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The Bethe-Salpeter model for qq and qqq systems under harmonic confinement, previously found
to fit the qq and qqq mass spectra of light (u, d, s) quarks rather well with a universal spring con-
stant (co=0.15 GeV) and the concerned quark mass (m„d ——0.28 GeV, m, =0.35 GeV) is employed
to predict some crucial electromagnetic properties of baryons as a generalization of a similar
method recently developed for the electromagnetic interaction of qq mesons. The major successes,
in which the relativistic features of the model have played a crucial role, are in respect of magnetic
moments of baryons and the charge radius of the proton, all in very good agreement with experi-
ment with no free parameters. In particular, p~ =2.796 (2.793) nuclear magnetons and

(rr )' =0 86 (0..87) fm. The helicity amplitudes A3qq and A&&2 for E~Xy also reveal an im-

proved fit to data over previous quark-model calculations. The significance of these results is dis-

cussed in relation to contemporary confinement models.

I. INTRODUCTION

Electromagnetic (EM) properties of hadrons constitute
one of the most basic tests of any dynamical model for
quark confinement claiming to provide an integrated
understanding of hadronic phenomena. In this respect,
the qq system is theoretically simpler to handle, but has
the disadvantage of too few EM data for extensive com-
parison with theoretical predictions. Baryons (qqq) on the
other hand, offer a much richer variety of accurate EM
data for comparison with a theoretical model, but the
latter is usually a much harder exercise for qqq systems
than for their qq counterparts when relativistic effects
with all relevant degrees of freedom (spin, color, flavor)
are taken into account. And as long as the situation with
@CD—the candidate theory of strong interactions—
remains fluid with respect to the long-range part (despite
the advances in lattice gauge theories), dynamical models
of confinement' should deserve consideration on indivi-
dual merits. In the present paper we have been motivated
by such considerations to study some crucial properties of
baryons within the framework of a rather comprehensive
Bethe-Salpeter BS model of harmonic confinement which
is characterized by just two basic parameters, a universal
spring constant (co) and the quark mass (me) concerned.
This model not only provides a very good description of
qq (Refs. 4 and 6) and qqq (Refs. 4 and 5) mass spectra,
but has also been amenable to a simple enough formula-
tion of electroweak and pionic couplings of pure qq sys-
tems, with several impressive agreements with relevant
data. ' In this paper we propose a corresponding formu-
lation of the EM couplings of a qqq system as an exten-
sion of the qq case, together with some basic applications,
viz. , (i) the charge form factor of the proton, (ii) magnetic
moments of baryons, and (iii) the helicity amplitudes for
E~Ny. The method used is very similar to that already
employed for the qq case, but there are now two new
features: (a) the effect of the spectator quark on the con-

struction of the full three-body BS amplitude, and (b) the
appearance of different types of permutation symmetries
according to S3 classifications in each degree of freedom
(spin, flavor, momentum). Such S3 symmetries, though
familiar in the nonrelativistic (NR) quark model, need a
full-fledged relativistic adaptation, especially for the spin
functions, before they can be used within the BS frame-
work. In this respect, we have generalized a representa-
tion suggested long ago by Blankenbecler et al. , so as to
incorporate the full features of S3 symmetry. This is done
in Sec. II in the context of construction of the full BS am-
plitude for qqq systems of different S3 symmetries, as well
as the corresponding normalization constants. The
method adopted is otherwise very similar to that
developed in Ref. 6 for qq systems. The only additional
feature concerns the four-momentum dependence of the
spectator quark which is suitably incorporated in the BS
amplitude commensurate with the dynamics of the model.

In Sec. III which outlines the construction of EM form
factors, the spin and momentum dependence of the EM
matrix elements are explicitly shown and integration over
timelike momenta carried out on identical lines to those
explained in Refs. 6 and 7. A simple formula is also given
for the proton's charge radius whose numerical value (0.86
fm) is in surprisingly good accord with experiment (0.87
fm). Section IV is devoted to the calculation of magnetic
moments of 8 and 10 (8') baryons, using the results of
Sec. III for the general case of unequal-mass kinematics.
The calculated values compare very favorably with experi-
ment as well as with those of the vector-meson-
dominance —oriented Schwinger model based on partial
symmetry. ' '" Section V sketches the application of this
model to the evaluation of the 6+~py helicity ampli-
tudes, the results for which show a distinct improvement
over earlier quark-model results. ' Finally, in Sec. VI we
discuss the significance of the predictions of this model
vis-a-vis the corresponding results obtained in some con-
temporary confinement models of comparable predictive
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power. Applications to pionic couplings under BS
dynamics are relegated to a separate paper. '

