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It is pointed out that the K-m. matrix element given by Shifman, Vainshtein, and Zakharov using
the vacuum-insertion method is inconsistent with the chiral-symmetry constraint. The matrix ele-

ments of the left-handed current )& current operators obtained by this method are however con-
sistent with chiral symmetry and give a qualitative understanding of the AI =I E—+2~ decay am-

plitude. The EI=
2 amplitude seems to be dominated by a pure AI =

2 operator as indicated by

the calculated KL, ~2y decay rate; the nature of this interaction is discussed.

With the advent of quantum chromodynamics (QCD)
as a possible theory of strong interactions, some progress
has been made during the past ten years towards an under-
standing of the octet dominance and the M = —, rule for
nonleptonic hyperon and kaon decays within the frame-
work of the standard Weinberg-Salam theory of weak in-
teractions. In the works of Gaillard and Lee (CiL) and
others, ' because of short-distance QCD effects, the Wilson
coefficients of the (1,8) and (1,27) pieces of the ES=1
four-quark operator in the effective Lagrangian are,
respectively, enhanced and suppressed by a factor of 2.5
relative to the free-field value, producing qualitatively an
octet enhancement. There are indications that this is not
sufficient to account for the large observed octet A? = —,

'

amplitude, which is larger than the M= —', part by a fac-
tor of 20. In fact, from PCAC (partial conservation of
axial-vector current) and chiral-symmetry constraints one
can relate the E~2m. amplitude to E-m transition matrix
elements. From the quark-counting rule alone, we know
that the E mmatrix -e.lement for the (1,8) piece is smaller
than that for the M= —,', (1,27) piece by a factor of 2,
leaving only a small enhancement of the dd = —,

' ampli-
tude, far below the data. It appears that the standard
four-quark operator of the current X current type cannot
be the dominant contribution to nonleptonic decays and
that some new operators must be involved. These new
operators must transform as a (1,8) representation under
SU(3)XSU(3) since the current-algebra Callan-Treiman-
type relations between E~2m and E~3m. decays are
satisfied to a good accuracy. The usual penguin-type
M = 1 interactions advocated by Shifman, Vainshtein,
and Zakharov (SVZ) are possible new contributions, al-
though their relative importance is uncertain since the
SVZ estimate for this contribution is questionable for the
simple reason that the chiral symmetry proper-ty and PCAC
constraints are not satisfied by the SVZ expression, as will
be clear in the following discussion. One can, however,
carry out a phenomenological analysis to determine the
fraction of the penguin part relative to the total M = —,

'

amplitude. For this purpose one needs to evaluate the E-m
matrix element from the four-quark operators of the ef-
fective Lagrangian. This matrix element is also related to

the E -E transition matrix element of the effective
ES=2 operator which is built from the same (V —A)
currents and behaves as (1,27) under SU(3)XSU(3). A
knowledge of the matrix element of the four-quark opera-
tor is thus essential to the analysis of nonleptonic E de-
cays and Kz-El mass difference. In this paper we shall
present an analysis of nonleptonic E~2~ decay based on
the valence-quark approximation (i.e., only the qq com-
ponent in the meson wave function) for the IC mmatrix-
element (which shows that in the free-quark model, the
saturation by the vacuum intermediate state is exact). The
advantage of using this approximation is that it may be
justified to some extent and that the E-~ matrix element
obtained is explicitly quadratic in momentum, consistent
with chiral-symmetry and PCAC constraints. This is not
the case with the MIT-bag-model calculation as the bag-
model description of the pseudoscalar-meson octet con-
sidered as Cxoldstone bosons of the chiral SU(3)XSU(3)
symmetry is rather questionable and the matrix element
obtained does not have this momentum dependence expli-
citly displayed. For this reason we shall not use the bag
model in the following. The main results of our analysis
can be summarized as follows.

(i) The M= —, amplitude is qualitatively understood us-
ing the E-~ matrix elements in the vacuum-insertion ap-
proximation.

(ii) The SVZ estimate of penguin matrix elements is in-
consistent with chiral-symmetry and PCAC constraints
which require that the EC m. matrix element of (-1,8) opera-
tors must be momentum-dependent. This invalidates their
claim that penguin interactions can account for most of
the dd = —, amplitude.

(iii) Assuming a KL-m transition dominated by purely
M = —,, (1,8) operators, then the XL ~2y amplitude in-
duced by the mixing of EL with ~, g, g' produces a de-
cay rate in agreement with experiment to within 30%.

To proceed we present here some important properties
of the E-~ transition and X~2m decay amplitudes de-
rived from SU(3) X SU(3) symmetry and PCAC con-
straints for use in the following analysis.

