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Quark models and the structure of the 6(1232) resonance
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We investigate the structure of the 6(1232) resonance within a model which contains pions (m) in-
teracting with nucleons (N) and 6's. With a mNN (or DNA) vertex form factor obtained from quark
models, we demonstrate explicitly that the perturbation series of m-N scattering converges rapidly.
Thus a crossing-symmetric solution to the m.-N scattering problem can be obtained reliably by per-
turbation expansion. We expand the m-N scattering series to fourth order in renormalized coupling
constants, and then the (3,3) phase shift is calculated using both T and E matrices. The 5 contribu-
tion is found to be dominant in generating the observed resonance. Our calculation and results are
compared with those of the cloudy bag model.

I. INTRODUCTION

The MIT bag model' and the constituent quark model
(CQM) are both quite successful in describing hadronic
static properties. A major extension of the original bag
model has been the introduction of the pion (vr), as a fun-
damental field, into the bag-model Lagrangian. The
inclusion of the pion field is required to restore chiral
symmetry, and so the resulting model is often called the
chiral bag model. Recently pionic effects have also been
incorporated into the CQM. Here the inclusion of the
pion field is not guided by any symmetry principle, but is
simply necessitated by the fact that pions interact with
baryons. In both cases, the three-quark core of a baryon is
considered as a static, extended source of pions. It is as-
surned that pointlike pions are coupled directly to u and d
quarks in the core; from this one can then deduce the ef-
fective pion-baryon interaction Hamiltonian. Now if the
pion field is second quantized, the result is an effective
field theory of m-baryon interactions. This model differs
from the old static pion-nucleon (N) model in two
respects. Firstly, the degree of freedom in the baryon sec-
tor has been extended to include excited states of the nu-
cleon (b, and N ) explicitly. Secondly, the m.NN vertex
form factor is no longer arbitrary; it can be obtained from
the quark wave function which is in turn determined by
the static properties of the nucleon.

The notion of coupling pions directly to quarks is taken
more seriously by some physicists, who tend to regard the
m.-quark coupling as fundamental. Then, to be consistent,

FIG. 1. Microscopic view of pionic contribution to baryon
self-energy. The solid lines represent quarks and the dashed line
represents a pion.

one has to sum over all possible virtual quark states in a m

loop such as the one shown in Fig. 1. This, however, leads
to divergent baryon self-energies in the second-quantized
version of the chiral bag model —the cloudy bag model
(CBM).' We shall not address ourselves to this problem
here, but shall instead regard the introduction of direct +-
quark coupling as merely a convenient means of deriving
an effective theory of m-baryon interactions.

We distinguish three different descriptions of the A. A
bare b, or a three-quark b, is defined as a purely three-
quark bound state. A dressed b consists of a three-quark
core surrounded by a pion cloud. Finally, a physical 6 or
b, (1232) resonance is what one experimentally observes in
laboratories. The purpose of this paper is to investigate
the structure of the b.(1232) resonance within the model
sketched above. Qn the level of an effective field theory,
the underlying hadronic model (CBM or CQM) turns out
to be irrelevant for our purpose. The important thing is
that there exists a three-quark 5 state, which is predicted
by all quark models. Moreover, as will be shown in Sec.
II, form factors determined by hadronic static properties
in the CQM and CBM turn out to be similar.

The formation of the 6(1232) resonance is the most
prominent feature in intermediate-energy m-N scattering.
The b.(1232) also plays an important role in many other
nuclear reactions at intermediate energies. These include
~-nucleus scattering, (y, ~), (m,p), and (y,p) reactions, etc.
In all these reactions the b, (1232) formation takes place
within a nucleus. In a nuclear medium the properties of
the b.(1232) are expected to be modified; this medium ef-
fect has been the subject of many discussions in recent
years. " It is clear that a knowledge of the different com-
ponents of the b, (1232), apart from interesting in its own
right, is also necessary for a deeper understanding of nu-
clear medium effects on its free-space properties. Further-
more, knowing the structure of the b,(1232) is also impor-
tant in NA coupled-channel calculations. An attempt is
being made to incorporate the bare 6 in a mN% three-body
calculation. '

The m-baryon (N and b, ) interaction Hamiltonian is
given and discussed in Sec. II. The ~-% scattering ampli-
tude is calculated perturbatively in Sec. III, where com-
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parison is also made with previous works on describing
the 5(1232) in the quark model. Results are presented
and discussed in Sec. IV. Finally, summary and con-
clusions are given in Sec. V.