II. STRUCTURE OF
THE THREE-BODY BS AMPLITUDE

Following closely the reasoning of Mitra and
Kulshreshtha (MK) for the qq case, we first write the full
four-dimensional BS amplitude in the form

3

'P(p i,p2,p3 ) =N& Q (m; i—y' p; )C'(p, pzp3 ) W(P), (2.1)

the spin- —,
' function 7 has the relativistic representation

2M " 2[ i—y „(P)] C g [u„(P)] . (2.4)

The representations of (P', P",P') are of course adequate
in their respective nonrelativistic forms, so that the fol-
lowing relations hold:

(2.5)

W(P) = (X'P'+X"P") or X'qV,
2

(2.2)

where (X,P) are spin and flavor functions of appropriate
S3 symmetries. The mixed functions (X',X") of spin —,

may be taken in a (23) basis with X' as a (23) singlet and
X" a (23) triplet, and their relativistic structures con-
sistent with S3 symmetry may be expressed jointly as

where we expect @ to be a scalar function of its argu-
ments, while any additional spin dependence of 4 is (it is
hoped) contained in the factor W(P) containing only the
external (hadronic) four-momentum Pz. As in the qq
case, an a fortiori justification of this construction lies in
the following. After substitution of (2.1) in the full three-
body BS equation, the successive steps of a Cxordon-
reduction on the right-hand-side (RHS) kernel and the in-
stantaneous approximation to the resulting equation lead
exactly to the same equation as Eq. (4.5) of Ref. 4 with
the instantaneous counterpart (P) of the @ function play-
ing the role of the three-dimensional wave function. Next,
since (for harmonic confinement) the spin structure of the
latter equation is diagonal (not only for equal-mass
kinematics but also for unequal-mass quarks ), any addi-
tional spin dependence of P cannot involve the individual
quark momenta (p;), and must necessarily be a constant
factor depending only on I'&. This last is indicated by the
overall factor W(P) in (2.1) whose structure can addition-
ally be made to conform to the S3 classification [without
the dynamical complications that any quark-momentum
(p;) dependence of this quantity would otherwise have
caused].

For the structure of W(P), it is best to consider the spin
and isospin functions together, so as to bring out the
overall S3 symmetry. Thus for the ground state of a 56
baryon, W(P) has the symmetric forms

Next the structure of the scalar function @, must be ob-
tained by inuersion of the instantaneous relation3' [hop-
ing that no confusion will arise with the same notation P
as in Eq. (2.5) for the isospin functions]

0(PiP2P3) f dq23dplc'(plpzp3) ~ (2.6)

The inversion process was unique in the qq case since the
effect of the instantaneous kernel which we denote by
K(12) for simplicity, could be at once reexpressed in
terms of the three-dimensional energy denominator D12
through an equation of the form

Dying(q)= f dk(pK(12)P(k) . (2.7)

In the present qqq case, the corresponding instantaneous
equation is of the form

0(ptp2P3) QD23 f dk23K(23)4(pip 2P 3) ~

123
(2.8)

becomes

5(p3 —m3P /mo)
2vri v'5(0)@(p &p2p3) =g

123 1 2

so that the effect of a particular pairwise kernel E;J. can-
not be automatically expressed in terms of the correspond-
ing energy denominator D,J because of the effect of the
couplings with the other pairs. However, the four-
dimensional amplitude 4&, by virtue of Eq. (2.6), has an ex-
tra 5 function in the energy variable of the spectator
within our model which specifies p3 ——m3P /mo (when
the p3 quark is a spectator) to complete the overall
dynamical requirements. ' As a result, the pairwise
breakup of N corresponding to the qq relation

2nib)b2@(p)p2)= f dkK(12)P(k)

/X'&; /X" &= M iyP . —1 . 1

2M ~'v 3 ~" vZ

x f dk, 2K(12)p(p~p2p3),
(2.9)

e [(1;y,y„(P))a(P)]. , (2.3)

where the first factor is a 4X4 matrix (Py element) in a
23 spin space and the second factor a 4X 1 spinor (a ele-
ment) in the 1 spin space; C is a charge-conjugation ma-
trix with the properties

—y„=c-'y„c', y, =c-'y,c;
y„(P) is the component of y„orthogonal to P„. Likewise

where b;=p; +m; and the factor v'5(0) represents a
normalization effect due to the finite time (T) available
(for free propagation) to the spectator
(v'5(0):-v'T/2m). Due to the presence of the energy 5
function with each pairwise kernel E;J- on the RHS of
(2.9), it is permissible to replace the latter by the corre-
sponding energy denominator D,J in accordance with Eq.
(2.8) so that Eq. (2.9) simplifies to

D)gp(P1P2P3)5(p3 ™3Po/rno)
pipzp3 =

2mi &5(0)b )b2
2.10)
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where, for equal masses,