An elegant way of implementing chiral-symmetry and
PCAC constraints on kaon nonleptonic decay amplitudes
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is to construct a phenomenological effective Lagrangian
involving only the pseudoscalar-meson fields which
transform nonlinearly under SU(3) X SU(3) (the usual
flavor symmetry). The decay amplitudes are obtained
from tree diagrams and automatically satisfy current-
algebra Callan-Treiman-type relations in the soft-pion
limit, provided that the effective Lagrangian contains only
terms transforming as (1,8) or (1,27) representations of
SU(3)XSU(3). This is true for the nonleptonic-weak-
interaction effective Lagrangian in the standard
Weinberg-Salam theory with left-handed V —2 currents.
Since chirality is not affected by short-distance QCD ef-
fects, the four-quark operators in the GL effective La-
grangian contain only (1,8) and (1,27) pieces built from
left-handed quark fields of the current&& current type. We
have '

GF~~(~ = —, ) = — sin8ccos8cC~O~,
2 2

Gp
(M = ——, ) = — sin8ccos8cC404

2 2

for the main contributions to M = —,
' and LT = —,

' ampli-
tudes. The operators 0& and 04 are normal ordered and
are products of two color-singlet V —A currents given by

W~ ( octet) = —
~ Tr( AsBpM B„M ),

4 2f
where M is a 3&3 pseudoscalar-meson coupling matrix
transforming as a (3,3) representation of SU(3)XSU(3)
and satisfying the unitary condition MMt= l. M can be
expanded in terms of the pseudoscalar-meson fields N;
(i =1, . . . , 8) as

M(f@)=I+2if@+2(if@)'+.. .

w~ere

(7)

i =1,8

and higher-order terms depending on the form of M are
irrelevant to the E-~ transition and X~2m decays and
have been dropped. f is the inverse of the pion decay con-
stant (f '=f =m ).

Using (7) we get

d y~( I+ys)
A, s
2

transform as (1,8), the penguin interactions given by Eq.
(1) contain only (1,8) terms and give rise to a purely
LU = —, amplitude. Having shown that the AS = 1

nonleptonic-decay effective Lagrangian contains only (1,8)
and (1,27) terms, we can now write down a phenomeno-
logical Lagrangian for the K-m. transition and K~2~ de-
cay. Following Cronin we have for the (1,8) piece

Gp
(octet) = —c

2f2

X Tr(A6B„@Bp@+ifA6IBp&, [N, c}„C&]] ),
(8)

A g
——dy„(1+y5)uuy„(1+y5)s,

A e =uyp(1+ys)udyp(1+ys)s,

~c= dye( I +ys)dd yp(1+'Ys)s .

(4)

C~ and C& are Wilson's coefficients due to QCD short-
distance effects calculated by Gaillard and Lee and SVZ
and known numerimlly to be 2.5 and 0.4, respectively.
These values seem not to depend strongly on the choice of
the QCD mass scale p. Qualitatively we thus see that
QCD short-distance effects enhance the LU' = —,

'
piece and

suppress the LU = —,
' piece by a large factor.

The operator responsible for the AI = —,
' transition is

given by Eq. (2) and is the only contribution. However,
other operators like the penguin interactions found by
SVZ can also be responsible for the Ll = —,

' transition.
They can be approximated by a local four-quark operator
of the form '

GF
W~(penguin) = — C5sin8ccos8cO&,

2 2
(&)

A(Ks(p)~m+(k)n (q))=i f (2p —k —q ),
2

(9a)

which is precisely of the form (V —A) X ( V —A). It is im-
portant to note that only derivative couplings are allowed
for the nonleptonic-decay effective Lagrangian. This is
the main difference between nonleptonic K decays and elec
tromagneti c interactions involving pseudoscalar-meson elec-
tromagnetic mass differences and g~3m decay. ' The
one-photon contribution which mn have terms behaving
like (8,8) and the tadpole u3 term belonging to (3,3) can
give rise to nonderivative couplings. These important
characteristics follow from a beautiful theorem due to
Coleman, Wess, and Zumino on the nonlinear realization
of chiral symmetry. Thus, the K mtransition and -K.~2~
decay amplitudes are quadratic in momenta.

The M= —, amplitudes for Kz —+~+~ and the L-m.

transition are then given by

05 = g J&dy„(1+y )A,
'5, s

where C5 is first order in the QCD coupling constant
a, (p ) and is known to be quite small (C5-0.05—0.02).
J& are the color-octet gauge vector currents transforming
as a singlet (1,1) representation under flavor
SU(3)XSU(3). Since the color-octet b,S=1 left-handed
currents

A(K ~n. )= — =+c f q(vr) q(K) .p p A(K ~m. )

2 2

(9b)

The LU'= —,
' amplitude is obtained from W (27-piet) built

from the product ( V —A) X ( V —A). It is given by 04
with the quark fields replaced by the pseudoscalar-meson
fields. Thus,
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G~
(27-piet) = —c' [(V —A) X ( V —A)]i

2
(10)

from which the M = —, part of the E~2~ decay ampli-
tude and E-m transition are given by

GF
A(K (p) (k) (q)) = 'c' f (3p —2k —q')

2
(1 la)

a(SC' ~')=~W(SC ~-)= c'G—,f.'q(~) q(&) .

