
PHYSICAL REVIEW D VOLUME 29, NUMBER 7 1 APRIL 1984

Couplings of low-lying glueballs to light quarks, gluons, and hadrons

John M. Cornwall and A. Soni
Department ofPhysics, Uniuersity of California, Los Angeles, California 90024

(Received 20 October 1983)

We derive a set of QCD sum rules for the operator f dx G„"G„,which is in a sense a generaliza-

tion of the trace anomaly. Combining these with plausible phenomenology, we arrive at a semi-

quantitative picture of the couplings between the two lowest-lying glueballs (called S for J =0++
and P for 0 +) and light quarks, gluons, and hadrons. These couplings suggest the existence of an

approximate chiral/dilatation symmetry carried by the glueball interactions, with large and calcul-

able symmetry-breaking terms arising primarily from the glueball masses. The couplings are of' typ-
ical hadronic size, even though suppressed in the large Nlimi-t. The QCD sum rules mentioned

above are closely related to the one-loop effective action, although derived quite differently; we be-

lieve the sum rules partially justify use of the effective action for small field strengths. A somewhat

speculative generalization of sum rules to axial-anomaly densities gives an approximate evaluation

of the Witten sum rule for the 8 dependence of the vacuum energy. The S-P chiral symmetry is re-

lated to the quark U~(1) symmetry through the Peccei-Quinn mechanism; this symmetry is badly

broken by the P mass.

I. INTRODUCTION

One would like to know much more about the glueballs
of QCD than is currently known. At the moment, there
are two experimental candidates for light glueballs with
masses &2 GeV: The t(1440) with J =0 + (Ref. 1)
and the g(1670) which is 2++ (Ref. 2). There are
numerous calculations of the masses of (quarkless) glue-
balls, with good agreement between Monte Carlo calcu-
lations and calculations of the authors based on using
the Schrodinger equation with massive (m =500 MeV)
gluons. Both these methods yield glueballs with the quan-
tum numbers and masses of t and L9, but for the 0++ glue-
ball the situation is worse: no convincing experimental
candidate, and a substantial spread in theoretical mass
values, from 700 to 1200 MeV.

I.et us ignore this potential embarrassment for QCD
and proceed to the next logical step: calculating (more
realistically, estimating) the couplings of glueballs to
quarks and hadrons. In this paper we consider only the
lightest glueballs, the S (0++) and P (0 +), using these
symbols to denote states unmixed with quarks. These
play special roles because (as discussed by other authors )

they have the quantum numbers of the trace of the
energy-moment tensor and of the axial anomaly. There-
fore, they should be important in describing the breaking
of dilatation symmetry and U~(1) symmetry, where
U~(1) is the axial-vector baryon current. Since the masses
of S and P are not small, these symmetries will be badly
broken; in particular, the g' will pick up a mass of

Mg Mp. The machinery for finding the g' mass in the
chiral limit has been set up by Witten, who shows how it
is governed by the zero-momentum propagator of the axi-
al anomaly.

The above-mentioned authors and others' have gone
some way in establishing the phenomenological couplings
that S and P must have in order to be consistent with

(i.e., the trace anomaly), which has the same quantum
numbers as the S glueball; later we will identify the right-
hand side (RHS) of (1.1) with a specific polynomial in S.
The sum rules are derived under the condition that the P
function of (quarkless, N, colors) QCD is well approxi-
mated by its first term:

11%,
P(g)= bg'+ . b——

48m.
(1.2)

known Ward identities and the like, but to our knowledge
no one has tried to calculate the S and P couplings directly
from QCD. If one can calculate the S and P masses by
some dynamical scheme, one also ought to be able to cal-
culate couplings (i.e., wave functions). Thus, our
Schrodinger-equation approach, based on the dynamical
generation of a gauge-invariant effective gluon mass, "
yields in principle the S and P couplings to gluons, from
which all other couplings follow. As we discuss in the
Appendix, this does not work at all even though the
masses are reasonably well predicted. This is a familiar
story: approximate dynamical schemes do better on energy
levels than they do on wave functions.

We therefore abandon the direct dynamical approach
and try instead a combination of QCD sum rules and
plausible, if somewhat speculative, phenomenology. We
shall see that the sum rules, although closely related to the
perturbative one-loop effective action, ' demand a nonper-
turbative interpretation for consistency. They can be con-
sidered as a generalization of the relation of the trace
anomaly' to the vacuum energy.

The first set of sum rules, infinite in number, refers to
zero-momentum matrix elements of the gluon field densi-

ty,

g QGp G," (x)=g G.G
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G.6=QGq G","(x), G~g"———,'ei'" ~6~@, , (1.4)

since this density has the quantum numbers of the P glue-
ball. Witten has expressed the two-point function of (1.4)
in terms of 8 E„„/Be, but the latter quantity is un-
known. We cannot use the same techniques here as used
for the G.G sum rules, but based on the close relation of
the latter to the one-loop action, we consider the one-loop
action as extended to depend both on 6.6 and 6 6 for
constant fields. ' This action is expressed as a proper-
time integral whose integrand has a series expansion in
powers of G G and G-G. However, the proper-time in-
tegrals have infrared (large-time) divergences for each
term of the series, divergences which are reflected in the
overall integral as the Landau ghost. We speculate that
the nonperturbative induction of short-range gauge-field
correlations for the individual terms in the power-series
expansion of the integrand leads to infrared convergence
of the corresponding integrals, so that it makes sense to
compare the coefficients of (G.G) and (6.6) in this ex-
pansion. ' These coefficients are readily calculated, and

This limitation, of course, is not a bar to the appearance
of nonperturbative effects, which will involve the factor
exp( —1/bg ). It is possible, as we mention in Sec. II, that
the sum rules' derivation can be extended to remove con-
dition (1.2) without a qualitative change in the nature of
the sum rules. The problem in this extension is knowing
precisely how to implement nonperturbatively the normal
product of two fields such as occurs in (1.1). We recog-
nize the uncertainty ensuing in trading g for a mass scale
when only the first term in P(g) is used, and believe that
this leads to errors of order +30% in quantitative applica-
tions.