4~- 2 2 ~ 2 ~-2
+12 ('q12 +mq 9 M + 4 p33

(2.11)

N, = —,
' v 3(29r) M(mq+ —,'M)

x{[(m,+ 3™)'+—', tv, ']

where

SF '(p) =i (m~+i y p). (2.14)

, Dizko &(P3 —~'/3)
V3 N~(m——~ +P3 )

2m i v'$(0)
(2.15)

is the vertex associated with the breakup [Fig. 1(a)] in
which the last interaction was in the (pip2) pair with p3 as
the spectator. [Note that the vertex V3 has the (expected)
compensating factor m& +P3 against a (spurious) singu-
larity which would otherwise arise from the propagator
S~(p3 ) associated with the spectator P3.] The constant Ns
is determined by the full normalization condition analo-
gous to the qq case, based on the conservation of baryonic
charge, '

(2J+ 1 )(2~) I'P /M
3

=g f +d P;&(I' Pi P3 P3)— — —
pol i =1

3

Xq'(PiP2P3)
&& +Ss (Pj)q'(PiP2P3) .

i4 i=1

(2.16)

Evaluation of this integral will be discussed in Sec. III in
connection with the EM form factor of the baryon [Fig.
1(b)], which involves a very similar integral with the re-
placements p; —&pi' =p; —q (q = photon momentum) in the
final state. The final result for equal-mass kinematics is

B~ 8 (P))
/

p 8%8 (P ) B98 (P ) P3 Bp8 (P )

FIG. 1. (a) BS normalization contribution due to (12;3) con-
figuration, vide Eq. (2.1) of text. (b) (12;3) configuration for
baryonic EM matrix elements. The open semicircle represents
the BS vertex; the shaded oval represents the last interaction of
the (12) pair. For other details see text.

As a final check, the substitution of (2.10) in (2.1) leads to
the same instantaneous equation for P as Eq. (4.5) of Ref.
4. For the ground state, we have as in Ref. 4,

4'=40(k ri)=(9'') '"exp[ —z(k'+9) ')Piv '] .
(2.12)

Thus the structure of the full BS amplitude 4 from which
the vertex functions V; can be immediately identified (for
writing down the Feynman-type matrix elements) is

O'=SF(pi )Sp (p2)SF(p3) IV(P)( Vi+ Vz+ V3)

(2.13)

&&(m,
' 9—M'+

2 Px, ~')+ 8 Px, ~'I
(2.17)

covering both X and 6 cases.
A different kind of baryon normalization which is

based on the parton sum rule (for squared charges) has an
absolute character and corresponds to its breakup into free
quarks (partons) as a result of deep-inelastic electron
scattering, calculated in the I', = oc frame. The deriva-
tion, which is sketched elsewhere, ' leads to the formula

2 2

N„= (mq+M/3)-2= 27 6 6m

8 2 M
2m 3

3
+41n—2 7

(2.18)

which has little formal resemblance to (2.17). The quanti-
ty (2.18) is logically more correct than (2.17) for use in
connection with the rate of, e.g., proton decay, ' where the
nature of the final products (e+,q, q) makes the latter pro-
cess topologically similar to the dissociation p —+qqq.

Before ending this section, we note the possibility of a
negative Nii for sufficiently large M, as implied by Eq.
(2.17). While such "unpleasant" features are not unknown
in BS dynamics, ' we are unable to offer any deep insight
into this question in the present context, except for sug-
gesting that a negative Xz implies some sort of instability
against possible breakup into smaller masses (e.g.,
b, ~Nm. ).

III. EM FORM FACTOR OF THE BARYONS

(12;3), (13;2); (21;3), (23;1); (32;1), (31;2), (3.1)

where the first index refers to the quark having EM in-
teraction, while the second index stands for the associated
interacting quark before and after the EM interaction.

The EM form factor is determined by the matrix ele-
ment for Fig. 1(b), where the EM interaction acts on
quark 1, whose immediately preceding and following in-
teractions are with quark 2, while quark 3 remains a spec-
tator throughout. Another equivalent configuration (not
shown) is one with the roles of quark 2 and 3 inter-
changed. Two more pairs of such diagrams, where the
roles of quark 1 are played in turn by quark 2 and quark
3, respectively, must also be included for a total listing of
matrix elements. For nonstrange baryons (with equal-
mass quarks), all the three pairs of diagrams give rise to
an overall factor of 3; but for strange baryons these terms
must be separately evaluated because of unequal-mass
kinematics. Now each of these configurations will give
rise to a 3&&3 matrix structure arising out of the three
terms +; of 4 and likewise 'PJ. of '0, as shown in the
breakup, Eq. (2.13). However, because of the energy 5
function in (2.15), only the diagonal terms (i =j) will ef-
fectively contribute, while the nondiagonal terms will be
negligible, because of smearing out of the 5 functions.
Thus we have in an obvious notation, the following con-
figurations:
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The last index stands for the spectator. In this counting
the configurations corresponding to the EM interaction of
the spectator have been ignored as dynamically spurious.