II. INTERACTION HAMILTONIAN

In the subsequent calculation, we shall include only N
and 6 intermediate states. Contributions from higher ex-
cited states are expected to be small due to larger energy

I

denominators. Also, the srNN' coupling is suppressed for
low-momentum pions because the quark wave functions
of N and N are orthogonal.

In quark models, coupling pions directly to quarks re-
sults in the following effective sr-(N, E) interaction Hamil-
tonian:

d k
HI ——

3~2 [A ~NN(k)+A ~Ng(k)+A „gg(k)]
(2sr) i

with

~ NN(k)=pl 4~
2coi

. 1/2 (0)

u (k)N w~o" kNa~(k)+H. c. ,m
(2)

1/2 (0)

Ng(k)=pi u(k)b, T S kNa (k)~H. c. ,
26)p m ~

(3)

~ gg(k)=pi
4m.

2cok

. 1/2 (0)

u(k)b, M W. kba (k)+H. c. ,
Pl~

(4)

where a ( k ) is the annihilation operator for a pion of
1 3charge a and momentum k. S(T) is the —,-to- —, spin (iso-

' 3spin) transition operator, and P'(u ) is the —, spin (iso-
spin) operator. f' 's are the bare coupling constants. If
we adopt the usual convention that'

and

then

(0)» 1/2 (0) (o) 4 (0)fmNE=( 2s ) fnNN ~ fnhh= sfnNN

from the zeroth-order quark spin-isospin wave functions
of the baryon cores. It is often assumed that the renor-
malized coupling constants (f's) also obey the same rela-
tions (6). ' However, when one splits the N and
masses, relations (6) may no longer hold. Furthermore,
coupling a pion to a bound system of quarks would inevit-
ably involve the notion of off-shell bound states (or off-
shell bags), of which we do not have any knowledge. The
issue is therefore more complicated than one would naive-
ly think. In view of the above remarks, we shall regard
the renormalized coupling constants f N~ and f z~ as
free par'ameters to be fixed by experimental data. The re-
normalized srNN coupling f NN is fixed by experiment at

(f~NN) =0.08 .

(8)

With pointlike pions, the cutoff parameter n is related to
the root mean square radius of the baryon core by

In Eqs. (2)—(4), u (k) is the vertex form factor. We have
assumed u (k) to be identical for the rrNN, srNb„and rrb, b.
vertices. In the CQM with a harmonic-oscillator inter-
quark potential u (k) is given by

u (k) =e k'wa'

a=1.2 fm

In the CBM,6'7

u (k) =3j&(kR)/kR,

(10)

where R is the bag radius. Equation (11) can be well ap-
proximated by the Gaussian form of Eq. (8) with'

~—2
O 636R2 (12)

In the CBM calculation R was varied, together with f NN
and the dressed b. mass co~ ( =M& —MN ), in order to ob-
tain a fit to the total cross section in the (3,3) channel. It
turned out that R =0.82 fm and co~=280 MeV. Howev-
er, this solution is not unique. As shown in Ref. 6, anoth-
er possible solution is R =0.22 fm and co~= ao (equivalent
to f N~ ——0). We feel that R should not be considered as a
free parameter in a scattering calculation. In order to
have a stable bag, and avoid multiplicity of solutions, R
should be determined separately by minimizing the total
bag energy, including the pion-cloud contribution, with
respect to the bag radius:

BE(r)
9r (13)

r=R
In a semiclassical approach, ' the baryon mass spectrum
and magnetic moments have been studied with pionic ef-
fects included in the bag model. The mass study also took
into account the center-of-mass correction and the gluon
magnetic interaction energy. The % and 6 bag radii were
determined to be around 1 fm. Nucleon magnetic mo-
ments and charge radii have also been studied in the
CBM. ' ' The best fit to experimental values corresponds
also to R = 1 fm. Now substituting R = 1 fm into Eq. (12)

—1 =rr s ~

A consistent fit to baryon masses, magnetic moments, and
nucleon charge radii gives '
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gives a=1.25 fm ', which is very close to that obtained
in the CQM [Eq. (10)]. So there seems to be an approxi-
mate agreement on the range of the pion vertex form fac-
tor in the CQM and the bag model. We shall use Eq. (8)
with a given by Eq. (10) in our calculation. We will not
argue about the exact value of a. As long as +=1.2 fm
or, equivalently, R =1 fm, our calculation and conclusions
will not be affected in any essential way.