The sum rules are not derived from an effective action,
but they imply one. It turns out that the effective action
required by the sum rules is the one-loop action, ' without
an imaginary part (whose presence signifies instability of
the vacuum with a superposed constant color field' ). Use
of the one-loop action for small field strengths is properly
subject to criticism on the grounds that its derivation can-
not be justified, since the Landau ghost pole in the run-
ning coupling constant is reached. Our derivation makes
it clear that the Landau ghost singularity arises from the
sum rules for an indefinitely large number of G 6 opera-
tors. Saving only the sum rules with a finite number of
operators can never lead to a singularity in the effective
action. Qn the other hand, the finite sum rules always
lead to an effective action corresponding to an effective
potential with a nonperturbative minimum (i.e.,
(6.6 ) & 0). We use this fact to argue for a nonvanishing
expectation value of S, and find the value

b z

(S) = (G 6) (S)=130MeV. (1.3)
2M'

The numerical value follows from the phenomenological
estimate' g (6 G)=0.47 GeV, and the predicted
value of the S mass Ms —1 GeV.

The sum rules invoked so far help to construct an effec-
tive action for S. To complete the picture, we need sum
rules for the axial-anomaly density

are essentially equal. Combined with previous informa-
tion this leads to a specific value for the Witten sum
rule. ' ' Knowing this value allows us to generate an in-
finite set of sum rules for Green's functions with two G G
fields and any number of 6 6 fields, all at zero momen-
tum.

Taken together, these sum rules yield an effective action
for G.G and G.G, in which we save only up to quadratic
terms. The next step is to translate this into an effective
action for (zero-momentum) S, P fields, which we pro-
mote to finite, small momentum by adding kinetic terms.
This requires the specific operator connection between
6.6, 6.6, and S,P. Unfortunately, this connection is
necessarily ambiguous, because S has the quantum num-
bers of the vacuum.

The near equality of the coefficients of (6 G) and
(G 6) strongly suggests a chiral symmetry relating 6 6
and 6 6, which we can in fact identify with U~(1) with
the help of the Peccei-Quinn mechanism. ' There is a
particularly elegant solution to the operator-ambiguity
problem, which expresses the chira1 symmetry both in the
(G G, G G) basis and the (S,P) basis in the sense that the
(S,P) kinetic terms and quartic couplings are exactly sym-
metric, while the mass terms (required by our sum rules)
necessarily violate both a dilatation symmetry and the
chiral symmetry. The dilatation symmetry is, of course,
broken by (S), and if the mass terms were chirally sym-
metric, the P would have to be a massless Goldstone bo-
son. This is not what happens; instead, our resolution of
the operator-ambiguity problem leads to the relation
Mz ——Mz. Now this is not likely to be the case in nature;
other calculations suggest that Mg 0.7Mp is closer to the
mark. The point is not that we are off by 30% or so in
relating M~ to Mz, but rather that both these masses are
—1 GeV—in other words, that P is not a Goldstone bo-
son. If it were, it would raise a host of problems with
Uz(1)-symmetry breaking which are very well known.

These remarks concerning the P are speculative, because
nothing that we can derive forces us to the chiral interpre-
tation that we end up using. Yet as far as we can see, it is
consistent with known facts. It turns out that many pre-
dictions of the theory are insensitive to the operator ambi-
guity, because this ambiguity is probed largely by one-loop
corrections to the tree-level effective Lagrangian for S and
P. We show in Sec. II that loop corrections to the tree-
level process are governed by a reasonably small parame-
ter.

Next we turn to the couplings of S and P to quarks,
gluons, and hadrons. The couplings to gluons are, of
course, read off from the operator relations between S,P
and G G, G.G; knowing these, we could calculate the cou-
pling to quarks and hadrons directly from QCD (at least
in principle). However, if we are only interested in zero-
momentum coupling to light quarks this is not necessary,
since the S interpolating field is (up to a constant related
to (S)) the trace of the energy-momentum tensor that
is, S acts like a dilaton:

2
T"=+ ~ g G.G=— g G.G . (1.5)

2g 2

(Terms involving M~1tg for light quarks are numerically
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unimportant. ) At zero momentum, T& has universal ma-
trix elements related to the mass of the particle involved.
We also do not need to calculate explicitly the zero-
momentum coupling of P to light quarks, because this
coupling is chirally related to the S coupling: S and P ap-
pear in the combination S+igy5P, with g=l. The num-
ber g is the square root of the earlier-mentioned ratio of
coefficients of (G 6) and (G.G) in the effective action.
The overall strength of the coupling is such that half the
constituent mass of a quark is generated through its cou-
pling to (S), the rest coming from other QCD processes.

We have said that we do not need to calculate these
zero-momentum couplings explicitly; nevertheless, in Sec.
III we offer some simple examples of one-dressed-loop
graphs. The point here is that such graphs give very near-
ly the answer we know they must give, by invoking the
trace anomaly.

One may now ask whether the couplings so calculated
have much to do with predicting scalar and pseudoscalar
glueball widths, decay modes, branching ratios, and the
like. Unfortunately, several problems arise: (1) glueballs
may be readily produced in quarkonium decay, and the
coupling S and P to heavy quarks, even at zero momentum
transfer, requires substantial modification of the simple
dilaton picture given here for light quarks; (2) mass-shell
couplings may deviate substantially from the zero-
momentum couplings we calculate; (3) S and P are un-
mixed with quarks (by definition), unlike the physical par-
ticles studied by experimentalists. A separate paper wi11
be devoted to these issues.

