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The properties of the pions are studied in a modified bag model. The pion wave function is ap-
proximated by the projection of the gg wave function in the bag that has zero center-of-mass
motion. The parameters of the model are determined by the usual stability condition and the addi-
tional requirement that the pion mass m, approach zero in a manner consistent with the hypothesis
of partially conserved axial-vector current (PCAC). This fixes the bag volume energy to be m,/4.
Static pion properties are in good agreement with data provided that quarks in the pion are correlat-
ed by a modulating function characterized by a correlation momentum p, ~300 MeV/c. The bag-
model and Nambu-Goldstone views of the pion are reconciled as a distinction is made between con-
stituent and current quarks. Assuming their fields to be related by a transformation analogous to
that of Nambu and Jona-Lasinio we calculate the vacuum expectation value of the current quark
density to be 0.04 GeV?, corresponding to a current quark mass of 5 MeV. We test our ideas by cal-
culating, to first order of the gluon-exchange interaction, the pion decay constant and the vector and
axial-vector form factors for pion radiative decay. In our model the pion decay constant satisfies
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the PCAC requirement that it has a finite value in the limit of zero-mass pion.

I. INTRODUCTION

The abnormally small mass of the pion compared to the
masses of all other hadrons and the considerable success
of the hypothesis of partially conserved axial-vector
current (PCAC) provide strong motivation for identifying
the pion as the approximate Nambu-Goldstone boson as-
sociated with the spontaneous breaking of the chiral sym-
metry’? of the Lagrangian for strong interaction, which
we assume to be given by quantum chromodynamics
(QCD). Recent computer simulations of lattice QCD
have shown® that chiral symmetry is indeed spontaneously
broken and the PCAC pion realized when the strong cou-
pling constant exceeds a certain critical strength. On the
other hand, a full description of the PCAC pion in terms
of the fundamental fields of QCD is not yet available.
The QCD Lagrangian is chirally invariant when the
current quark mass mg is zero. Chiral symmetry of the
physical system can, however, be spontaneously broken by
a scalar, such as the quark density Yoy, acquiring a
nonzero vacuum expectation value, which then gives rise
to a massless Nambu-Goldstone boson that we identify as
the pion. The simplest explanation for the nonvanishing
mass of the physical pion is that the chiral invariance of
the QCD Lagrangian is explicitly broken by a small
quark-mass term mqo¥oo. Thus, when (Pyh)s<0 the
pion mass approaches zero only in the limit my—O0.
Another important element of PCAC is that the pion de-
cay constant f,, which is defined as proportional to the
transition amplitude between the pion and the vacuum,
remains finite in the limit of zero pion mass, m,—0. The
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four quantities we have thus far introduced, mgy, m, f,,
and {9gt,), are tied together in a PCAC sum rule*:

moPoo) =5mf > .

The above view of the pion naturally leads to the prob-
lem of how to reconcile it with the quark-model descrip-
tion of the pion. By quark model we mean any model in
which a meson is characterized as a quark-antiquark state,
and a baryon as a three-quark state. We will be concerned
with one of the most successful quark models, the MIT
bag model,’ in which hadrons are composites of relativis-
tic quarks confined in a spherical cavity by an unspecified
mechanism but represented phenomenologically by an in-
ward pressure acting on the cavity.

Its many successes notwithstanding, the bag model (by
which we mean the MIT version®) has several shortcom-
ings with regard to the pion:

(a) The bag hadron wave functions formed as products
of single-quark wave functions contain spurious center-
of-mass (c.m.) motions. This defect is expected to affect
most seriously the description of the pion since it is the
lightest hadron.

(b) Because the bag states are not eigenstates of momen-
tum, the decay constant cannot be properly defined.

(c) The pion in the bag model is not necessarily a
Nambu-Goldstone boson in the sense that the symmetry
limits m ,—0 and f,—a nonzero constant as my—0 can-
not be realized in a natural way.

(d) Finally the model is silent on the value of the quark
condensate {ot); the implicit assumption is that as far
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as the spectrum of the low-energy hadrons is concerned,
the bag is not in the Nambu-Goldstone mode, but in the
Wigner-Weyl mode such that chiral symmetry is not
spontaneously broken and that o) =0.

Recently, Donoghue and Johnson’ proposed an ansatz
which could rectify (a) and (b); however, their procedure
for removing the c.m. motions has the weakness of being
too closely tied to an unrelated quantity, the decay con-
stant. As an alternative, Wong® put forward the Peierls-
Yoccoz projection method, but his calculated decay con-
stant has the undesirable limit f,«1/V'm,— o as
mo—0. A very different approach based on a model by
Nambu and Jona-Lasinio’ was taken by Goldman and
Haymaker,'® who sought an approximate solution of the
appropriate inhomogeneous Bethe-Salpeter equation with
a four-point quark-quark interaction. The special feature
of their model is that chiral symmetry is dynamically bro-
ken before confinement and confining conditions are im-
posed on the ¢g relative coordinate, preserving translation-
al invariance in the total coordinate.