(1 lb)
In obtaining (9) and (10) we have dropped terms of the
form B&IC; V&J (j = 1,2, 3) which, owing to the conservation
of the isovector vector currents (B&V„&

——0), can be ex-
pressed as a four-divergence and can therefore be discard-
ed without affecting the physics. Thus, no terms antisym-
metric in pion momenta [e.g., terms of the form p.(k —q)
are present in (9a) and (1 la)].

By letting all the meson momenta on the mass shell we
get the physical decay amplitudes which are now propor-
tional to (mK —m ) and are first order in SU(3)-
symmetry-breaking effects. This is in agreement with the
theorem of Gell-Mann which tells us that E—+2~ decay
amplitudes must vanish in the SU(3)-symmetry limit.
Note also the quadratic momentum dependence of the E-

m. matrix element as mentioned above and any model
which does not produce a E-m transition with this proper-
ty is not acceptable. Similarly the E—+3m. decay ampli-
tudes can be obtained from (6) and (10). In particular, the

amplitudes obtained with the parameter c deter-
mined from the E—+2~ decay rate reproduce quite well
the measured decay rates and the slope parameters. This
confirms the validity of the phenomenological Lagrangian
approach to nonleptonic decays of E mesons as well as the
SU(3) X SU(3) symmetry properties for the nonleptonic
weak interactions.

Our theoretical understanding of kaon nonleptonic de-
cay is thus reduced to computing c and c' which are ob-
tained from the IC vr mat-rix elements of the M = —,

' and
operators, respectively. These matrix elements

can be computed using the vacuum-insertion method as
usually done in the literature. The same matrix elements
can also be obtained with the relativistic qq wave func-
tions. To illustrate the chiral-symmetry properties for the
matrix elements, we shall use the latter method. Let us
first consider the IC n. matrix-element for the dd = —,

'
0&

operator. It is exactly the bound-state matrix element of
the LS' = 1 qq~qq transitions due to the S'-exchange pro-
cess in the limit m~ —+00 and is given according to the
usual prescription by

)= y J lP(k, k —p)T (k, k —p;k', k' p)y(k', k' ——p),
d4k d4k'—

(2~)4 (2~)' (12)

where the trace over the quark loop is to be taken whenev-
er appropriate and T (k, k —p;k', k' —p) (or simply T ) is
the virtual AS = 1 qq —+qq transition matrix element.
Since the short-distance QCD effects have already been
factorized out and absorbed into C4, the E-m. matrix ele-
ments do not depend on the qq wave function at short dis-
tance and T„can be taken to be independent of the
virtual-quark momenta and is given by the free-quark ma-
trix elements of 04. The integrations over virtual-quark
momenta k, k' can be carried out independently and the
matrix elements thus obtained depend only on the long-
distance matrix elements

&o I:qy5q: I
~& and &o I:qy&y5q: I

~&

which appear in the Wilson short-distance expansion of
the meson wave function. The s-channel-annihilation
part of T for the E -m transition is identified with A ~
and is given by

(K
I
A „ I

m. ) =Tr[y~(a +bp)y„(1+y5)]

X fr[y„(1+y5)y5(a —bp)], (13)

d4kJ,q(k, k —p) =y,(a+bp) .
(2 )

a and b are scalar functions of p (the meson momentum)
and are considered to be independent of p in the limit of
chiral symmetry where the pseudoscalar-meson octet is

N

considered as massless Goldstone bosons. More precisely
we have

4a =(0I:qy,q: Im),
(15)

(Ic IA~ I~ )=f 2p2, (15')

which has been obtained previously using the approxima-
tion by the vacuum intermediate state. ' This is not
surprising since we know from (12) that only quark field
operators which annihilate ~,E are present in A z.

The I-channel-exchange part of T is given by

(EIA z I
m ) = —, Tr[y5(a'+bp)y~(l+y5)

xy, (a bp)y„(1—+y, )], (16)

where the factor —,
' comes from color counting. In terms

off we thus have

(rc I~,
I

~-) = ,'f.'p-'. —(16')

lpga4bp„= " =—&0I:qy„y q:
I

~ ~

~

In the phenomenological Lagrangian for E decays we
have neglected all SU(3)-violation effects other than those
given by the mass terms. The E-m matrix elements in
Eqs. (10) and (11) should therefore be computed only in
the SU(3) limit given by

fK f f
Equation (13) then gives
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Hence,

(J:-
~
04

~

~-) =-', f.'p',
(sc'( o, (

~') =~i(rc (o,
~

~--)= —", ~2f.'p',
(17a)

(17b)

which obey the M= —', rule given in Eq. (11b). For
LU = —,

' matrix elements, we get similarly

(IC
i Oi

i

m. ) = —,
' f„2pz, (18a)

(J."~o, ~~')= — (sc- ~0, ~~-)= — f.'p',
2 3

(18b)

which clearly obey the Ll = —,
' rule. The above expres-

sions for K-~ matrix elements are quadratic in momentum
and thus satisfy chiral-symmetry and PCAC constraints.