The S coupling to hadrons at zero momentum is such
as to generate a large part (perhaps all, within our errors)
of any hadron's mass. It is natural, therefore, to ask
whether this mass generation might not be recognized, as
the phenomenological level, as part of a Higgs mecha-
nism. The phenomenological Lagrangian is then renor-
malizable. (Actually, this is a dubious virtue since such
Lagrangians are strongly coupled in the energy regime
where renormalizability makes a difference. ) It has been
known for a long time ' ' how to do this, and it turns out
that one is always left with at least a massive scalar and a
pseudoscalar flavor-singlet particle, as well as perhaps
other flavor-bearing massive scalars and pseudoscalars.
However, it is frustrating that, while the scalar is 0++,
the pseudoscalar is 0 and not 0 +. From the
viewpoint of QCD the 0 cannot be formed as a qq
state, but only as a qqqq or three-gluon state. If it is a
glueball it should be considerably heavier than the 0++,
and has no recognizable approximate symmetry connect-
ing it to this particle.

In connection with phenomenological hadron Lagrang-
ians, we point out that such a Lagrangian describing mas-
sive vectors (or pseudovectors) has soliton states which
resemble glueballs, and might in fact be the appropriate
realization of these at the level of observable hadrons.
These solitons are easily found from a phenomenological
gauge-invariant description of massive vectors without
Higgs particles, and are essentially strongly coupled ver-
sions of the 't Hooft —Polyakov monopole (with, however,
no long-range fields, since the gauge symmetry is com-
pletely broken). Because the coupling is strong, it is not

clear that the semiclassical attack of Ref. 22 is even ap-
proximately valid, but for what it is worth we report in
Sec. III that such an approach yields a 0++ mass of
around 1 GeV.

II. ZERO-MOMENTUM SUM RULES
AND THE EFFECTIVE ACTION

In this section we derive a set of sum rules for vacuum
expectation values of the zero-momentum field operators

dx G 6, fdx G G. The sum rules as derived are ap-
proximate, because we approximate P by its lowest-order
value bg —(b =11N, /48~ in quarkless N, -color QCD).
The infinite set of sum rules involving only G G gives
essentially the one-loop effective action as calculated in
perturbation theory, but the derivation does not invoke
perturbation theory, nor does it involve special choices of
zero-momentum field configurations. We consider the
sum rules as partial justification for using the one-loop ac-
tion outside the regime of large G.G where perturbation
theory is justified. The Landau ghost of perturbation
theory shows itself as a singularity in the effective action
Q(6 6) at the origin; this singularity is not present in the
effective actions based on any finite number of sum rules,
since these actions are polynomials. Moreover, all these
actions show nonperturbative extrema. We use the sim-
plest of them to construct an effective action for S.

We cannot derive sum rules for 6 6 (and P) the same
way, so we turn instead to the one-loop action as a func-
tion of G.G and G G. ' We speculate that nonperturba-
tive effects modify certain proper-time integrals so that
they converge at large proper times (i.e., in the infrared re-
gime), which allows us to compare the contributions of
(6 G) and (G 6) to the action. From this comparison
plus a specific operator relation between the set (S,P) and
the set ( G 6,G 6 ), we find an action for S and P.

A. Scalar sum rules

It is convenient to scale out the coupling constant by
defining the new fields

3 p
——gAp,

G„.=a„a '. ag „'+—e"W „"a '.=gG„'. .
(2.1)

Then the generating functional at zero external source is

Z =e'~= f (dA)exp fdxG 6
4g 2 (2.2)

(6 6)= —2g E„„.
Bg

Now E„„is a renormalization-group (RG) invariant of di-
mension 4, so

The numerical significance of 8' is that it measures the
vacuum energy:

i lnZ = W= —fdx E„„=——fdx —,( T"„), (2.3)

where ( T& ) is the stress-energy tensor of the vacuum.
The trace anomaly in the vacuum sector is derived as

follows. Apply g 8/Bg to ln Z and get



CaUPLINGS OF LOW-LYING GLUEBALLS TO LIGHT qUAR~S, . . . 1427

0= p, +P E„,= 4+P E„„,8 8 3
Bp Bg Bg

(2.5)

where p is the renormalization point. Combining
(2.1)—(2.5) yields

(6.6) .
8g

(2.6)

With (2.3), this yields one consequence of the trace anoma-
ly. ' It is the N =0 element of our sum rules. With the
approximation (1.2), the form we use is

g (6.6) . (2.7)
8

The rest of the sum rules are derived by repeatedly ap-
plying g 8/Bg to lnZ and using (2.5) with P= bg—To.
display the sum rules compactly, introduce the notation

8(x)= 6 6 .
8

(2.8)

For N & 1 the sum rules are

i fdx( . dx~( T8(xg ) 8(x~)8(0))„„„=(8), (2.9)

weil defined immediately leads to (8) &0, thus a non-
perturbative realization of QCD.

The derivation we give only works in the approximation
P= bg—. It can be "improved" by invoking the renor-
malization group and the trace anomaly, but we will not
concern ourselves with that here. There is little of
phenomenological import to be gained by such improve-
ment.