In our view it is desirable to retain features of the MIT
bag model that render it simple and amenable to calcula-
tions. Therefore, without altering the main premises of
the model, we examine to what extent the bag-model pion
can be reconciled with the Nambu-Goldstone boson. For
this purpose we construct a modified bag model which at
least partially rectifies the shortcomings (a)—(d) and test it
by calculating some important properties of the pion.

The outline of the rest of this paper is as follows. In
Sec. II we use a projection method to deal with the prob-
lem of the center-of-mass motion and calculate the dif-
ferent components of the pion energy in momentum repre-
sentation. We propose an ansatz for determining the sta-
tionary configurations of the bag in a manner consistent
with the PCAC constraints. In Sec. III the decay constant
is calculated to lowest order of the static gluon-exchange
interaction, the result of which strongly suggests the pres-
ence of quark correlations in the pion and the importance
of making the distinction between current and constituent
quarks. This distinction is central to the reconciliation of
the apparently contradicting pictures of the quark-model
pion and the Nambu-Goldstone pion. As a result, the
pion decay constant has the correct symmetry limit. The
vacuum expectation value for the massless quark conden-
sate is then calculated, from which a value for the current
quark mass is deduced. The vector and axial-vector form
factors of the pion radiative decay, which are sensitive to
details of the meson structure, are calculated in Sec. IV.
In Sec. V we draw together our main results and con-
clusions.

II. PION WAVE FUNCTION AND PION MASS

In this section we define our model of the pion in terms
of its wave function and proceed to calculate the various
components of its energy and to determine the parameters
of the model in its stationary configurations. The center-
of-mass motion of a pair of bound relativistic particles is
intimately tied to the interaction binding the system. Un-
less a completely Lorentz covariant solution is found for
the interacting system, it is in general impossible to write
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down its momentum eigenstates. In the bag model, the
mechanism of confinement is not sufficiently specified to
admit the construction of eigenstates of the center-of-mass
momentum. One must resort to approximations. In the
approximation we shall adopt, we use as the pion wave
function the component of the quark-antiquark wave
function of the bag that has zero center-of-mass momen-
tum relative to the center of the bag. Because this center
is fixed in space, the wave functions are not covariant.
Thus, although some of the operators that appear later,
and for which expectation values shall be taken, are
Lorentz invariant or covariant, the corresponding expecta-
tion values are not.

We begin by expanding the static bag wave function for
the pion with the cavity centered at X, | Wg(f() ), in terms

of the momentum components |m(B)),

|75(X)) = ;TP |7(B))e' T X | @.1)
P

with its inverse transform
2Ep
(2m)?

| 7(B)) = [ aX |mpX))e—iF X (2.2)

As a quark-antiquark (¢g) composite ]w(ﬁ)) can also be
expressed as [with P=P;+P,, p=(B1—P2)/2]

| 7(B)) =2Ep [ dB F(P,p) 3a(p1s1)ysv(pss3)

S152

Xbjsdis 10), @3

where the integral over P is a shorthand notation for
[ d51d5:8(5:+5,—P) .

Here bJ{ creates a quark of momentum p,, mass m,, and
polarization s; while d, creates an antiquark (p,,m,,s;).
For the g wave function we postulate

F®,B)=, (B (BED) ,

where f(p;) is the Fourier transform of the s-wave orbital
wave function of the ith quark in the lowest cavity mode
of the bag:

f(p;)=R 3f(xi,zi)
=R[jo(x; —z)—jo(x; +2)]/2x;2; .

(2.4)

(2.5)
R is the bag radius, z; =p;R, and x; is an eigensolution® of
x; —[1—p;— (x> +p;2) 2 Jtanx; =0 ,u; =m;R .

Because we are working with Dirac spinors in momentum
space, it is not necessary to specify the p-wave (small)
components; their effect is automatically included. By
construction (2.3) has definite P. On the other hand, be-
cause the f(p;) are not plane waves, the internal wave
function F depends explicitly on P and so is not transla-
tionally invariant. This reflects the fact that the wave
function is expanded about the center of the cavity fixed
in space. In the bag model confined quarks move freely
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within the cavity. However, the very large energy gap
separating the pion from the other hadrons could be inter-
preted as a manifestation of a quark-antiquark interaction.
To simulate any eventual finite-range effects of such an
interaction we have introduced in (2.4) a correlation func-
tion £(p) which acts to suppress the wave function for mo-
menta greater than some correlation momentum p., and
for lack of a truly dynamical calculation have chosen it to
have a simple form:

Ep)=[1+(p/p. )1 ".

