, —T)u

z —1~(z —1)u ',
tP ~g Q

(2.1 la)

(2.11b)

(2.11c)

(2.11d)

=uQ(y, z —1,T, —T), (2.12)

where A„A„and A~ are the dimensions of the corre-
sponding quantities, scale invariance, namely,

Q(qPu ~, (z —1)u *,(T, —T)u ')

(2.3) leads to

where the normalization factor is given by
L

Qo(L, T)= f [dp]exp —f Q(p, l, T)dx

The density of particles is given by the average ' '

T

(y(x) ) = f [dy]qPexp —f Qdx
Qp(L, T)

(2.4)

(2.5)

1 k —1 0+1
(2.13)

1 k 1 kk
k —1' 6, k+1 (2.14)

Since the correlation length x, has dimension —1 [see
scale transformation (2.11a)], the definition (2.6c) gives

Because of scale invariance, the critical exponents in
our model can be expressed in terms of the parameters A,

and k of the density (2.1). We remind the reader that the
critical exponents a,P,y, 5,e,p, v, g are defined in terms of
the thermodynamic quantities near the critical point
(T =T, or px ——0) through the limits' "

Equations (2.14) and (2.6c) show that A, &0, since for
T—+T, we must have xc~ oo. This remark illustrates the
ordering mechanism in the theory, since for T =T, and
X&0 only the class of constant functions contributes to
the integral (2.3).

The rest of the critical exponents follow from the
unique scaling form, '
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Q(z, T) =(z —1) 'fo((TO —T)/(z —1) ' ')
of the thermodynamic function

(2.15) vd =2P+y=2 —a,
pd =1+1/5=2p/v e—=2 2p—+rip

(2.23)

Q(z, T) =(T,—T) 'f()((z —1)/(T, —T) * ') .

With the solution (2.13) we obtain

Q(z, T) =(z —1)

(2.15')

Xf()((T,—T)/(z —1)' +" " "') (21»)
or

Q( T) ( T T)
—kA, /(k+1)

Xf()((z —1)/(T, —T) " "' '"+") . (2.17b)

Q(z, T)= —lim —lnQ0(L, T)Q (z,L, T) .1

~ I.
The scaling form (2.15) follows from the requirement of
scale invariance, Eq. (2.12), and is useful for T =T, and
z —+1, whereas for z = 1 and T—+T, we can write

due to scale invariance in d dimensions.
In this section we have studied the statistical mechanics

of the model defined by (2.1) in an abstract way, without
reference to the physical system it describes. In Sec. III
we mark out the possible relevance of the model to parti-
cle physics.

III. THE CRITICAL SECTOR OF THE MODEL

%'e now proceed to study the critical sector T =T„
where the functions (p(x) =constant characterize the sys-
tem. In this case the functional integrals (2.3) and below
become ordinary integrals and the order parameter y is a
global quantity, namely, y =X/I. . The grand partition
function (2.3) has the representation

Q(z L T )= f N' dNz exp( bN L' —),
Q()(L, T, )

Similarly, we obtain the scaling law which satisfies the
density (2.8) of the system (bz ——1/k):

(z T) (z 1)1/(k —1)

XF ((T T)/(z 1)(k+1)/k(1 —k)) (2 18a)

where the normalization factor is given by

Qo(L, T, )= f N' dNexp( bN L' —")
0

(3.1)

(3.2)

p(z T) ( T T) k/(k+1)—

XF ((z 1)/(T T)k( —)/(k+')) (2 18b)

The approach to the critical point (L~oo, z~1) is
again determined by the scaling properties of this repre-
sentation. In fact, taking into account the dimensions of
the quantities X and lnz, we obtain the scaling form

The relations (2.17) and (2.18) are typical Kadanoff
scaling laws and lead immediately to the critical ex-
ponents

Q(z, L, T, )=h(L " "lnz) (3.3a)

a = [k(A+2)+2]/(k+1),
P= —k/(k + 1),
y =A, (2—k)/(k +1),
5=k —1,
e= [k (A, +2)+2]/A(1 —k) .

(2.19a) Q(z, L, T, )=h(L(lnz) l' ")
From Eq. (3.3a) we find that the average multiplicity

(2.19c)

(2.19d)
(N ) = lnQ (z,L, T, )

a= al~
of particles in the system obeys the scaling law

2.19e
(N ) L (k —1)lkh (1)(L(k —1)/klnz)

where we have defined
Finally, for T =T, the correlation function (2.10) has

the asymptotic behavior

(3.3b)

(3.4)

(3.5)

G (x2 —x1)—(x2 —x, )
—2/k (2.20) (3.6)

as follows from dimensional arguments. Hence, the ex-
ponent q [Eq. (2.6e)] in one dimension is found to be More generally, the moments of the particle multiplicity

are given by

(Nq) Lq(k —1)/kh(q)(L(k —1)/kl (3.7)

a+2p+y =2,
p5= p+y =a/a=v/p,
v(2 —g)=y .