Let us construct the effective action which generates
these sum rules. First define W(J) by

r

e' ' '= fd(A)exp —
2 fdx G.G+ fdx G.G

4g2 8

(2.10)

The source J is independent of x since we are interested in
zero-momentum sum rules. The effective zero-
momentum field 0 is defined by

(2.11)

and the effective action is, as usual, the Legendre
transform of 8'.

where the subscript conn means that inly connected con-
tributions are saved. Note that the left-hand side (LHS) of
the N =1 sum rule is positive definite, and therefore so
must be the RHS. The requirement that the sum rules be

I (8)= W(J) —fdx J8, = —fdx J .ae=
Evidently,

(2.12)

%+1
W =i ~fdx dx, dx~( T8(x, ) . 8(x~)8(0) )„„„=fdx (8),BJ J=O

(2.13)

W= dx(8)e

and from (2.11) that

8=(8)e, J=ln(8(8) ') .

(2.14)

(2.15}

The differential equation (2.12) for I leads to

where the last line follows from (2.9). In what follows,
one should consider (8) to be a fixed number, actually in-
dependent of 8 or J; its true significance will be reinstated
at the end.

It follows from (2.13) that

J is large. The large-N derivatives of W(J) are sensitive
to the large-J behavior, so the large-X sum rules probe the
perturbative regime. What happens if we keep only a
small number of sum rules and construct an effective ac-
tion based only on these? It is easy to see that using only
the first N of the sum rules (2.9) is equivalent to keeping
only N+1 terms in the power-series expansion of I' in
(2.16} in the argument, 8(8) ' —1. For each N, the re-
sulting I [N] has a maximum at 8= (8), and the value of
the maximum is fdx (8), just as in (2.16). Next we will
construct an effective action for S based on saving only a
small number of sum rules.

r(8)= —fdx 8ln 0
e 8

(2.16) B. Effective action for S

where we impose the condition that I (0)=0, as in pertur-
bation theory. This I (8) is just the one-loop result, except
for imaginary contributions which are artifacts of pertur-
bation theory. It has a maximum at 8=(8) (J=0) of
value fdx(8); that is, the vacuum energy is —(8), as
required by the trace anomaly (2.7).

This maximum (minimum of the effective potential) is
not reliable if derived from perturbation theory, but there
is no reason to doubt its significance based on the sum
rules (2.9), which are not tied to perturbation theory. Per-
turbation theory is valid when 8» (8), or by (2.15) when

I (8)=I (8)—:fdx —,
' (8)+8——,

'
2 8

(2.17)

This action correctly yields the N =0 (trace-anomaly) sum
rule (2.6) as well as the N =1 sum rule (2.9). It has a
maximum at 8= (8), of value fdx (8), just as the full

We construct an effective zero-momentum action for S
which is renormalizable, that is, a polynomial of degree 4
at most. Begin by expanding the action (2.16) around its
maximum, saving only up to quadratic terms:
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expression (2.16) does. However, it does not vanish at the
origin, as (2.16) does.

Compare (2.17) to the standard scalar action for con-
stant fields

M M
I =I (S —0)+ fd S'+ S'

8(S)' 4
(2.18)

with the wrong sign for the mass term, so (S)&0. By
comparison with (2.17), an operator relation which makes
the two actions equal is

b 2

(2.19)
Ms 2Ms

This relation need only apply at zero momentum transfer,
but we will suppose that it holds for a range of small mo-
menta. The tree-level vacuum expectation value of (2.19)
has already been given in (1.3), ielding (S)=130 MeV.
The term I s(S =0) is equal to dx —,

' (8), and represents
contributions to the vacuum energy other than from the S
glueball.

To complete the action we add to (2.18) the usual kinet-
ic term

(2.20)

terms in the expansion (2.16) (i.e., the first four sum rules)
yields

S= 0
Mg(e)'

(2.25)

The S-matrix interpolating field S is the same as given in
(2.22), but (S) is smaller by a factor of 2. Likewise, the
contribution to the action from states other than S is —,

'

that in (2.17). As a final example, one might require that
S saturate the action [i.e., I s(S =0)=0] instead of sa-
turating the sum rules. An appropriate quadratic action is

r=r=—fdx(28 —8'(8) '), (2.26)

(2.24)

where y = (8) 'e. Clearly this effective action requires a
linear relation between S and 0, which is identified by re-
quiring 8 I /BS = —Mz fdx at the extremum; this leads
to

S'=S—(S) . (2.21)

We extract the physical propagating field with the defini-
tion

which has, as the other actions do, an extremum at
8= (8) of value fdx(e). Using this one finds by refer-
ence to (2.18)

For constructing the S matrix, an appropriate interpolat-
ing field for S' comes from expanding (2.19) and dropping
the S' term

20
Ms2

(2.27)

2[e(x)—( 8) ]
(S)M, '

=M, -'(e)-'"(8—(e) )+ (2.22)

(2.23)

It is S' which appears [through (2.22)] in the connected
sum rules (2.9). The %=1 sum rule involves the zero-
rnomentum S' propagator, and is by construction exactly
satisfied, just as the vacuum expectation value (1.3) exact-
ly yields (2.6) when it is used in the scalar action (2.18).

An effective action, to be useful, must be reasonably ac-
curate at the tree level. One finds, by calculating some
one-loop graphs, that these multiply corresponding tree-
level graphs by a factor (up to logarithms and numbers of
order unity)

which is —, the value in (2.19). The interpolating field S'
is W& times that given in (2.22), with the consequence that
the X= 1 sum rule (2.9) is only 50%%uo saturated by the S'
contribution.

These examples of alternative actions to the simplest
choice (2.17) lead us to expect ambiguities of order V 2 in
defining S' in terms of 8, about of the same order as the
error in using a tree-level action in the first place [see
(2.23)]. For the rest of this paper we stick to (2.17) be-
cause it can be usefully extended to incorporate terms in
G-G in a chirally symmetric way.