In the limit p, — 0, the correlations vanish. In this limit,
the wave function (2.3), when integrated over the c.m.
momentum, becomes identical to that of the usual bag
model.

In (2.3) the bilinear spinor product &;ysv, serves as a
convenient projection operator in spin space. The advan-
tage of working in momentum representation is that trace
techniques can be applied on Dirac matrices and spinors.
For example, after summing over spins and integrating

over relative momenta we obtain the norm of | m(P)):

(m(B") | m(P))=8(P'—P)2EpN*P) ,

(2.6)

2.7)
N%P)=2Ep [ dB|F(P,p)|?

(E, +E2)2—“_P>2—(m1 —m2)2
X .
2m1m2

Although there are in principle no obstacles in formu-
lating the model for an arbitrary P, it is simpler to require
from the start that the pion be at rest, P=0. Then
P1=—P2=P, and the gqg wave function becomes a func-
tion of a one-dimensional variable p= | p|. After an an-
gular interaction in (2.7) we obtain

N0)=(47R 0o/ )1y ,
Iy= fow dzz’¢*(2)NfX(z) ,

where we have defined the dimensionless variables z =pR,
wo-—-RE-P. o Mi =Rm;, and w;=RE;, the radial wave

(2.8)

function
]

4

172

i=1

1457

¢(z)=f(x1,z)f(x2,z)§(z) >
and the energy factor
N z)=(01+ ) — (1 —py) .

The total energy of the pion includes on the one hand
the zero-point energy Ez = —Z /R and the pressure ener-
gy Ep=(47/3)BR* with the same parametrization as in
the original bag model and, on the other hand, the kinetic
energy Ex and the interaction energy E;, which are to be
recalculated with the new wave function. The kinetic en-
ergy Ey is derived from the usual free Hamiltonian

Ho= X vo(¥Bi+m;)
i

with the result
Ex={(m(0) | Hy | m(0)) /{m(0) | m(0))

=2x/R , (2.9)

where 2x =1k /Iy is the ratio of the energy and normali-
zation integrals. Iy is defined as

Ix= [ dz 222N @) 01 +0y) . (2.10)

The interaction energy E, arises from an effective
gluon-exchange quark-quark interaction whose primary
role in any quark model is to split the pseudoscalar- and
vector-meson masses as well as the nucleon and A masses.
It is derived from the color-electromagnetic energy of the
gluon fields:

Hy=—2ma, [ d%9,4,°9"4% 2.11)

where a; is the effective strong coupling constant, and

o T A
4, (X)=fdY¢(Y,xo)77’u1/’(y,xo)47r T

(2.12)

Here a static approximation has been explicitly applied be-
cause H, will act only on quarks in the lowest eigenmode;
A% (a=1,...,8) are generators of the SU(3) color group.
In momentum space the parts of H, that contribute to the
pion energy are given by

8(P1—P2—P3—P4)8(P1—P3—d1)8(P,—Pa—d2)

d;'da |_ A° _Ag t,t
)y —yuus | |Da—vHv2 |2b1d3bsds+ -, (2.13)
9:°q,” 2 7 2
f
where + - - - indicates terms irrelevant to our calculation. (&Y ,u (D2 Y*vy )= — (& ysvp N Doysuy)+ - -+ . (2.14)

We may at this point proceed to calculate (|H, |m)
with (2.13). It proves, however, to be more fruitful to in-
troduce an additional simplification by applying a Fierz
transformation to the spin product in (2.13) and dropping
all but the pseudoscalar term:

The approximation is akin to the ladder approximation® in
which the intermediate states are restricted to pseudosca-
lar states and should be valid in the pion case. Since we
treat a, as an effective coupling constant, we compute the
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effect of H, only to lowest order. We then obtain (Appen-
dix A)

Ey={(m(0) | Hy | m(0)) /{m(0) | m(0))

=—a,G/R, (2.15)

=3 :IN [ dzi2K() (2.16)
where we have defined

J(2)=2¢(2)Nf42) /V 0100, , (2.17a)

RK(2)= [ dz'J(z')L(z2"), (2.17b)

L(z,z')=In(|z+2'|/|z—2"]) . (2.17¢c)

The quantities x and G defined above are functions of y;
(i=1,2) and K=p.R; they become independent of R
when p;—0 and K— 0.