We now have the entire machinery to write down the
matrix elements for the SU(6) EM interaction operator

3

(3.2)

4
(1+3

+—'&1—..& &X"
I
y„"'

I

X"&,

(a
I r„ I

a) =—(1+2&; ) (x'
I

y„'"
I

x'),

(p
I

I „I
6+)=2e(x"

I
y~"

I

x'),

(3.3)

(3.4)

(3.5)

between K) and/or 5)-type states, from Fig. 1(b), in
accordance with standard Feynman rules by virtue of the
BS structure (2.13) which directly identifies the vertex
parts and propagators in the figure. For equal-mass
kinematics which we consider first, it is enough to write
down the results for only the first two sets of indices in
(3.1) by virtue of S3 symmetry whose full content is illus-
trated by the following typical cases':

which separate out the trivial isospin factors from the
nontrivial spin-curn-momentum dependence of the matrix
elements shown in terms of the symbols IX'), IX") and

I

X'), which are proportional to
I

X',
I
X"),

I

X'), Eqs.
(2.2) and (2.3), as well as to some other momentum-
dependent factors that arise in accordance with the Feyn-
man rules for the entire matrix element. For example, the
complete (12;3) matrix element, Fig. 1(b), is given by

I
» =(2~)' f d'ql2d 93I'3I'3 && (P )

I
~F(pl )iyp ~F(pl )~F(P2)~F(P3)

I
X (» &

where

m )2q )2 ——m2pi —m )p2, mog3 ———m )2p3+ m )p2+ m2p ) .

(3.6)

The other
I
X) matrix elements listed in Eq. (3.3)—(3.5) can be written down by mere inspection in terms of the corre-

sponding
I
X) matrix elements. The spin factor in Eq. (3.6), by virtue of the special representation (2.3), gives to the fol-

lowing structure:

1 ~
M' iy P' —. M iy P— . 1=Tr C- y 2M, (m2 —ly p2) 2M y5(m3+ly p3) W2C2

u(P')(m~ iy P&)i—y„(m. ; iy p&—) (uP) . (3.7)

In a similar way, we have

(a)=—(x"
I

. . Ix-)s,s;s,s,
1 ~. , M' —IyP' . M —iy I' . 1

v 6 2M' 2M
=Tr C iy (P'), (m2 —iy pq) iy, (P)(m3+iy p3) C~6

u(P')iy, (P')yz(m& iy p', )i—y„(m& iy p, )y—5iy (P)u(P) (3.8)

(X
I I

X )A]kf k263 —Tr C i y (P'), (m2 iy Pz) — . iy (P)(m3 +iy p3 ) C1 &. , M' iyP' —. M iyP. — 1

6 2M' 2M 2

u(P')y (P')y5(m) —&y pi ))yp(mi )y'Pi)u '(P) . — (3.9)

In these expressions the final baryon mass (M') has been
taken to be different in general from the initial. baryon
mass (M), in order to make these formulas applicable to
more general situations such as transition form factors.

For further evaluation, the following relations among
the momenta in Fig. 1(b) are useful:

I I
P2 =P2 ~ P3 =P3 ~

(m0/ml ) kl P3 P2 kl(m0/m 1 )

m071~ = —2m2P ~ +m
& (p2+p3 )

71 ~
= 7/ & +2m z / oq

(3.11)

(3.12)

(3.13)

&=& +q p =p —q (3 IO) The integration variables in Eq. (3.6) may be reexpressed
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q12d ri3 dq12d 93d Old ril[ 2 (m0/m 1 ) ] (3.14)

1 O ~3ai23~2
q12 g g/ g P2+ 3d =2 (3.15)

as a direct application of the method outlined in Ref. 7,
with p2+ ——p2+pz„etc. (ii) Integration of d v/3 gives

merely

I dg3[&(p3 —m3Mm0 ')/v'5(0)] =1 . (3.16)

(iii) Translation over the g~, and ri& variables, viz. ,

YJ i~g —m 2 q /m 0, ri i:'g +m 2 q /m 0,
'

The evaluation of the matrix elements of the type Eq. (3.6)
is conveniently carried out in the following sequence: (i)
Integration over dq ~2 in the null-plane language gives

——2(2m) (v 3/2) (a, (q =0) & . (3.26)