C. Extension to pseudoscalars

No useful technique similar to applying g 8/Bg to lnZ
is available for the pseudoscalar density, defined by

The numerical value follows from Mz —1 GeV, (S)=130
MeV which we adopt as nominal. We could, of course,
wish for a smaller expansion parameter, but that is not
under our control (except in the large-N, limit, where
(S)-X„Mq—1). Observe that to the extent that the
O(S' ) corrections to the operator relation (2.22) consti-
tute loop effects, they are of 0 (e).

There are other alternatives for forming an effective ac-
tion for S which is renormalizable. Saving the first four

b8(x)—:—g G.G(x) .
8

(2.28)

Drawing on the close relation between the scalar sum rules
(2.9) and the one-loop effective action (2.16), we exploit
the one-loop action for constant fields as a function of
G.G and G.G (Refs. 16 and 25) to derive sum rules for
two insertions of 0 and any number of insertions of 0, all
at zero momentum transfer.
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For covariantly constant fields, all components of the
field-strength tensor commute in color space. We can
therefore diagonalize all G~" in Lorentz indices simul-
taneously. The eigenvalues are of the form +iB', E'
where B' (magnetic eigenvalues) and E' (electric eigen-
values) are real color vectors. We introduce the matrices

E=gT,E', B=QTbE (2.29)

where the T, are group generators in the adjoint represen-
tation [normalized so that TrT, TI, =N, 5,b for the color
group SU(X, ) ]. The effective action is'6

6 6— Tr f [(2 sinh Es —sin Bs )+ 1]—1
4go 16m s sinBs sinhEs

(2.30)

The trace is over the color matrices, and the cutoff 5 at
small proper times is absorbed in the bare coupling con-
stant go. In general, I depends on other invariants besides
G.G and 6 6 (Ref. 25); we suppress such dependence by
taking E' parallel to B' in color space. Except for
imaginary parts, the usual one-loop result (2.16) is found
by setting E=0, 2 TrB =N, G G.

The action (2.30) is not expandable about the origin as a
power series in E, B; instead it has a logarithmic singulari-
ty characteristic of perturbation theory. For any fixed s,
the integ rand is expandable, and the singularity
arises from a large-s divergence when one attempts to in-
tegrate the expansion term by term. This divergence is the
usual infrared divergence associated with massless gluons,
that is, associated with field-strength correlations which
are long-range. In fact, there is every reason to believe
that field-strength correlations are short-range, which
amounts to saying that an essential nonperturbative modi-
fication of (2.30) is a cutoff of the large-s part of the in-
tegrand. Such a cutoff is furnished, for example, by a
gluon mass, "which multiplies the integrand by e' '. In
that case, the modified one-loop action can be expanded in
a power series, a necessary step if we are to compare the
present results with the truncated sum-rule actions such as
(2.17) or (2.24).

Therefore, let us speculate that it makes sense to modify
(2.30) with a large-s cutoff, and expand the integrand. For
N, =3 the term quadratic in G.G and G.G, which we
modify with a crude cutoff in proper time, is

S

16 b z fdxf dss(8+$8 )

I

Numerically, this is satisfied if s, -(0.5 GeV), a reason-
able value. Finally, our speculative modification of the
action (2.17) to include the lowest-order 8 term is

r(e, e)- fdx —,
' &8)+8— (8'+g'e')

2 8
(2.35)

The corresponding source functional for a scalar source Jz
coupled to 8, and pseudoscalar source coupled to 8, is
found to be

r

W(Js Js)= fdx(8) 1+Js+ Js + Jz (2.36)

in which the J~ terms will be recognized as the expansion
of (2.14) with J~Js.

We are now in a position to estimate the Witten sum
rule, by taking 8 W/BJ& at Js ——Jz ——0. It is easy to find
that

i fdx(T8(x)8(0)) =g (8) .

By expressing (2.37) in the form

(2.37)

Z f (dA )exp — f dy G.G i fdx 8(x)8(0)
4g 2

( 8), (2.38)

and repeatedly applying g 8/Bg to both sides one finds the
set of sum rules

i +' fdx dxl dx~T(8(x, ) 8(x~)8(x)8(0))„„„

+ 0 ~ ~

where, in analogy with (2.8), we define

bt9= —g GG
8

and the crucial parameter g is given by
121
127

(2.31)

(2.32)

(2.33)

(8), (2.39)
analogous to the sum rules (2.9) involving 8 only.

It would not be difficult to guess the general form of
(2.37); the point is that we have an (admittedly specula-
tive) approach to the parameter g, which suggests that this
is nearly unity. Let us consider earlier approaches8, 10 to
finding the RHS of (2.37). Arnowitt and Nath' give the
following value, based on canonical commutators:

i fdx ( Te(x)8(0) ) = ,
'

bg (8) . — (2.40)

1 127 1 p'~

2&8)» 16~'b' "0 (2.34)

We construct an effective action by identifying the 8
term in (2.31) with the 8 term in the quadratic action
(2.17), thus requiring the identification (for N, =3)

This cannot be quite correct, since the RHS is not
renormalization-group invariant, which happens because
the derivation of (2.40) uses canonical commutation rela-
tions for unrenormalized fields. More detailed study
shows that g should be replaced by b ' times a number
of order unity, as in (2.37). It is phenomenologically
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reasonable that g' in this equation should be nearly unity,
since the Mitten sum rule for the g' mass yields
(700—850)g MeV for this mass in the chiral limit (the
lower value is for two flavors, the higher value for three
flavors).

The next step, given the action (2.35), is to identify 8
with a suitable function of S, and P, and to write down a
renormalizable effective action for the glueballs. In doing
so we will take the opportunity to fit the results into a
chirally invariant scheme, although other options are pos-
sible.