Finally the total energy of the pion is
4m

E,=+ |2x—a,6—-Z+ 3

BR*
R ’

(2.18)
where Z and B are constants, x and G depend on R as seen
above, and we assume a; to have a logarithmic scale
dependence’ characteristic of QCD:

as(R)=ay/In(141/AR) ,

where empirically!! A=0.1—0.5 GeV with small values
being favored by the more recent data. We use A=0.2
GeV and a¢=0.5; at the pion radius (R ~0.6 fm) this
gives a;~0.5 and will yield about the right amount of
gluon energy (E; ~0.6 GeV) needed for the 7 and p mass
splitting. Stationary solutions for the pion are then at-
tained by requiring that

E_=m,=140 MeV

(2.19)

(2.20)
and
dE_./dR=0. (2.21)

For equal quark masses (u;=p,=p=mR) the above
equations become

2x—asG—Z+—4;T BR*—pu,=0, (2.22)
Gas2 167

'—a,G')— ———+-——BR*—pu,=0, 2.23

p(2x'—a,G') ag(1+24) 3 He 2:23)

where p,=m_R, A=AR, x'=dx /du, and G'=dG /dpu.
The parameters yet unspecified are B, Z, m, R, and p,.
Within our model there seems to be no dynamical mecha-
nism to drive the pion mass to zero. However, assuming
the zero-mass pion to be a Nambu-Goldstone boson, what-
ever mechanism we choose must leave m, R, and p, essen-
tially unchanged. The only parameters that can be
changed are therefore B and Z. From (2.22) and (2.23), we
see that if E(B,Z)=m, is a stationary solution, then so
is E,(By,Zo)=0, provided that

By=B—(3/16m)m R 3 (2.24)
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and

Zo=Z+3m,R/4. (2.25)

Since the pressure explicitly violates chiral invariance it
should vanish in the symmetry limit, i.e., Bo=0, from
which it follows that B=(3/16m)m R 3 or

(2.26)

1
EB=7m,, .

This remarkable result reconciles the bag pion with the
PCAC pion and, at the same time, fixes the parameter B.
At R =0.6 fm it yields B!/4=131 MeV, which is surpris-
ingly close to the value (~140 MeV) determined
phenomenologically for the MIT bag.>” The derivation of
(2.26) depends on the implicit assumption that the mecha-
nism for confinement, which controls B, and that for
spontaneous symmetry breaking, which controls m and
(Potho), can be separately treated. This seems reasonable
since the latter are realized in models in which the former
does not occur. The fundamental consequence of the pion
being a Nambu-Goldstone boson is that its properties, ex-
cluding its mass, are on the whole determined by the na-
ture of spontaneous chiral-symmetry breaking, but not by
the nature of confinement. Within the context of the bag
model, relations (2.24)—(2.26) guarantee this eventuality.

Of the remaining four undetermined parameters
Z, m, R, p,, if any two are chosen then the other two will
be determined by Egs. (2.22)—(2.23). We chose R =0.6
fm to correspond to the rms radius of the pion,'? vary p,
in the range from 150 MeV to «, and solve (2.22) and
(2.23) for m and Z. In this range of p, these equations
happen not to admit solutions with R >0.9 fm. Table I
presents the main results of our work. We first give four
sets of parameters p., m, Z, and R that satisfy Egs. (2.22)
and (2.23), and in the following part of the table the dif-
ferent energy components corresponding to these four
solutions. The quark mass and the interaction energy rap-
idly saturate their respective magnitudes as p. increases,
whereas the kinetic energy and the zero-point energy grow
in opposite directions. The zero-point fluctuations and
the gluon exchange are essential in lowering the pion state.
The best agreement with empirical values (m ~350 MeV,
E, ~—600 MeV) is reached by the set of parameters
P, =300 MeV, Z=1.26, m =352 MeV, and R=0.6 fm.

III. PION DECAY CONSTANT
AND QUARK CONDENSATE

Since from the energy scale of the bag model it is ex-
pected that the simplest estimate of the decay constant
will be large, we calculate the next-order correction using
a naive perturbation formula:

Sr=f(0)+fg(0), 3.1
where
f(P)P,=(0]|J,s|m(P))/N(P), 3.2)
fg(P)P#=<O Tus 5 H 1r(P)> /Ner. 6
o—4%0
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TABLE 1. Some properties of the pion calculated with four sets of parameters satisfying the station-
ary conditions in the modified bag model. Energies (momenta) are given in MeV (MeV/c). The bag
constant is constrained such that Ez =m, /4. The coupling is a;=a,/In(14+1/RA), A=200 MeV. We
assume m,=my, except in the calculation of the axial-vector form factor for which the value
mg—m, =3 MeV is used (Ref. 20). The value for R is chosen to agree with the measured root-mean-

square radius of the pion.