Charge radius of the proton Fo.r the charge form factor
I' of the proton which depends only on the convective part
(a, &, substitution in Eq. (3.3) with r, =1 and use of (3.18)
yields

tegral (2.16) involves these very matrix elements in the
limit q~0 when only a, (=b, ) survives. The final step
consists in integrating the quantities a, b weighted by other
(g', g)-dependent factors 2p2+63$, $0, vide Eq. (3.15) and
(3.18), viz. ,

(a, (12;3)& = J J d g dpi($0$02p2+b3)a, (12;3), (3.25)

which we denote as (a, (q ) & for equal-mass case (similar-
ly for the other terms). In particular, Eq. (3.25), for the
equal-mass case leads to the following connection with
N~ given by Eq. (2.17):

(3.17) F(q )=e(1+—,q M )

reduces the Gaussian factors for the equal-mass case to X [(a,(q') &/(a, (0) &]exp( ——,
' q'P„-'), (3.27)

404o =-(~Pm') '"exp[ (E'+ n—'»tv ' 9q'A—

After these steps, the spin-matrix elements (3.7) to (3.9)
can be simplified by dropping linear terms in g, g. The
final results for the equal-mass case obtained through a
straightforward reduction of y matrices (for final-baryon
mass same as initial-baryon mass and dropping some very
small terms -q g and -q g ) are

(r &= —',P ——,'M —6 ln(a, (q )&
Bq

(3.28)
q2=0

the last two terms representing a characteristically BS ef-
fect. Taking P~ ——0.029, according to the dynamical pre-
diction of this model, the breakup between the first and
last two terms of (3.28) yields

which explicitly brings out the normalization F(0)=e.
From (3.27) and (3.24), the charge radius rz of the proton
is deduced as

Xu(P')[a;P M '+a, iop~ /2M]u(P),

X u(P')[b, P„M '+b, i o„~„/2M]u(P),

where a Gordon reduction has led to

iy„- = PqM '+icr~~-l2M, 2P„=P~+P„'

(3.19)

(3.20)

(3.21)

(rz & =23.00—4.38=18.62 (18.9)GeV, (3.29)

in excellent accord with experiment (experimental result
shown in parentheses), in which the BS effect is clearly
seen to have played a crucial role, in almost exact analogy
to the EM form factors of mesons.

gz/gz for the nucleon We end . this section with the
prediction of gz/gt in the BS model. The calculation is
formally identical to that of the EM matrix element out-
lined in the foregoing, except for the replacement

The above coefficients satisfy the following relations:

a, =b, +O(q ), b, = ——,'a, . (3.22)

The corresponding quantities a, , arising from B'~B*-
type matrix elements (3.4) do not require a fresh calcula-
tion, since

&Tp~&'F53 p,

in (3.2) and all subsequent equations (3.3)—(3.9). The
axial-vector current is expressible as

(N
~j„~N & =u(P')iy5y„u(P)(a5, &/(a, (0) &, (3.30)

where
ac s acs (3.23)

The values of a, , for the general case of unequal-mass
kinematics corresponding to all the configurations (ij;k)
of Eq. (3.1) are given in the Appendix. In particular, the
full value of a, (q ) for equal-mass kinematics, including
terms of 0 (q ), is

a, (q )=(mq+ —,M) [(mq+ —,M) +f —,q ] . —
Note that terms of order (q ) are relevant for the charge

radius of the baryon, but not for its magnetic rnornent
which is of O(q) only. Further, the normalization in-

gz/gz ——(a5, &/(a, (0) & =0.96 (1.22),
showing a discrepancy of -20% for this parameter.

(3.31)

IV. MAGNETIC MOMENTS OF BARYONS

Magnetic moments of baryons which represent one of
the most striking successes of the quark model in princip/e

a5, ——[m) (1+Mm0 ') ——, ri ]m2 (1+Mrna ')

and the angular brackets are meant in the sense of (3.25).
Substitution of numerical values yields
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have had a long history. In particular, since the quark
model brings out rather convincingly the effect of compos-
iteness on the anomalous aspects of these moments, the
nature of the dynamics employed for the purpose acquires
a nontrivial significance well beyond the initial successes
of nonrelativistic SU(6) theory. Now the prediction of
magnetic moments, by its very nature, requires a mass
(length) dimension for which the obvious candidates are (i)
the elementary quark masses (m~) as in the older nonrela-
tivistic models and (ii) the composite baryon masses (M)
which have been conjectured' or perhaps certain V-meson
masses which can be motivated by the vector-meson-
dominance (VMD) principle. The precise choice comes
out of the overall dynamical framework employed for the
detailed calculation. Thus while the V-meson masses
(mi ) enter through the VMD form of dynamics, ' the
baryon masses (M) seem to enter in a very natural way in
the present BS model through the structure of the spinor
W(P), Eqs. (2.2)—(2.4), representing the external kinemat-
ics of the baryon as a whole.