(recall that in Minkowski space 6 G= —G 6). The in-
variant densities transform as

6 G —+G.G cos2p+ G G sin2p,

G G~G Gcos2P —6 Gsin2P .
(2.42)

Of course, the term linear in 8 in the action (2.35) is not
invariant under the above.

The following operator identification allows us to im-
plement the same chiral rotations on S and P; it general-
izes (2.19):

D. Effective action for 5 and I"
Speculations on approximate chiral invariance

q( ) 2( )
48(x)
Ms' (2.43)

Gz ~6„'„cosP+6 &@inP (2.41)

We are tempted to make these speculations because g is
so nearly unity, according to (2.33). If g were exactly one,
there is a chiral symmetry with a simple realization both
on the fundamental gluon fields 6„' and on the composite
fields S and P, and this chiral symmetry is related to
Uz(1) acting on quarks through the Peccei-Quinn mecha-
nism. ' It is explicitly broken by a mass term for the P,
and this breaking appears in a natural way.

Consider first the quadratic term in the action (2.35), in
the limit /= 1; this term is proportional to 8 +8 . In
Minkowski space, the latter is invariant under the duality
transformation

S~Scosp+P sinp,

P~P cosP —S sinP,
(2.44)

and the full effective action, including all terms of (2.35)
plus kinetic terms for S and P, is

2S(x)P (x)=
Ms'

(We write g explicitly, although for the moment it has the
value unity. ) Then the transformations (2.42) are
equivalent to

M M
I =I (S=P =0)+fdx —,8 SB"S+—,8 Pd"P (S +—P ) + (S P)—

)'F 2 p P 8(S)2 4
(2.45)

All but the last term are invariant under (2.44), while the
S P term, which is—just the transcription of the 8 term
in (2.35), is not. This is so even if g'+1. In writing (2.45)
we have used the tree-level formula (S) =4M' (8);
the correction from the P term in (2.43) is suppressed by
the smallness parameter e of (2.23).

It is easy to see from (2.45) the prediction Ms ——Mz,
while if the last term were S +P instead of S P, the—
P would be a massless Goldstone boson. Now it is certain-
ly not the case in nature that Ms ——Mz exactly; there is
probably a 40% discrepancy, and in any event no reason
to expect the existence of some symmetry which enforces
Ms ——Mz. Indeed there is no such symmetry; we have
simply enforced by fiat the requirement of simple
transformation properties for S and P under (2.41). It is,
of course, possible to modify the connection (2.43) be-
tween S,P and 0,0 so that the correct phenomenological
relation between Ms and Mz is obtained, and then chiral
symmetry is violated in the quartic couplings as well as in
the mass term. But the modest levels of accuracy we can
achieve in any case make it reasonable for us to persist
with the invented chir al-transformation laws
(2.41)—(2.44). The point really is that this chiral symme-
try makes it natural that Mz is -GeV, and not very
much smaller.

It is evident that the tree-level relation

Ms'(S)
8= P

2
(2.46)

plus Ms ——Mz leads to exact saturation of the 0 sum rule
(2.37). Let us consider further consequences of this rela-
tion which involves massless quarks. Peccei and Quinn'
have shown that the chiral quark transformation

l0~exp —a (2.47)

leads to a change in the QCD action for an infinitesimal
transformation 6u:

g Xg
5I = —5a fdx 6.6,

327T2
(2.48)

2

51 = fdxMz (S)P5p= fdx 6 G5p, (2.49)

where in the second equality we used (2.43). By compar-
ison to (2.48),

where %z is the number of massless quarks for which
(2.47) applies. On the other hand, an infinitesimal change
of S and P as in (2.44), measured by an angle 5p, leads to a
change in the effective action (2 45) of
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NF5a—5
8~ bg

(2.50)

which indicates that the chiral transformation (2.44) is an
element of the usual U~(1) associated with quarks. The
chiral charge associated with S,P is not simply related to
the chiral charge of quarks, for general XF.

It will certainly not be easy to check experimentally the
glueball couplings of the action (2.45), so at this point we
seem to be left only with the crude relation Ms =Mp as a
measurable consequence of our speculations. In Sec. III,
we will see that the parameter g' occurs in the couplings to
quarks and hadrons, where there are much better chances
for experimental verification.

III. COUPLINGS OF GLUEBALLS
TO GLUONS, LIGHT QUARKS, AND HADRONS

In this section we consider the couplings of S and P to
other strongly interacting states, when all momenta in-
volved are small and only light quarks are involved. Most
of the couplings are trivially deduced from what we have
already done, with the exception of P couplings to quarks
and hadrons. We illustrate some general principles by ex-
plicit calculation at the one-dressed-loop level. It has al-
ready been remarked that zero-momentum couplings are
not necessarily directly relevant to experiments.

B. Couplings to light quarks and hadrons

We wish to calculate the coefficients in the effective La-
grangian,

~.rr= —4(GsS + i1 5GpP)g+ (3.2)

for quarks with zero mass in the Lagrangian. If it is ac-
cepted that S is an operator proportional to T„", that is, S
acts like a dilaton, then in principle one need not calcu-
late anything to find the zero-momentum coupling of S to
on-shell quarks, since the matrix elements of T&~are com-
pletely determined in this configuration. The concept of
an on-shell quark with a specific mass is at best heuristi-
cally useful, but we will pursue it.