Pe 150 300 500 ©
z 0.842 1.26 1.34 2.37
m 283 352 386 518

R (fm) 0.6 0.6 0.6 0.6
Ex 925 1157 1323 1787

E, —543 —639 —777 —903

E, —277 —413 —442 —1780

Ep 35 35 35 35
() (1072 GeV?) 2.0 3.6 4.5 9.7

f 638 748 873 1050

A —554 —622 —636 —778
fa=f+fe 84 126 237 272

v 0.066 0.053 0.052 0.036
vg —0.023 —0.016 —0.007 —0.005
V=040, 0.043 0.037 0.045 0.031
a (1073%) —0.884 —0.571 —0.516 —0.265
ag (1073) 0.882 0.527 0.358 0.183
a,=a+a; (1073) —0.0016 —0.044 —0.158 —0.982
Va=0ay /0, (1073) —0.37 —1.19 —3.51 —2.64

Here H, is the Hamiltonian associated with Eo=E, —Eg,
P denotes the principal part, and J,s=t0y.Vs¥o is the
axial-vector current in terms of current quark fields.
Since both the vacuum and pion states refer to constituent
quarks, the current operator must be reexpressed in terms
of the constituent quark fields i and ¥'. However, as
quarks acquire masses in an as yet unknown dynamical
fashion the exact transformation between @ and v,
remains unknown. We simply use an ansatz analogous to
that proposed by Nambu and Jona-Lasinio.” Let U;,Os) and
V;’os) be the positive- and negative-energy components of
the current quark field, and U, and V,, ; the correspond-
ing components of the constituent quark field. Then we
postulate the following unitary transformation:

U:E,Os) cosf —sinf Up,s
V‘EL,S sinf cosd V_ps |’ (3.4)

where O=tan"'[(1—B)/(1+4B)]'/? with B=p?/(p*+m?).
This transformation contains the main features of the
correct transformation,!> namely, it deviates maximally
from 1 as (p/m)—0 and approaches 1 at large (p/m).
We show in Appendix B how to derive the two terms of
the decay constant:

f0)=(Q/R) [ dzzc/(2)p(2) (3.5)
_ —2a, Q K(z) P
fsl0)= 37 R fdch(z)m o+, —og
(3.6)

where we have used the notation

(3.7
(3.8)

crlz)= 5 (1 +12)z(2)cos(8,+6,) /V 00, ,
Q=(16TREy/Iy)!"?

and wgx =REg. Since Eo=E,—E,, f, does not vanish
with E,=m,, but is rather proportional to v/ Eq="1/ —E,
as m,—0. Thus, the pion in our model satisfies PCAC.
We also note that f, is proportional to m rather than to
mgy. In the above, explicitly in (3.7), we have made a
dynamical assumption on the vacuum state by assigning
to it a cutoff function 7. This is necessary because
without some cutoff the vacuum expectation value of the
current quark density would diverge logarithmically. We
simply assume a sharp cutoff at A., fully aware of the
fact that it is an oversimplification of a complex situation.
Summing over two flavors, three colors, and the positive-
and negative-energy states, we obtain the current quark
condensate

- 12 .
(Poto) = oo f d3p——rg sin’6,7(p)
3m?3 2A, m
—Z | ~1+o0| 2 (3.9)

Thus, to within a logarithm the condensate is proportional
to the third power of the constituent quark mass when the
latter is small compared to the ultraviolet cutoff. Up to
the logarithm term, 7 can have any other functional form,
e.g., £ in (2.6), without substantially altering this result.
Table II shows that the pion decay constant (and the
radiative-decay form factors to be discussed below) be-
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TABLE II. Dependence of pion decay constant and radiative form factors on the ultraviolet cutoff

Ac.

A, (GeV) 5 6 7 8
f (MeV) 747 747 747 747
fz (MeV) — 644 —631 —622 —622
fa=f+fy MeV) 103 116 125 125
v 0.053 0.053 0.053 0.053
vg —0.018 —0.017 —0.016 —0.016
Vy=v4Ug 0.035 0.036 0.037 0.037
a (1073) —0.57 —0.57 —0.57 —0.57
ag (1073) 0.55 0.53 0.53 0.53
a,=a+a, (1073) —0.02 —0.042 —0.042 —0.042

come essentially independent of A, for A.>7 GeV; we
therefore use this cutoff in our calculation. We show in
Table II the decay constant for some sets of parameters
consistent with stationary bag configurations. Again the
set at p. =300 MeV gives the best value, f,=126 MeV,
compared to the experimental value'* of 132 MeV. As in
the case of the energy, the gluon contribution plays an
essential role in bringing the final result down to this rela-
tively small value.

