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The pionic interaction of baryon (qqq) states is formulated in a Bethe-Salpeter (BS) model of har-
monic confinement, characterized by a universal spring constant (co =0.15 GeV) and the quark mass

(m~=0.28 GeV) concerned, on lines similar to those developed recently for pionic couplings of
meson (qq ) states, wherein the pionic degree of freedom is governed by the same BS dynamics as for
other qq states, and not introduced by hand as an independent entity. The algebraic structures of
the matrix elements for NXm and ANm. couplings are strongly reminiscent of the quark-pair-
creation model, as found recently for meson couplings (pmm. , cope). A Lorentz-invariant adaptation

of the resulting pion-baryon form factors, on lines identical to those employed successfully to the
meson couplings, leads to the parameter-free predictions (4m. ) '( G~~ ) = 13.02 and

I (4~Nm) = 104.6 MeV, both within 10% of experiment. It is stressed that these pionic results are
consistent with the one-pion-exchange-potential structure.

The Nambu-Goldstone nature of the pion makes it
readily describable by the PCAC (partial conservation of
axial-vector current) language, as if it were an elementary
particle, but only at the cost of its more natural entitle-
ment to a composite (qq) description requiring a more
general form of dynamics applicable to all qq states. Un-
fortunately dynamical models, while predicting reasonable
masses for most qq states, ' do not seem to be easily amen-
able to the pion's properties, so much so that there exists a
strong tendency in the literature to make an exception '

for the pion to the qq rule. Such a point of view, which at
best represents an effective description, is perfectly legiti-
mate for the phenomenological exploration of pionic de-
grees of freedom in nuclei within the general philosophy
of the bag picture, but is less defensible for a basic
theoretical understanding of hadron structures themselves.
This is how one would be inclined to view certain at-
tempts to put pionic degrees of freedom by hand within a
bag dynamics which tends to obscure the predictive value
of the basic model, since a reasonably adequate theory of
confinement should, in the first instance, aim at reconcil-
ing such apparently conflicting properties (PCAC vs com-
posite) of pseudoscalar mes ons within an integrated
framework, instead of starting by making exceptions for
certain (special) particles.

The purpose of this paper is to draw attention to a dif-
ferent model of confinement, which not only explains the
basic properties of the pion in company with those of oth-
er hadrons within its dynamical framework, ' but also
provides the correct strengths for pion couplings to the
electromagnetic (EM) field, ' as well as to other mesons.
First, the model which is characterized by two basic con-
stants, 6 a universal spring constant (co=0. 15 GeV) and
the concerned (nonstrange) quark mass (mz ——0.28 GeV),
(i) accounts simultaneously for the small pion mass (m )

and the much larger p mass (mz) through a J S term '

and (ii) predicts an almost correct PCAC strength f
through the simple formula
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(P 2/ )3/4( 1 + 3
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=89.1 (93) MeV,

(r }'/ =0.77 (0.66+0.03 (Ref. 10);

0.71+0.03 (Ref. 1 1)) fm,

A, +(IC~all )=0.026 (0.029+0.004 (Ref. 12)),
1 (to~sroy)=0. 888 (0.89+0.01 (Ref. 12)}MeV,

f'(p~trtr) =142.7 (158+8 (Ref. 12)) MeV .

In this paper we have extended the above results involv-

ing only meson states ' to the baryon level and thus at-
tempted to predict XNm and AXm couplings within the
same framework. This requires a straightforward exten-
sion of the Bethe-Salpeter (BS) technique developed re-
cently for pure meson couplings which had led to struc-
tures strongly reminiscent of the quark-pair-creation
model (QPCM)' for hadronic transitions such as p~mtr
(real) and co~per (virtual). Not only are QPCM-like struc-
tures reproduced once again but the following new
parameter-free results emerge:

(Gtt~ )~/4m-=13. 02 (14.6), (2)

1(b,~&sr)=104.6 (110—120 (Ref. 12)) MeV, (3)
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where, here as elsewhere, the experimental value is given
in parentheses. Second, its EM as well as mesonic cou-
plings are manifested through the following parameter-
free predictions:
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without giving any special status to the pion beyond its
natural entitlement fram BS dynamics as a qq state.