If (S) is not zero, the quarks pick up an effective mass
of order Gs(S), plus contributions from other processes
not mediated by S. Let us caH this constituent mass M~.
The matrix element of T„"at zero momentum transfer

A. Couplings of S and P to gluons

We will write an effective Lagrangian for the purpose
of generating Feynman rules; this Lagrangian is not to be
confused with the effective Lagrangians discussed in Sec.
II. It follows directly from the operator relations (2.43)
that the coupling of the propagating field S'=S—(S)
and of P to two gluons is described by (in this approxima-
tion Ms ——Ma)

(
)S'G G+

( )PG G. (3.1)

In view of the trace anomaly (1.5), the first term of this is
the same as —(2(S)) 'S'Tz (in the absence of massive
quarks).

FIG. I. Coupling of Sor P to quarks via t~o gluons.

Mg
2(S) (3.3)

Numerically Gs —1, for usually quoted values of M~ and
(S) as given in (1.3).

It is worthwhile looking for some simple approximation
in which a relation like (3.3) can be directly calculated, if
only to build confidence in the necessary approximations.
Consider the graph of Fig. 1, showing the coupling of S'
to two quarks. We will calculate this graph at k =0 using
free vertices and a free massive quark propagator, but
with massive gluon "propagators" of the type advocated
in Ref. 11; this modification of the propagator removes an
infrared divergence associated with the limit M~ ——0,
which we will presently pursue. The modified propagator
1s

d„„(q)=(—g&„+ gauge terms)d(q )(bg )

—q +4MG
A

d '(q )=(q —MG )ln

(3.4)

(3.5)

where A is the renormalization-group mass. This propa-
gator is a good approximation to the solution of a certain
nonlinear equation" in which P(g) has been set equal to
—bg .3

Now consider the limit M~ &&MG, to simplify the pre-
sentation. M~ can be neglected everywhere except in the
numerator of the quark propagator, and likewise P can be
put to zero everywhere except in that numerator, in order
to go to the quark mass sheH. A straightforward calcula-
tion then gives

with on-shell quarks is just M~, so from the operator rela-
tion between S' and T&~[see (1.5) and (2.43)] we immedi-

ately deduce
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3i C~MgGs= fd qd (q).
b S (2m)

(3.6)

Here C+ is the quark Casimir eigenvalue. As needed, Gs
is indeed proportional to Mg(S) ', and consistency with
(3.3) requires the condition

6i C~1= fd qd (q) .
(2~) b

(3.7)

Remarkably, this contains no reference to ihe quarks, ex-
cept through CF. The RHS of (3.7) is about —,, which we
consider an adequate check of consistency given the ap-
proximations made. An infinity of higher-order graphs
also contribute, an example of which is Fig. 2. It is im-
portant to note that a consistency condition of the same
general type as (3.7) also occurs" in studying the non-
linear "propagator" equation whose solution is (approxi-
mately) (3.4) and (3.5); the condition determines the gluon
mass MG. Generating a gluon mass is the same as giving
S a nonzero expectation value, and now we see that gen-
erating a quark mass is likewise the same as (S)&0 and
involves the same sort of consistency condition.

Next consider the P coupling, using the approximation
of Fig. 1. The numerator of this graph needs some com-
ment; it is

4''" ~q„(q+k)„y (p —q+Mg)yp . (3.8)

Evidently this is linear in the quark momentum transfer
k, which must not be set to zero to begin with. However,
we can set k =p =0 in other factors of the graph and re-

place the terms quadratic in q, i.e., —q&q, by ——,'q y„.
We will show that the Mg term in (3.8) is of higher order
in k and p when sandwiched between on-shell spinors, so
ignore it for now. Then (3.8) becomes 6iq y—5k, and
sandwiched between spinors yields

FIG. 2. An example of other coupling processes of glueballs
to quarks.

—u(p+k)6iq y51g'u(p)=12iq Mguy5u . (3.9)

This is to be compared to the numerator for the S glue-
ball, which is 12q Mguu. The term linear in Mg in (3.8)
is proportional to M~q k&y5o.",whose matrix elements
between spinors are easily shown to be 0 (Mg k, Mgk ).

It is now clear that the P graph is the same as the S
graph, except that uu is replaced by i guy5u, and so

G~ =CGs (3.10)

for light quarks and zero momentum. For g= 1, the com-
bination S+igy5P transforms under (2.44) with a phasee; if P were equal to the quark angle a in (2.46), the

—iy5P

effective Lagrangian (3.2) would be chirally invariant.
Combining (3.10) with (3.3) leads to a sort of Goldberger-
Treiman relation

g'Mg

2(S) ' (3.11)

but this is not fully justified, since we derived (3.10) only
under the approximation of Fig. 1 which does not quite
yield (3.3).

Let us briefly discuss the couplings of S,P to hadrons
made of light quarks. For S, these follow directly from
the proportionality of the glueball operator to T„", and at
zero momentum generalize (3.3) to

M
sBB 2(S )

smm 2(S )

(3.12)

(3.13)

for baryons B and mesons m of masses Mz, M which are
made of light quarks. If taken literally these have in-
teresting phenomenological consequences (e.g., S~mar.
very weakly), but mixing of S with qq states and extrapo-
lation to the S mass shell may lead to large corrections.
Within the approximation of Fig. 1, one also has
G~~~ =gGs~~, and appropriate chiral relations between S
and P couplings for mesons. Such chiral relations may be
badly broken.

Because (S) is not large, all these couplings are rather
strong, which is not the naive expectation from the large-
%, limit. ' In this limit, couplings of glueballs to had-
rons are O(N, '), and indeed that is the case, since from
(1.3) and (G.G) -N, it follows that (S)-N, . Howev-
er, the constant of proportionality is crucial and our work
shows that N, =3 is not large enough for substantial
suppression, just as M (g') is large even though of order

In general, then, one does not expect unusually
small widths for glueballs, and to depend on this for an
experimental signature may be misleading.