In the range p, =150—300 MeV the quark condensate is
calculated to be (2—4)X 10~2 GeV?, which is not incon-
sistent with the recently reported result
(Pp) ~3 X 10~2 GeV? obtained in a Monte Carlo calcula-
tioni in lattice QCD. If we use the current-algebra sum
rule

m0<$0¢0> =—;—f112m1r2 ’

then we deduce mq~5 MeV for the current quark mass, a
value which is in agreement with other phenomenological
estimates.

(3.10)

IV. PION-RADIATIVE-DECAY FORM FACTORS

We further test our model by calculating the radiative
decay m—7yev,. A dynamical study of this decay is in it-
self interesting; its energy distribution and rate are under
certain kinematical conditions sensitive to the two so-
called structure-dependent form factors, vector and axial
vector.'> A detailed calculation of these two quantities
would provide a good test of several assumptions of
strong-interaction physics and would give information on
the dynamics governing the bound quarks. For example,

if the conserved-vector-current (CVC) hypothesis holds,
J

the vector form factor v, can be related to the lifetime of
the neutral pion. On the other hand, while v, depends on
the relative g7 wave function at the origin, as does the de-
cay constant, the axial-vector form factor a, carries new
and more sensitive information'® on the wave function,
a,~V*p(0). Further, because of its dependence on the
u-d quark-mass difference, a, provides a measure of
strong isospin-breaking effects.

The structure-dependent part of the amplitude for
T—yev, is given by!>16

1 ..
MSD(»n-—;yev)'w—[zv,p“kﬁelagﬂ
mﬂ'

+a,(P-kgy,—Pyk,)]ELF ,  (4.1)
where P is the pion momentum, € and k are the polariza-
tion and momentum of the photon, and L* is the
electron-neutrino weak current. Under the same assump-
tions as used above to obtain f, and applying the ap-
proach of Ref. 16 we derive the form factors to O(ay) as
follows:

cy(2) =5 (1 + ) (e Ly +eyLy)n(z)cosX0,+6,) /v 0, ,

Ca(Z)=(/J«2—IJ—1)(el +€2)(L1 +L2)7](Z)COSZ(91+92)(Z()2—22)/[(§2+222) V 0)1602] ’

&= Tpa’ 1’ + 1" — 2207,

Li=In{[(z+p./2)+p;*—20°1/[(z —p, /2 +p* —20%1} ,

Vp=0-+Vg , 4.2)

a,=a+a,, (4.3)
where the zero-order terms 8 =v,a are given by

8=0 [ dzzcs(2)4(2) (4.4)

and the first-order terms 8, =vg,a, by
2a K(z) P

8,=——0 [ dz c . 45

€ 37 f Vow, 01+o;—og 8(2). (45
Here ),K, and ¢ are as defined previously, and

(4.6)

4.7)

(4.8)
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in which zyp=w;—w, and e; and e, indicate the quark and
antiquark charges. Through (2, both v, and a, are pro-
portional to V/E,, and hence remain finite as m,—0.
But whereas the vector form factor has a similar depen-
dence on the quark masses and on the relative momentum
as the decay constant, the axial-vector form factor varies
as (uy—pq)(zg2—2z?); the first factor indicates an isospin-
invariance-violation effect and makes this form factor
small, and the second is approximately related to the La-
placian of the relative wave function. We also note that
the presence of the factor (e, +e,) guarantees the vanish-
ing of ¢, in the case of a two-photon emission.

The results of our calculations of v, a,, and y,=a, /v,
are presented in the last part of Table I. It is recalled that
the value of the vector form factor is deduced,' up to a
sign and under the CVC hypothesis, from the pion life-
time 7 o Using the most recent value,!’

7'"():(0.82810.057))(10—16 sec, we can infer that

v,=0.0265. With this information, an analysis of the
m—Yev data then yields (1+7,)? or two solutions for y,;
Depommier et al.'® obtain y,=0.26 or —1.98 (no errors
quoted) while Stetz et al.!® conclude that y,=0.44+0.12
or —2.324+0.12.

Our result for v, ~0.037 is in fair agreement with the
measured value (as well as with our previous result
0.035+0.011 derived in a similar but cruder approach!®).
This agreement is not unexpected in view of our success in
predicting the decay constant. As for the axial-vector
form factor, our result favors the smaller experimental
solution. It has been argued!® that since a, varies as the
mean square of the momentum, — ( puz), it must be small
and negative in any model that treats quarks as essentially
free particles; this clearly holds true as shown by the
smallness of the zeroth-order estimate a, but it is also in-
complete because it ignores a,. Gluon corrections are im-
portant; they almost cancel out the lowest-order estimate
and could easily have reversed its sign for a larger cou-
pling. Our present view is that a, is small but its sign
remains difficult to predict.