To indicate the essential steps, the first task is one of
correctly reading out the vertex operator (at each BS ver-
tex} from the full four-dimensional BS amplitude, so as to
pave the way for application of the Feynman rules for
relevant matrix elements, as outlined in Refs. 8 and 9 for
the meson case. To do this for the baryon case, Fig. 1(a)
represents the NNn. coupling structure (in the limit

q& ——0}, and Fig. 1(b) the b.~N~ transition (for
q& ———m ), each corresponding to the breakup (12;3}in
which quark 1 "emits" the (qq) pion, while quark 2 in-
teracts with the former before and after the emission pro-
cesses, and quark 3 remains a spectator throughout. (An
identical diagram arises from the interchange 2~~3, but
any diagram corresponding to the emission of the pion by
a spectator is considered spurious. ) Figure 1(a) makes use
of the %'3 term of the full BS amplitude
( —0 $ +0 2 +0 3 ), which has the structure '
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F&D. 1. (a) NN~ coupling, contribution due to (12;3) configu-

ration; (b) (12;3) configuration for A~Xm. decay matrix ele-
ments; (c) OPEP matrix element. The open semicircles denote
BS vertices. The shaded ovals indicate the last interaction in the
pair. For details see text.
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(6)

so that the quantity V3 W is identifiable as the requisite vertex function at each ban an vertex The relevant symbols are
explained in a separate paper'~ dealing with EM couplings of baryons, from which we shall draw freely, including nota-
tions. The spinor IV(p) in Eq. (6) is defined for each baryon (four-momentum P ) in the composite qqq space in terms
af spin-isospin functions (X,p) of standard S3 symmetry but the spin functions (X) are expressed in a relativistic (co-
variant) farm. i4

N& &e is the normalization constant for the baryon (N, b )'; Di& is the three-dimensional energy denomi-
nator7'4 associated with the (12) pair and po is the corresponding (instantaneous) wave function. ' The NNncoupling.
(normalized to pm. p) is defined through
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where @ is the four-dimensianal BS amplitude for the pion. ' A very similar expression holds f« th«~N~ amp»-
tude, Fig. 1(b). The factors af 2 and 3 in (7) represent, respectively, (i) the inclusion af an identical contribution arising
from an interchange in the indices 2 and 3 and (ii) the effect af pion emission by all the three quarks in turn However
the color factor, instead of being unity for the EM coupling of a baryon, is now

k(B) e; Jk(B'") 5;; (m) =1, 1 1
(8)

(9)

The method of simplification of the right-hand side of (7) in respect of spin-isospin matrix elements and integratio n over
four-momenta is identical to that of Ref. 14 (which in turn is patterned after Ref. 9). In particular, after the integration
over dq i2 and dg3, and the requisite translation over the iI variable so as to bring the Gauss~an factors /odom~ ta a st»-
dard quadratic form free from linear p, p terms, Eq. (7) reduces to
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where the symbols ($,2pz+, D ) are defined as in Refs. 8 and 9, PoPo as in Ref. 14, and
r

S &
(me+ ,

' I)'+ ,'M(mq+ ,'M—)+q'——
—(,+ —,'~}'+—', ~(.,+-,'~)——,

' -' (10)

The QPCM structure of Eq. (9) is manifested through the appearance of the product of the wave functions of the
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three participating hadrons, together with certain (semikinematic) factors in the numerator only, in close analogy to the
case of pure meson couplings, except for the effect of the spectator requiring the additional factor (mz +p3 ), arising
from the normal rules of field theory. Omitting the "translated" expression for PQoPo in (9) for brevity, the final result
1s

(N ~a~N)=(2n. )6i N~ Nvr(4m ) , (P—++P'+)(mz+—,M) (Po P~) (mP )

&&u(P')@su (P) I exp[ F(N—N)]I [—,(mz+ —,
' M) + ,'7 M—(mz+—,M)+ —,Po ]

where

13o '=Pa '+2P
(13)

For the exponent F of the Gaussian form factor we adopt the same philosophy as employed earlier for purely hadronic~2
transitions, viz. , a four-dimensional Lorentz adaptation' of the three-dimensional form (13) (P ~Pz —M, et——c.) to-
gether with a renormaliz ation factor arising from a "reference" ppp coupling at the symmetrical point
( mz, ——mz, —mz ) for each Pz, just as adopted for pure meson couplings. Thus in the limit qz ~0, we have the
replacement

exp[ —F(NN)]~exp( ,', M 13o 13—P~ ,
', mz P—z —). (14)

We note in passing that this prescription is not needed for the EM form factors of baryons, ' just as discussed for the
corresponding problem of meson couplings. Insertion of result (14) in Eq. (11), together with the defining equation (7)
for G~& leads to the result (2) after numerical substitutions for the various quantities according to the BS model
(co=0.15 GeV, m~ =0.28 GeV).