The magnetic moments in this model can be extracted
from the o&~ terms in the baryon form factors evaluated
in Sec. III, neglecting terms of O(q ). In particular, the
nucleon magnetic moment (equal-mass case) is predicted
as

I+3r, &a, &

4 &, & 4
(4.1)

leading to the values (in nuclear magnetons)

p~ =2.796 (2.793), p„=—1.864 ( —1.912), (4.2)

in rather impressive accord with data (shown in
parentheses).

Evaluation of the magnetic moments of strange baryons
(A, X,:-) involving unequal-mass kinematics
(mi&m2 ——m3) is similar in principle but requires calcu-
lation of the matrix elements for all the configurations
listed in (3.1), not merely (12;3). In the Appendix, we list
only the quantities a, , for the different configurations, in
view of the connections (3.22) and (3.23) for the b coeffi-
cients. The resulting "weighted average" quantities, in the
sense of Eq. (3.25), are now

due to relations (A5)—(A7) of the Appendix. Also,

(4.4)

Finally, the magnetic moments for the different cases,
taking account of the SU(3) matrix elements as in Eq.
(4.1), are given by the general formula (M = mass of
baryon concerned)

p.„.=, g„.«~. »~«~, », (4.5)

(4.6)

(4.7)

The predicted and observed values, all normalized to nu-

clear magneton units, are shown in Table I. Also shown
in the table for completeness are the predictions of the
Schwinger model' based on partial symmetry and EM
substitution (VMD)." The algebraic formulas, for the
baryon magnetic moments (including those for charmed
baryons), which are rather simple looking in this model,
are given elsewhere. "

Table I shows, first of all, that the BS-model predic-
tions as a whole are in surprisingly good accord with
data. ' The nucleon magnetic moments especially leave
little to be desired, except for some fine-structure effects
(a small symmetry-breaking term?) indicated for the neu-
tron case. Even for the "strange" cases the discrepancy is
rather small, considering the total absence of any free pa-
rameters. In this respect, the VMD-oriented Schwinger
model' '" seems to give a somewhat complementary pic-
ture: While the agreement is not so good for the nucleon,
the overall fits are slightly better for the strange baryons.
Unfortunately, a general comparison between the BS and
Schwinger models at the theoretical level has not been
possible, but one concrete evidence of a basic harmony be-
tween these two models has been found at the pure
meson-coupling level. Namely, a recent calculation of the

«A„» =2[&a„(12;3)&+&a, ,(21;3)&+ &a„(23;1)&],

(4.3)

TABLE I. Baryon magnetic moments (in nuclear magnetons).

Baryon BS model Schwinger (Ref. 10) Expt. (Refs. 21 and 22)

2.796
—1.864
—0.57

2.626
—0.876
—1.518
—0.751

4.438
2.196

—2.196
—2.03

0

2.42
—1.62
—0.614

2.355
—0.871
—1.356
—0.55

4.839
1.886

—1.624
—2.04

0.365

2.793
—1.913

—0.614+0.005
2.33+0.13

—0.89+0. 14
—1.236+0.01

0.75+0.07
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~~~oy amplitude was made in two different ways. (i) by
direct-photon coupling of the quarks in the BS model and
(ii) by VMD substitution (p ~y), after calculating the
co~p m amplitude again in the BS model. Both gave re-
sults within 1% of each other (I'=888 keV) and were in
excellent accord with experimental data. The present re-
sults for the baryon magnetic moments do not seem to be
inconsistent with such an expectation, though an explicit
VMD-oriented calculation is much more laborious in this
baryonic case. Table I also records the predictions for the
decimet baryons' magnetic moments for future (?) com-
parison with data. Magnetic moments have been calculat-
ed in certain bag models as well (see Sec. VI for a discus-
sion).

V. 6—+Ny DECAY IN THE BS MODEL

5(P3 ——,M) 6(P3 —
6 Po ——,

'
PD ) (5.1)

in an expression of the type (2.10). Strictly speaking, such
a mixed quantity does not make sense for a single state
(initial or final) such as (2.10), but only in the context of
the overall matrix element in which both states are in-
volved. As a further consistency check, the RHS of (5.1)
works out as 5(il3), which gives the expected constraint on
the internal variable g3, Eq. (3.14).