V. SUMMARY AND CONCLUSIONS

We have achieved the two goals that we set out to ac-
complish: (i) to remove spurious center-of-mass motions
in the gg system in the bag model so that the properties of
the pion, in particular its decay constant, can be properly
calculated, and (ii) to reconcile the bag-model description
of the pion with a Nambu-Goldstone or PCAC pion.
Since an important characteristic of the PCAC pion is the
finiteness of f, in the limit m_,—O0, (i) is really a prere-
quisite of (ii).

We achieved our goals by modifying the MIT bag
model in a way that does not significantly impair its sim-
plicity and its amenability to calculations. The major
modifications are first removing the spurious center-of-
mass contribution by projection so that wave function has
zero center-of-mass momentum, and second including
lowest-order gluon corrections to the calculated quantities.
Otherwise all the important features of the original model,
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in particular the boundary conditions, are retained. We
demonstrated that this program is very easy to implement
in momentum representation. We emphasize that because
the constraint that the bag is fixed in space has not been
removed, our results are not Lorentz invariant.

We showed that the bag-model and Nambu-Goldstone
views of the pion can be made compatible provided a clear
distinction is made between the massive constituent
quarks and the nearly massless current quarks. Whereas
bag states, including the vacuum state, refer to the former,
Lagrangian densities and current densities are defined in
terms of the latter. To connect these two types of quarks
we used a unitary transformation analogous to that pro-
posed by Nambu and Jona-Lasinio.” This, among other
things, allowed us to compute the quark condensate
(Poty) to be ~0.04 GeV3, corresponding to a current
quark mass of ~5 MeV. We argued that in order to re-
store the chiral invariance of the Lagrangian in the limit
of zero pion mass, it is required that the volume energy
Ejp also vanishes in that limit. This condition ineluctably
fixed the value of Ep to be m, /4.

The effects of our modification to the bag model are
best exemplified by the qualitative features of f, that we
calculated. In our model f, is proportional to
(m,,.—Eg)l/ 2 and to the constituent quark mass m, but not
to the current quark mass mg. It follows that in the
chiral-symmetry limit, i.e., when my—0 and m,—O0,
fremV —E; is nonzero thereby satisfying the PCAC
constraint. On the other hand, if the gluon contribution
to f, were not included then f, <V m,. Similarly if no
distinction were made between m and mg then f,«<my.
In either case f, would have the unacceptable property
that it vanishes in the chiral-symmetry limit. We feel that
these considerations make it clear that the constituent
quarks in the bag, or indeed in any quark model (in the
sense set down in Sec. I), cannot be massless or nearly
massless.

We found that in order to obtain sensible numerical re-
sults, the gg wave function specified by the bag boundary
condition must be quite strongly modulated such that its
high-momentum components be suppressed. We achieved
this effect by using a Yukawa form factor with a correla-
tion momentum p, ~300 MeV. We interpret the necessity
of these correlations as a reflection of the presence of
finite-range gluon-exchange effects in the confining cavi-
ty, a conclusion previously reached by Goldman and Hay-
maker!© via a different approach. With these correlations
the typical energy scale in the modified bag model is still
>0.5 MeV (without correlations it is >1 GeV), and the
small physical values of both m, and F, (~0.1 GeV) are
results of cancellations between bag and gluon contribu-
tions.

We further tested our model by calculating the
structure-dependent vector and axial-vector form factors
for the pion radiative decay. Our result for v, is in fair
agreement with experiment. Owing to the small value of
the factor (my—m,)/(my+m,) and an almost complete
cancellation between the bag and gluon contributions, the
ratio y,=a, /v, is nonzero but very small; it is neverthe-
less in agreement with the smaller of the two possible ex-
perimental values.
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APPENDIX A

We show here the calculation of the matrix element {7 |H,|w). From (2.11) and (2.12), H, is expressed in the
second-quantized form

HE%[H [a’3

i=1

172
mi

8(B1—P2—B3—P4)(B1—PB3—q1)8(Br—Bsa—7q>)

A9
3 3—7;4"3

q,°9;
9:°q,°
where the factor 2 represents the 2 terms, out of a total of 16, that contribute to the interaction energy calculated in a

ladder approximation. The subscripts in the spinors and operators stand for both spins and momenta. Applying a Fierz
transformation on the spin product and dropping all but the pseudoscalar term, as in (2.14), we obtain the matrix ele-

ment of H, at P=P'=0 (therefore, ;= —P»,=0, Bs=—P+=P ):

2iadlbsd,+ -, (A1)

A
174—2‘1—7"02

4 a; (2Ey)? F(0,B)N? ,F(0,B")N/? 1
f 3 f f f

(0)|H, | m(0)) =—— ,
<77' l gl 3 4“_2 2“1'“2 (COC() )1/2 1/2 |_13—"f)”|2

(A2)

(0iw3)

where the factor —% comes from a color summation. To avoid 8(0) we have used normalization in a finite volume.
Recalling that we have s-wave states, F(0,B)=R%¢(z), we integrate over all angles and obtain

2a, (2Ey)?