For h~Nn. coupling, the procedure is identical, except for M&&M~ and qz
———m . We merely write down the

analogous matrix element to Eq. (11), after making a similar Lorentz-invariant adaptation of the corresponding three-
dimensional form factor and using the same renormalization point9 for ppp coupling:

I

(p
~

m+
~

5++)=(27r) i Ng. N/N7r
+ + (P P 13 P ) (VTP )

&&,u(P')q u (P) B~A~Iexp[ F(Nb)]I2m (m—~ + , Po +f3 q —,m )——
X(mq 9 0 0+ 36 qp + 8 130+ 8 131 + c P 'q (15)

where A~ and 8~ are, within 0.1%, the same quantities as defined in connection with b,~Ny decay' and the unex-
plained symbols are as follows:

exp[ —F(Nb, )]~exp[ P3613o13& (M~ +M& —,
' m )+ ', PI3— (Mt, M— z )+ ,' m —P,—2 P2Po —2m 2],

2Pi '=A '+1st '; 2Po '=P '+Pe '+Pt '; 6P=I3o'(Px '
Pt. ')— (17)

Finally the connection

I (A~Nm. )=—„' g ~
(p

~

n+
~

5++)
[

pol Mg 2m.
(18)

leads after the straightforward substitutions directly to the
value (3) for the b.—&Nm. width.

If these results for pion-baryon couplings are considered
in association with the other pionic results ' quoted in the
beginning of this paper, as well as with those on the com-
plete mass spectra of qq (Refs. 7 and 8) and qqq (Refs. 7
and 17) hadrons, together with still another dimension of
agreements on the EM properties of baryons'" (charge ra-
dii, magnetic moments, and b, ~Ny amplitudes), they
should warrant the following assessment: These results
collectively constitute a strong and wide-ranging experi-

V,2(q) =(Gm, „) u(P', )ys~~u (P) )u(Pp )y5rau (P2)

X(q +m ) (19)

where the spinor factors give rise to the standard OPEP

I

mental base for an integrated, yet highly economical, field
theoretic approach to a practicable model of harmonic
confinement which not only works for both types of had-
rons but also does not necessitate any special treatment
for pions (or other P mesons).

A major by-product of these pionic successes is that the
BS model quantitatively reproduces the one-pion-
exchange-potential (OPEP) features in the following sense.
The matrix element of the X-% potential via pion ex-
change in this model is inferred from Fig. 1(c) as
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structure 0.&.qa2 qv] 7p in the usual way, ' and the
strength and range are determined, respectively, by the
two quantities (G» ) and m, as predicted by this very
model. In this respect the value of (6~iv ), Eq. (2), seems
to agree with the data to within 10%, while the consisten-
cy of the predicted pion mass with experiment (which is a
major problem for QCD-oriented models) is already evi-
denced from the near equality of the E(M) values ' for p
and m. Since no other parametric ingredient is involved in
Eq. (19), it is thus seen that the BS model provides a
reasonable degree of understanding of the OPEP struc-
ture, which has been a bone of contention for most models
of confinement, necessitating a special status for the
pion.

To summarize, it has been shown that the BS model
predicts the major pionic couplings to baryons to within
10% accuracy, using the same assumption (and basic con-
stants co, mq ) as employed for an understanding of several
other crucial pionic properties. The OPEP structure
then follows as a natural corollary of the model in which
the pion is just another qq state in company with other
mesons. A detailed report containing a fuller list of
meson-baryon couplings, together with their implications
on short-range N-% potentials, is in preparation.

One of us (A.N.M.) is indebted to Professor V. De-
vanathan for suggesting that the OPEP implication of the
pionic coupling results of this model should be checked.
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