(2.22)

As expected, our solution satisfies the general relations

For completeness, we note that the solution (2.14),
(2.19), and (2.21) for the critical exponents satisfies the
well-known relations established in the theory of phase
transitions, ' namely,

At the critical point z = 1, we have

(Nq) Lq(k —1)lkh(q)(0)
L ~oo

whence the quantity

&Nq)/&N )q — h,'"(O)/[h, "'(O)]q
L —+oo

(3.8)

(3.9)

is found to be independent of L. Equation (3.9) is the con-
dition for asymptotic KNO scaling, a particular scaling
law which is theoretically expected and experimentally
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confirmed' to hold to a good approximation for hadron
production in hadronic as well as in e+e collisions over
a wide range of energies.

This remark provides the link of the critical sector
T =T, of the model studied in Sec. II to hadron physics.
In fact, hadron production with KNO scaling in one-
dimensional (rapidity) space has been studied' in the
framework of the Feynman-Wilson (FW) fluid. One
finds that the solution is given in terms of a critical ex-
ponent k, which can be equivalently defined by Eq. (3.8).
The present approach through the GL expansion (2.1) is
thus equivalent to the approach through the FW fluid. In
the rest of this section we summarize, for completeness,
some results of this study. '

The hadronic system corresponds to an analog statisti-
cal system through the identifications

L ~lns (rapidity space),

Z(N, T„L)~oz(lns)
(3.10)

for W—moo, where

W=N/(N) . (3.13)

The asymptotic behavior of the total cross section and the
average multiplicity are given by

(1~)—1/k (N ) (1~)1—1/k (3.14)

Note that in the GL approach the canonical partition
function of the system is found from Eq. (3.1) to be

Z(N, T„L) — —exp( bL' "N ) .—1

N —+00 L
(3.15)

At the classical level it is shown' that we are uniquely led
to (3.15) by the nearest-neighbor potential

a k+1
V(x2 —xi ) = ln ~x2 —xi

~

.

(3.16)

Thus, the system described by (2.1) in the limit T~T,
reduces to a one-dimensional nonlinear chain with an ef-
fective interaction of the form (3.16). One can argue'
that in hadron physics the effective potential (3.16) is a
manifestation of hard-scattering subprocesses in the
framework of QCD.

The statistical mechanics of our nonlinear chain leads
to the one-particle density

(~(x)2) x —1/k(L x)—1/kL1/k (3.17)

for x-L —x-L. The exact form of (3.17) for all x is
given in Ref. 13. Ignoring the end effects we have

(p(x) ) -L '/ -p=const in x, (3.18)

as expected from the general discussion of Sec. II.
Similarly, the two-particle correlation function for

(N-particle-production cross section) . (3.11)

The form of the KNO scaling function is found to be

(N )o&(lns)/o, (lns) =—1(( W) -exp( bW") —(3.12)

x2 —x
&
-L, x

&
-L„,L —x2-L is given by

G(x„x )-L'/x, '/"(x —x, ) '/"(L —x )

(3.19)

which exhibits the general behavior (2.20) expected from
dimensional analysis at T =T, .

IV. y MODEL AND HADRONIZATION TRANSITION
OF PARTONIC PLASMA

The properties of the model discussed in the previous
sections motivate one to interpret the order parameter
near the critical temperature, namely,

(N ) /L - ( T, —T)~, P= —A /( k + 1) & 0, (4.1)

as the density of hadrons at an early stage of their forma-
tion within an expanding quark-gluon plasma generated
by a highly relativistic hadronic reaction at the initial time
t=0 (T =To) and undergoing a phase transition at a later
time t„when the temperature reaches the critical value
T, . The significance of establishing a critical mechanism
for the hadronization process has been recognized, since
the early development of QCD, in connection to the as-
yet-unsolved problem of the long-distance behavior of the
theory. ' Recently, there has been growing interest in a
systematic phenomenological study of the properties of
the quark-gluon plasma formed in highly relativistic
heavy-ion collisions in the central region. Within this
spirit, in this section we qualitatively argue that our
model, based on scale invariance of the free energy in the
rapidity space, Eq. (2.1), is suitable for interpreting certain
aspects of the behavior of measurable quantities in had-
ronic reactions (average multiplicity, average transverse
momentum, KNO function) as the phenomenological sig-
nal for hadronization of the quark-gluon plasma.