III. THE 6(1232) RESONANCE

8 8 8

i

I

I

I

B(E) ~ B~B (E )

(a)
FIG. 3. (a) Pionic contribution to baryon self-energy. (b) m-

baryon vertex correction. The 8's stand for 1V or 6 and E's for
energies.

T33(k', k) = —
3

e sin533%33(k', k),4m 3

2cok
(14)

where %33 is the (3,3)-channel projection operator defined
by

For a long time, since the 1950's, mainly due to the
work of Chew and Low, ' the 5(1232) resonance has been
considered as a resonant state of a nucleon and pions. A
more modern view is that it possesses, apart from a vr N-
part, a three-quark 6 part as well. ' This three-quark 6
state appears naturally in the quark model of hadrons. In
this work we take the latter point of view and include the
6 explicitly in our calculation. With the ~ vertex form
factor given in Sec. II, one can show that the perturbation
series of the n-N scattering amplitude converges very fast.
Consequently, a crossing-symmetric solution to the (3,3)-
channel m-S scattering problem can be obtained by pertur-
bation expansion to finite order.

We first expand the m Nscatteri-ng T matrix to fourth
order in renormalized coupling constants; it is diagram-
matically shown in Fig. 2. To be consistent, second-order
corrections to propagators and vertices should also be in-
cluded in evaluating the second-order scattering diagrams.
These corrections are shown in Fig. 3. Figure 3(a) renor-
malizes baryon masses, and Fig. 3(b) renormalizes cou-
pling constants. The renormalization procedure can be
carried out in a standard way, and is shown explicitly in
Appendix A. The evaluation of diagrams shown in Fig. 2
involves straightforward manipulation of spin and isospin
operators. The resulting expressions are given in Appen-
dix B. The on-energy-shell T matrix is related to the
phase shift 533 by the unitarity condition, which gives'

G(E)= E —Kp+ie
(16)

that appears in the T-matrix approach by its real part, i.e.,

with P3/2 and Q3/p given in Appendix B. A T-matrix
solution to the m-N scattering amplitude has also been ob-
tained in the CBM. ' In that calculation the Low equa-
tion was solved by including only one-pion —one-nucleon
intermediate states, and neglecting crossing symmetry.
This solution is equivalent to iterating Figs. 2(a) and 2(b)
combined to infinite order. A fit to the experimental
(3,3)-channel total cross section was then obtained by
varying f &&, co~, and R. Our calculation differs from it
in several respects Fir.stly, we fix f ~~ at the experimen-
tal value [Eq. (7)]. In Ref. 7, the value (f &&) =0.064
was used. This is not satisfactory since Eq. (7) is well es-
tablished. Secondly, we use a vertex form factor which is
fixed by the static properties of the nucleon in the quark
model (see the discussion on this point in Sec. II). Third-
ly, our solution is crossing symmetric and is obtained
through a consistent perturbation expansion of the scatter-
ing series; specifically, we include all diagrams up to
fourth order. In this approach, the nNN and ONE vertex
corrections can be taken into account in a straightforward
way. Vertex corrections have not been included correctly
in Ref. 7; e.g., Eq. (3.6) of that paper holds only for the
m Ncrossed Born te-rm [Fig. 2(a)].

A different but convenient approach is to calculate the
reactance matrix (K or R), for which one replaces the
Green's function

%33(k k) —Ps/2(k k)Q3/2 (k ', k ) (15) G(E)~Gg(E)= P
E —Kp

(17)

N N N N Q N

(b)

N Q N

where P indicates that the Cauchy principal value is taken
whenever the energy denominator vanishes. And again,
by unitarity, the on-energy-shell K matrix can be related
to the phase shift:

4m 3
%33(k', k) = —

3 tan533%33(k', k) ~

2cok

/ x
N B B B N N B B B N

(d) (e)
FIG. 2. Pion-nucleon scattering amplitude to fourth order.