The calculations proceed exactly in the sequence of
steps indicated in Sec. III for the EM form factors, viz. , (i)
integration over dqi2, dil3 as in (3.14)—(3.16) and (ii) the
requisite translation (3.17) in the i)& variable (to make the
Gaussian factors gogo free from linear g, ri terms) prior to
the simplification of the spin factor (3.9). Thus the
b, ~Ny counterpart of the RHS of Eq. (3.15) is now given
by the replacement

Our last application in this paper concerns the EM cou-
pling between 6 and A type states, leading to the predic-
tion of the 6 ~py helicity amplitudes (A3/2 i/2) in the
BS model. The algebra is straightforward but somewhat
heavier, so we outline only the essential steps here. The
matrix element in this case involves the spin part (3.9)
with M&M' as a factor of the corresponding X-matrix
element (3.5). Now the appearance of unequal baryon
masses in the (transition) matrix element requires a gen-
eralization in the structure of the energy 6 function arising
from the spectator (say 3). Since p3 cannot be simultane-
ously equal to both —,

'
Pp and 3 Pp this fact necessitates an

overall assessment of the spectator's energy status in the
context of the entire matrix element involving both initial
and final states instead of fixing its energy arbitrarily on
the basis of only one of the states. The simplest solution
lies in the replacement

2e~X"
l

y„"'
l

X'~=2eA [B u(P'}y5ypq„M 'u (P)
—B' u(P')2iy5u&(P)], (5.4)

where

A~ = (mq + ,
' M—')(mq + —,M)

+(M+M') [a(mq + —,M') +a'(mq + —,
' M) ],

B~ =(mq+ —,
' M')(mq+ —,M) —

36 (M —M')

(5.5)

1 p(M2 M 3) 1 ] M+M
2 3 +TIE (5.6)

B~ =—„(mq+ —,
' M')(mq+ —,M)(M+M') M 'M'

+ 36 (M —M') ——,0 (p) X0 (M —M' ),
a= —,pa (p~ +pa ) ', a'= —, —a, 2p=a —a'.

(5.7)

(5 8)

pi '=p '+p (5.9)

The final result is

A (b Ny ) =4m ~3eNgN „(P++P+ ) (X"
~

y„'"
~

X*)

X(M'/2 E )'"(P'P -'P -')'"
X [m, ' —9 POPO+ —'pi'] . (5.10)

The helicity amplitudes can be read from (5.4) to be in the
ratio

A i /2 A 3/2 —(Eq /M' + 1 )B~ —B~:~3B~ (5.1 1)

and the absolute quantities work out in GeV '~ units as

A 3/2 ———0.205( —0.258+0.01),
Ai/2 = —0.118 ( —0.138+0.1)

(5.12)

These values, though somewhat lower than the corre-
sponding experimental numbers (in parentheses),
nevertheless show a significant improvement over the ear-
lier results' based on orthodox quark models of the seven-
ties (though modified versions do give better fits2 ).

VI. SUMMARY AND CONCLUSIONS

As A, B, and B' are practically constant, the complete
amplitude is obtained by integrating out only over the
RHS of (5.2) with respect to the distribution arising from
the POPO functions:

f f dS" df(~'p~'pa'} '"exp[ (k'+g—')p, '], -
where

2p, ~3 =
3 (P++P+)(m, ' ,'PoPO+ ,' ri———

where q&
——0 in this case, and

P+ ——Pp+P„P'+ ——Pp+P,' .

The spin-isospin factor (3.9) works out as

(5.2}

(5.3)

In order to compare the present calculations with con-
temporary approaches (and many exist in the literature), it
is meaningful to choose only those models whose theoreti-
cal scope (and predictive power) are comparable. For if it
were for the problem of hadron couplings alone, it could
have been handled with relatively few theoretical princi-
ples without a full-fledged dynamical framework. Indeed
the principle of partial symmetry, ' ' together with the
quark-pair-creation model (QPCM) already provide a
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powerful yet highly economical (parametric) framework
for a very large class of strong interactions, while EM
couplings merely require the additional ingredient of the
gauge principle' or the VMD principle of EM substitu-
tion. ' On the other hand, such principles are not enough
for, e.g., the prediction of mass spectra which require a
more explicit dynamical model. The first nontrivial at-
tempt of this dimension was that of Feynman, Kislinger,
and Ravndal' who gave a relatiuistic shape (together with
certain rules for evaluation of current matrix elements) to
the traditional NR oscillator model. However, apart from
certain serious theoretical problems born out of an inade-
quate conceptual framework it was soon overtaken by the
development of QCD, on the one hand, and the emergence
of the bag philosophy on the other. These gave rise to
certain QCD-oriented models which still required "con-
finement" to be put in by hand (through "potentials",
"bag boundaries, " etc.) albeit at the cost of certain free pa-
rameters. This is certainly not the most desirable state of
affairs, but must be faced until such time as nonperturba-
tive QCD makes some genuine advances (numerical re-
sults on lattice gauge theories seem to lack stability ).