———47R® [ dzz¢(2)N;Xz) /(w,0,) >
3 2up, f PNy e

(m(0) | Hy | m(0)) = —

X [ dz'z'¢(z" )Nz )In( |z+2" | / |z—2' | ) /(@)@3) /> . (A3)

Since the normalization is {7(0) | 7(0)) =47 R°Iy(2E)*/2uu, we obtain the results (2.15)—(2.17).

APPENDIX B where we have, as usual, U, ;=(m /E)"/?b (p,s)u (p,s) and

. L V,s=(m/E)"?d"(p,s)v(p,s). We apply a Nambu—Jona-

We give here a derivation of the decay constant to first Lasinio—type transformation to relate the current quarks
order in Hg. The vector and axial-vector form factors for (U@, 79) to the constituent quarks (U, V):

the pion decay are derived along the same lines. Writing

the quark field as a superposition of positive- and Upf(?s) cosf@ —sin@ U,
negative-energy solutions Vo, sind cosd | |V_,, (B2)
Yx)=3 ( V,s)e B1)  Then after the transformatioln the axial-vector current be-
comes [N12 =(m1m2/E1E2) /2]2
J
Jus(X) =1ho(x)y 47 so(x)
—i(py+py)-
=2(UP§?~£1 V(L)I)hsl )7#75( UPE(;S)Z V(i);’z-‘z) e
P;s;
—i(p +py)-
=2 (cosB;cos0,—sinbsin€y)V_, ¢ 7, ¥sU,,s.e TPTRIE L.
pl i
=, cos(0;+02)N 1,00 —p 1,51V, 54 (P2,52)d(—py,s )b(pa,sye PP L (B3)
P;s;

where + - - - indicates terms that do not contribute to our calculation. Then using the wave function
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|7(P))=2E, 3, [ dp F(P,p), ysv, bld}|0)

5152

we obtain the transition amplitude
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(B4)

(0| Jys | m(P))=2Ep fd3pn(p)F(P,p)lecos(Bl+92)[(m1+m2)PM—2(m1—m2)p,,]/2m1m2

miy+m
=P, 4rEp———=

W 2 [ dp p?F(P,py(p)cos(6,+6,)/VEE, ,

(BS)

where we have assumed s-wave for the wave function. Dividing this matrix element by the normalization factor N (P)
defined in (2.7), and assuming the pion at rest we obtain f(0) as given in (3.5).

The first-order correction as defined in (3.3) is calculat-
ed exactly as above, except that the wave function |7(0))
is now replaced by

P

- B6
Ey—H, (B6)

|7(0))g= H, | m(0)) .

We obtain (Z=R7P)
| 7(0))g =2EoR> [ d’2¢y(2) 3 (a0,ys502)b1d] |0) ,

5152
(B7)
where
2a, P 1
¢g(2)—“ 3T w1+o—0r Voo,
f it 2'$(z')N(z") Lz). (B8)

zV 0\0)

|

Thus the correction term f has the same form as f except
for the substitution of the radial wave function ¢(z) by

g (2).
APPENDIX C

We used the two algorithms given below to calculate
the integrals in (2.16), (2.17), (3.6), and (4.5) which involve
singular integrands.

(1) To calculate the integral

b
K@= [ dxJxn(|z+x|/|z—x]), (c1n

we divide the range of z into three intervals and treat the
singularity explicitly in each:

K, (2)+K _(z2)—2eJ(2)[1—1In(2z/€)], a+e<z<b—€

K(z)= {K, (2)—J(2){e[1—In(2z/€)]+n[1—-In(2a /9)]}, z—a=7<e€
K _(2)—J(2){e[1—1In(2z /€)]+7n[1—In(2b /9)]},

b
K>(z)=L+€de(x)ln( lz4x|/|z—x]),

K<(z)=f:—e

dxJ(x)In(|z+x|/|z—x]).

This gives a result accurate to O(€).
(2) To calculate the principal-value integral

b
1=pfa dz G(z2) (@, —wo) ™!, (C5)
we write @ (z) in the form
o (2)=wo+co "Nz —20)+0((z—2)?) , (C6)

then

(C2)
b—z=n<e,
(C3)
(Cc4)
f
(b—zp)a+zp)
I=eoG(zo)ln (b+20)((1-~20)
b 2 G(
4 [Par| Gl Z2ocoGlzo) )
a @4 —ag z°—2zy

The denominator z2—z,? is chosen over z—z, to effect a
faster convergence of the second integrand in the large-z
region.
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