The B's stand for X or A.

The K-matrix approach has been used in many past calcu-
lations of ~ Nscattering. For e-xample, in the 1950's Blair
and Chew used it to calculate m.-N phase shifts by ex-
panding the scattering amplitude to fourth order in f ~~
in the old static m-X model. More recently, several
groups' ' ' have also used the K-matrix approach in cal-
culating m.-% phase shifts. They have, however, included
only the lowest-order diagrams. Moreover, convergence
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f ~q (&0). That explains why the Chew-Low contribu-
tion does not affect E~. Furthermore, the result E~ =co~
is also independent of the order of the perturbation expan-
sion, because, by definition, Eq. (A3) is always true. In
this sense, the result E~ ——co& is exact.

As mentioned earlier, the fact that the T-matrix and the
K-matrix results are similar already implies that trunca-
tion of the scattering series at fourth order is a good ap-
proximation. Nevertheless, it is worthwhile to check ex-
plicitly the convergence of the perturbation series. Figure
2(a) plus iterations with itself is usually called the "Chew-
I.ow series. " It has been argued that all terms in the series
are of the same order of magnitude. ' However, with
the 7rNN form factor we use, the ratio of the first three
terms of the series is actually ( 1:0.14:0.02 (real part), in-
dicating fast convergence.

APPENDIX A

1. Mass renormalization

If we denote the self-energy correction, shown in Fig.
3(a), by X(E), then the inverse of the modified baryon
propagator is given by

G'(E) '=E —M( ' —X(E), (A 1)

The renormalization procedure for a static theory has
been given before in other works. ' ' We include it here
for completeness and clarity. In the following, ie and P
(Cauchy principal value) will be understood wherever
needed.

V. SUMMARY AND CONCLUSIONS

where M' ' is the bare mass. Next we expand X(E) in a
Taylor series around M, the renormalized mass:

In quark models, a physical nucleon consists of a
three-quark core surrounded by a pion cloud. The m-N in-
teraction form factor depends on the size of the core. It is
interesting to note that two very different quark models
(bag model and CQM) give similar form factors. Using
the quark-model form factor, we have shown that the per-
turbation series of vr Nscatteri-ng converges very fast.
Therefore, a crossing-symmetric m-N scattering amplitude
can be obtained in a straightforward manner by perturba-
tion expansion. The (3,3) phase shift is calculated by per-
turbation expansion to fourth order in renormalized cou-
pling constants. We find that the three-quark 6 state is
very important in producing the physically observed
b, (1232) resonance. In fact the general features of the ob-
served resonance (mass and width) are determined mainly
by the b, contribution. The contribution from the conven-
tional Chew-Low series is small but not negligibl, i.e., its
inclusion is necessary to fit the data. It is pointed out that
the inclusion of the nucleon recoil energy is important in
obtaining a reliable fit to the data. The general feature of
our solution is similar to that of the CBM. However,
the values of the parameters obtained in this work are
quite different from those of Ref. 7. The differences can
be attributed to the fact that in Ref. 7 R is treated as a
free parameter, instead of fixing it by the baryon static
properties (see Sec. II); also nucleon-recoil energies have
been neglected. In addition, the mNN and DNA vertex
corrections have not been included properly in Ref. 7 (see
Sec. III), and the CBM solution is not crossing symmetric.
Finally, it is shown that, in the K-matrix approach, the
observed resonance energy E~ is equal to the dressed 6
mass co~,' this result is independent of the order of the per-
turbation expansion.
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X(E)=ReX(M) +ReX'(M)(E —M) +X„(E), (A2)

X„(M)=X,'(M) =0 . (A3)

Substituting Eq. (A2) into Eq. (Al) and rearranging terms,
we get

G'(E) =Z2G(E), (A4)

where the renormalization constant Z2 is defined by

Z2 ——[1—ReX'(M)] (A5)

G (E) is the renormalized propagator,

G(E) '=E —M —Z2X„(E),

and we have made the identification

M=M' '+ReX(M) .