In a highly relativistic heavy-ion collision, the center-
of-mass rapidity y* of the produced particles is the most
suitable variable for describing the space-time evolution of
hadronic matter. In fact the hadronic fluid during its evo-
lution is distributed on space-time hyperbolas character-
ized by temperature T, which varies from the initial value
T = Tp corresponding to a hot quark-gluon plasma to the
critical value T =T, corresponding to the appearance of
the hadronic phase. ' The distribution of hadrons on the
hyperbolas near the critical point (T( T, ) corresponds to
a definite hierarchy in space-time through t =rcoshy',
x =wsinhy*, where w is the proper time common for all
hadrons on a definite hyperbola during the evolution pro-
cess. Scale invariance of the free energy, when the system
reaches the hyperbola T=T„ is the basic hypothesis in
our model leading uniquely to the form (2.1) with all its
consequences discussed in the previous sections. In the
space-time picture this hypothesis is supported by the fact
that the scale transformation y'~y*/u does not affect
the hierarchy of large-scale correlations, which control the
critical behavior of the one-dimensional system on the hy-
perbola T=T, (critical FW fluid). Note that this is a
well-known argument for Kadanoff scaling valid for any
system near the critical point. It is therefore plausible to
conjecture that although the free energy of our model may
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Vs
f(pr s) — &lns~ ce Py PZ

p, fixed

Pr &~o ~ (4.2)

where the threshold mo may be taken comparable to the
parameter A of QCD. With the form (4.2) we have for
S~ 00

(p )=3 o/2 —( o/4)I- ', I =1 (i/ /2, ), (4.3)

and thus obtain the critical temperature T, =3m o/2,
which is identified with the highest (pz ) involved within
the hadronic phase. The fact that the parton model
predicts a limiting value of (pz. ) for I.~ co supports the
conjecture for the existence of a finite critical point
beyond which the hadronic matter exists only in the state
of the quark-gluon plasma.

It is worth noting that recent CER¹ollider data' are
consistent with a slow increase of the average transverse
momentum according to Eq. (4.3) towards a critical value
T, -500 MeV.

V. CONCLUSIONS

not be suitable to describe the evolution of the system far
from the critical temperature, it describes correctly the
distribution of hadrons at an early stage of their forma-
tion for T (T, .

It is now interesting to examine qualitatively whether
our present knowledge on the hadronic processes en-
courages a further systematic study of the phenomenologi-
cal implications of our model. For this purpose we con-
sider the dependence of the order parameter on the tem-
perature, near the critical point, Eq. (4.1), as a typical pre-
diction of our model. As a working hypothesis, we identi-
fy the temperature T with the average transverse momen-
tum (pr ) involved in the hadronic process. Furthermore,
we assume that near the critical point the dependence of
(pr ) on the "energy" L =1ns/so can be evaluated by us-
ing perturbative QCD since the coexistence of hadrons
with the quark-gluon plasma requires large momentum
transfer. In our qualitative discussion we may simplify
our approach using the simple parton model, which
predicts a limiting behavior of the large-pz. spectrum for
s ~ 00 of the form'

phenomenological way the statistical mechanics of a sys-
tem of many interacting partons. Such an idea had been
brought, though in a different context, into hadron phys-
ics several years ago by Scalapino and Sugar. We formal-
ize the problem in the language of the grand canonical en-
semble, where the grand partition function is given as a
functional integral over the whole order-parameter func-
tion space. We have modified the GL free-energy density,
which is a function of the order parameter, explicitly im-
posing scale invariance. This leads to an analytically solu-
ble model. Our model free energy involves two exponents
as basic parameters in terms of which the critical ex-
ponents follow as a result of Kadanoff scaling.

%e show that near the critical point Kadanoff scaling is
equivalent to Koba-Nielsen-Olesen scaling, a scaling law
known to be obeyed to a very good approximation by ha-
droproduction data for a variety of processes
(pp, pp, e+e ) within an impressively wide energy range
(v s —1—540 GeV). This property establishes the
relevance of the critical sector of our model to hadron
physics. %e show that the GL approach is equivalent to a
description of hadron production in the framework of the
Feynman-Wilson fiuid, if in the latter treatment KNO
scaling is imposed as an extra constraint. %e give the pre-
dictions of our model for several measurable quantities at
the hadronic phase, such as total cross section, average
multiplicity, and density of produced hadrons, correla-
tions, scaling functions, etc.

Since the center-of-mass rapidity of a produced particle
plays the role of a classical position coordinate in the sta-
tistical system, our approach, and in particular scale
transformations, have definite reflections in space-time.
More precisely, a (rapidity) scale transformation near the
critical point preserves the hierarchy of the produced plas-
ma (in a heavy-ion collision) on constant proper-time hy-
perbolas in space-time, only affecting its distribution on a
definite hyperbola. If the abstract temperature variable is
related to the average transverse momentum (pz. ) of the
emerging hadrons, simple parton considerations, leading
to a limiting (pz ) value for s~ao, suggest the existence
of a critical temperature. Such a limiting (pr) behavior
is consistent with present experimental data. In the future
we plan to study more quantitative consequences of these
1deas.

Since it has not yet been shown how QCD leads to
quark and gluon confinement at large distances, in this
paper we have adopted the Ginzburg-Landau philosophy
of an effective free energy in order to describe in a
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