We have already noted in the Introduction that these
couplings of S and P to hadrons cannot be the remnants of
a Higgs coupling, because the P has the wrong charge-
conjugation eigenvalue. This is easy to see, by invoking
the old arguments that requiring high-energy tree unitar-
ity on the S matrix automatically leads to Higgs couplings
which generate masses for spin-1 particles. Consider, for
example, a chiral SU(Nf ) X SU(Nf ) hadron symmetry
(Nf =number of flavors) which has massless vector
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mesons V& and axial-vector mesons A&, both with CP =1.
The Higgs couplings which make these massive are also
necessary to make the tree-level S matrix well behaved at
high energies. In particular, for the process VV~AH a
pseudoscalar flavor singlet is necessary, which couples to
V&A" and thus has C = —1. So we cannot use unitarity
to argue in favor of extra flavor singlets like S and P in
dealing with hadronic phenomenology.

However, it may be that particles of these quantum
numbers appear as solitons of phenomenological hadron
Lagrangians of the usual type, with vector-meson mass
terms not associated with the Higgs mechanism. We can
illustrate this for an S-type soliton using a gauge-invariant
mass term for p mesons, constructed with the aid of auxi-
liary pure-gauge fields. It has been shown that this leads
to a soliton of the 't Hooft —Polyakov variety, except that
there are no long-range (monopole) fields because all iso-
spin components of the p meson are massive. The mass of
the soliton is, in the semiclassical approximation,

r

M„~——3.05m&
4m

gp
(3.14)

With m& —750 MeV, g& /4m=2, we find M»~ —1200
MeV. Of course, the semiclassical approximation is not to
be trusted for such a large coupling constant, nor is it
clear what relation this phenomenological soliton bears (if
it exists) to states constructed directly from the underlying
QCD Lagrangian.

Note added: After this work was finished, Claude Ber-
nard brought our attention to the work of Bhanot, Rabi-
novici, Seiberg, and Woit, who have evaluated the
dependence of the vacuum energy on the vacuum angle B
for the color group SU(2), using lattice methods. These
authors, working at a lattice P of 2.1 (or lattice spacing
a ' =530 MeV), find

a'E„.,(6) =(6.6+0.4) && 10 a
BB 8 o

=5.2 &C 10 CxeV

We can evaluate the dependence of E„, on B by using
I = —fd x E„„, and inducing a finite 6 via the
transformation (2.42) or (2.44), with P=6(8nbg) ' ac-.
cording to (2.50). In a parity-conserving theory, I is to be
evaluated at 8=(8) and 8=0. Let us, as in the main
text, set g'=1. Then (2.35) and (2.42) yield

The close agreement is fortuitous, and perhaps should not
be taken too seriously because of the difference in N, .
However, we hope that future lattice work will be done on
the B dependence of E„,for N, =3.

Note added in proof. Shifman has informed us that he
and his collaborators have also derived the scalar sum
rules in our Eq. (2.9) and discussed some of the applica-
tions which we have made in a way similar, but not identi-
cal, to ours. These authors have not discussed the ex-
tension to pseudoscalars and the ensuing broken chiral
symmetry.
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APPENDIX

We give the relations between coupling constants and
wave-function integrals for the Schrodinger-equation ap-
proach to S and P glueballs.

Let the effective couplings between glueballs and gluons
be described by the Lagrangian

~=ysSG G+yIPG'G . (Al)

= —', (N, —1)3 2 k 16ys MG

s —M, '—nV, r, ' (A2)

where k is the c.m. momentum and s is the Mandelstam
energy variable. In the 0 + channel,

128y M
t(0 +)=(N.' —1)

8~Mp s —M —iM I (A3)

For a nonrelativistic S-wave bound state, the pole term in
t can be written in terms of integrals over the wave func-
tion:

After factoring out appropriate projection operators and
spherical harmonics, the nonrelativistic partial-wave am-
plitude in the 0++ two-gluon channel is

t(0++)=e' sin5

E„,(6)=— (G G)cosb B
8 4m b

kMG

4m Eg —E ' (A4)

~ Evac

BB

'2
1 g (G.G)

o 2b g~

=5.4X 10 GeV

In accordance with general large-N, arguments, this is of
the form N, (6/N, ). This implies that the coefficient of
6 is independent of N, (for large N„at least), and sug-
gests the possibility of comparing the SU(2)-lattice value
with our phenomenological SU(3) value. We find, for
N, =3,

where s =(2M&+E), sz ——(2Mo+Ez) in terms of the
binding energy Es (ss ——Ms or Mp ), and the integral I is

I= fd re'" 'V(r)gs(r)
k 2 MgE

(A5)

Here V(r) is the binding potential and gs(r) the wave
function, normalized so fd r

~ @s ~

=1. For a
bound state of the usual sort, Ez &0 and k is imaginary,
but this is not the case for glueballs which are more mas-
sive than their constituents.

According to (3.1),
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(A6)

I Mg
7s (A7)

Here we simply take bg =—,, to get numerical values.
This corresponds to a, -0.5 for the energy scales of in-
terest ( —1 CxeV).

Combining (A2) and (A4) yields (X, =3)

which is to be compared to the value in (A6). For the
nonrelativistic wave functions of Ref. 5, we have calculat-
ed I and find values of yz roughly twice or more as large
as that given in (A6), and similarly for yp. There are ma-
jor uncertainties in using (A7) having to do with using a
nonrelativistic approximation, and so instead of proceed-
ing further along these lines, which would be correct in
principle for a nonrelativistic bound state, we have adopt-
ed another approach in the main body of this paper. This
leads to the quoted values in (A6).
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