The present model, which belongs to this last category,
stands to compare only with these, using the twin criteria
of (i) theoretical consistency and (ii) quality and quantity
of fits to diverse data ranging from mass spectra to strong
and EM couplings of hadrons, all within a single dynami-
cal framework. Judged by these criteria, the present (BS)
model with its universal spring constant (co) and the quark
mass (m~) not only accounts for the hadron (qq, qqq)
masses ' of (u, d, s) flavors in an extremely convincing
manner, but has been found to provide very accurate
parameter-free fits to the electroweak and pionic cou-
plings of the qq systems. These should perhaps be judged
together with the present results on the EM couplings of
baryons as well as certain crucial predictions (derived
separately' ' ) on the pionic couplings, viz. ,

(G~~ ) /4m=13. 02 (14.6),
1 (b, ~%m)= 104.6 (110—120) MeV,

I (p~2n)=143 (158+8) MeV,

for an overall assessment of the status of the BS model. It
is important to note that the BS model does not require
the pionic (or kaon, etc.) degree of freedom to be put in by
hand. Not only is the pion's mass "understood" within
the theoretical framework of this model without extra as-
sumptions, but even its couplings to leptons, to the EM
field ' and to other hadrons, ' come out equally natural-

ly as part of the pion's BS dynamics as a qq system.
In contrast, the bag model, ' though primarily relying

on a single basic parameter (R), frequently requires addi-
tional assumptions (on bag shapes, etc.) to widen and/or
improve the range of its mass predictions. Its range of
applications is often limited to static phenomena. More
importantly, the insertion by hand of pionic degrees of
freedom ' within the bag framework must be regarded as
a serious compromise of the theoretical status of the
model, and any experimental success of the model after
such a modification must reckon with this major weak-
ness. It is from this angle that we are inclined to view the
successes of the so-called cloudy bag model on the EM,
etc. , properties of the nucleon without reference to the
dynamics played by the input pionic degrees of freedom
together with the crucial parameters (m,f ), while their
effects on hadron mass spectra are yet unknown.

Our reservations, ' despite the impressive successes, on
QCD-oriented NR oscillator models, are of a more con-
ceptual nature in so far as it is difficult to see a priori how
a basically NR dynamics can be justified for intrinsically
light quarks where genuine relativistic effects are bound to
arise, despite efforts to subsume them through suitably
designed parameters. Similar remarks apply to the pre-
dictions of such NR models to qqqq systems, for which a
relativistic Bethe-Salpeter dynamics produces an entirely
different scenario.

To summarize, we have extended the BS model of qq to
qqq systems characterized by two basic constants (cp, m~),
from the study of mass spectra and electroweak and pion-
ic couplings of (qq ) mesons to the investigation of EM
properties of baryons without further assumptions. Par-
ticular care has been taken to preserve the role of the
"spectator" in the definition of transition matrix elements
which are directly amenable to the language of Feynman
diagrams. The results on the proton's charge radius as
well as the baryon magnetic moments are excellent, while
the amplitudes for E~Ny decay represent a considerable
improvement over several earlier quark-model calcula-
tions. These results stand in sharp constrast to those of
certain modified bag models wherein the pionic degrees of
freedom (with concomitant parameters m and f ) are in-
serted by hand, thus obscuring the possibility of a direct
comparison with such models on the basis of their (com-
parable) experimental successes alone. On the other hand,
the pionic couplings of baryons come out correctly (within
10% accuracy) in this model without giving any special
status for the pion. These and related details are given in
a separate paper. ' Prediction of proton decay in this
model is given elsewhere. '

APPENDIX

For evaluation of the magnetic moments of baryons, the relevant terms are of O(q). We list the distinct quantities
arising from the six configurations, Eq. (3.1) of text, under the assumption m &&mz ——m3,

a, (12;3)=a,(13;2)=m2 (1+M/mp) [m& (1+I/mp) +f ], (A 1)

a, (21;3)=a,(23;1)=a,(31;2)=a,(32;1)

=m)m2(1+M/mp) [m2 (1+M/mp) + —,rt +mp/4m])g ], (A2)



BETHE-SALPETER qqq DYNAMICS: ELECTROMAGNETIC. . .

a, (12;3)=a,(13;2)=m2 (1+M/mo} [m~ (1+M/mo) + ,
'

r—l +4m, m2M/mo(1+M/mo)],

a, (21;3)=a, (23; 1)=a, (31;2)=a, (32; 1)

= m) m2(1+M/mo) [m2 (1+M/mo) ++@ +(mo/12m|)g +2m)2m2M/m, (1+M/mo)] .

(A3)

(A4)

The corresponding weighted quantities which may be written down, according to definition (3.25) of the text, satisfy the
relations

(a„(12;3)) = (a, ,(13;2)),
(a„(21;3)) = (a„(31;2)),
(a„(23;1))=(a, ,(32;1)) .
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