(A6)

(A7)

2. Vertex renormalization

Let the vertex correction, shown in Fig. 3(b), be
I (E,E'). The modified vertex function is then given by

V(E,E')=(Z Z' )' f' 'u(k)[1+1(E,E')], (A8)

where the factor (ZzZq )' comes from the propagator re-
normalization of the external baryon lines. Rearranging
terms, we get

where Re denotes the real part, and X,(E) is the
remainder. Note that in the K-matrix formulation, X(E)
is real, and thus from Eq. (A2)

It is a pleasure to thank Dr. A. W. Thomas and Dr. A.
S. Rinat for helpful discussions. This research is support-
ed in part by the Natural Sciences and Engineering
Research Council of Canada.

V(E,E') =fu (k)U (E,E'), (A9)

where we have identified the renormalized coupling con-
stant f as
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f(0) .(ZzZz ) (0)

1

the renormalization constant Z& is defined by

z, =[1+r(0,0)]-',
and

(A 10)

(Al 1)

P3/2(k ~k) 5kk' 3 rk'rk ~

g 1

P)/z(k', k) =
3 rk rk

Q3/z( k ', k ) = k '.k ——, o k 'c7.k

Q ) /z ( k ', k )= 3 (7 ' k ' 0' k

(81)

u (E,E') =Z, [1+1(E,E')] (A12)

APPENDIX B

In this appendix, we write down explicit expressions for
the scattering diagrams shown in Fig. 2. First, we define
some notations to be used later:

Lowest-order expressions for X(E) and I (E,E') can be
found in Refs. 7 and 17. p(&») =(&P3/z+ bP(/z )(&Q3/z+ bQ) /z )

Fz(k) = u (k)
pyz 2cok

Fg(k) = u (k)
3kB ~ 2COk

(83)

where the P's (Q's) are the usual isospin (angular momen-
tum) projection operators. (The arguments will be omitted
in later use. ) Also,

I(E„Ez,E, ) = f dp p'[~, (E ~q E, )(E—~,——E, )(—E ~, —E,)]— (84)

1. Second-order amplitudes

For Fig. 2(a), we have

Az(N) =Fz(k)(f~~)v) u (E)v,E~ —cok)[E~ cok —Zz 'X'„—'(E)v cok)—] 'p(2, —1) .

For Fig. 2(b), we have

Az(b, )=Fz(k)(f~~a) u (E~,E)[E—cog —Zz 'X„' '(E)] 'p(1, 0),

(85)

(86)

where Ez is the initial nucleon kinetic energy in the ~ Ncenter-of-m-ass frame, such that E=E~+cok. See Eq. (20) and
the discussion preceding it. The crossed 5 amplitude [Fig. 2(c)] can be obtained from Az(h) by crossing the external
plons~ 1.e.,

k~ —k' (isospin indices),

and (87)

(cok, k)~( —cok, —k ') .

Note that (uk's in Fz and F4 are from pion wave-function normalizations, and therefore should not be affected by Eqs.
(87).

2. Fourth-order amplitudes

For Fig. 2(d), we have

A4(N, N, N) =A4(B =N, B'=N, B"=N)=Fq(k)(f~&z)"I(cok, o, cok)p(4, 1),
A4(b, NN) =A(NN, b ) =F~(k)(f~)vtv) (f~Na) I(cok+(ua, o, mk )p( 3, ——, ),
A4(N, b,N)=F4(k)(fgpTg) (f~xa) I(mk, ua, mk)p( —,', —', ),
A4(b, ,b, ,N)=A (N, b„b, ) =F4(k)f~~~(f~~a) f~aaI(cok+cg)a, (ua, (uk)p( ——', , 9 ),
A4(b, ,N, b, ) =F4(k)(f~~/) ) I(cok+coa, o,cok+~a)p( —,', —', ),
Ag(&, &,&)=F4(k)(f~)va)'(f~ga)'I(~k+~a, ~a,~k+~a)p( —,, —„).

(88)

(89)

(810)

(811)

(812)

(813)

The crossed fourth-order amplitudes [Fig. 2(e)] can again be obtained easily from the corresponding A4 s by crossing
symmetry [see Eq. (87)].
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