By comparing (17) and (18) we have

(rc /o, /~-) -= —,'(sc- [o, [~-) .

From (9) and (10) we thus have

(19)

c 2C4

C( 3

[using the SVZ calculated values for C~ and C4 (C~ ——2.5,
C4 ——0.5)], showing a small enhancement of the M= —,

'

amplitude far below the measured values determined from
K&~mm and IC+ —+m+m. decay rates. Experimentally"
we find

It is important to note that because of the
(&—&)X(V—2) structure of A ~, only the b term con
tributes to (I6) and the matrix element thus obtained satis-
fies PCAC constraints. The same result can also be ob-
tained from a Fierz transformation of A z into an annihi-
lation term as usually done in the literature. ' Note also
that once a and b can be expressed in terms of measurable
quantities as given by (15), no detailed knowledge of the qq
wave function is needed for X mm-atrix elements.

For the A c term, we have similarly

(K
I
Mc

I
~ ) =0 .

amplitudes must be due to additional AS =1 interactions
which are purely M = —, and may be of the SVZ penguin
type. Depending on the relative sign of this purely
AI = —,

' amplitude and the four-quark LU = —,
' amplitudes

[given by (22)], we infer that

f=0.8, same sign,

f =1.2, opposite sign,
(23)

Xy5(a bII)y„—(24)

As pointed out by SVZ, because of the pure vector nature
of the gauge vector currents, both a and b contribute to
the E-~ transition. We get

where f is the fraction of the penguin contribution to the
total amplitude.

For the M =—', amplitude, the calculated value of c'
given in (22') is of the right order of magnitude and is
only 60% larger than the measured value. A slight reduc-
tion of C4, and inclusion of chiral-symmetry-breaking ef-
fects as well as I =2 m.m. final-state interactions' can
bring the discrepancy down to the level of 20—30%. Also
the contributions to the EC-m. transition from the low-
lying-hadron intermediate state (m.,co,A~, etc.) in the T
product of two currents evaluated in the manner
prescribed by Wilson can account for part of the b,I = —',

amplitude as found recently by Pham and Sutherland. '

Allowing for the uncertainties in the calculation, we may
say that the vacuum-insertion method gives a qualitative
understanding of the M = —', amplitude and that this tech-
nique gives the right order of magnitude for the four-
quark K-~ matrix elements, although we do not know
how to justify this method on a theoretical basis.

We have thus showed that the LE = —,
'

amplitude seems
to be dominated by a pure LU = —,

' interaction. SVZ have
given an estimate for this contribution using the penguin
operator given by (5) and the valence-quark approxima-
tion. Using (12) we can express the penguin K n. matrix-
element as

(K
~

05
~

7r ) =—", Tr[y5(a +bp)yp(1+y5)

i
c i,„p,——1.04+0. 1,

i

c' i,„p,——0.0327, (IC ~05~+ )=—", (16a —8b p ). (25)

c 3 C4sinOc cosO&

c=+—,C~sinO~cosOc .

With C~ ——2.5, C4 ——0.4 we get

c'(theory) =0.053, c(theory) =+0.17 .

(22)

(22')

The magnitude of the calculated value of c is smaller than
experiment by a factor of 6. Thus, almost all the Ll = —,

'

(21)
=0.0314 .

expt

Thus, Eq. (20) already tells us that the M = —, effective
Lagrangian of Gaillard and Lee is insufficient to explain
the large dd = —,

' amplitude. In fact, using (17) and (18)
we find

The second term in (25) is quadratic in momentum, con-
sistent with PCAC constraints, and is given by f p as
for the normal 0~,04 contribution. The first term which
is obtained from the matrix element (0 ~:qy5q:

~

m ) [Eq.
(15)] is independent of the meson momenta and therefore
violates chiral-symmetry and PCAC constraints. This
term seems to be quite large and has been estimated by
SVZ using the standard value for current quark mass. In
this way they claimed that the K-~ matrix element given
by (25) is sufficiently large to account for the fraction of
the penguin contribution. This is incorrect since any terms
independent of momenta must be discarded as they violate
the SU(3)XSU(3) property of the penguin interactions
which, as mentioned above, must belong to the (1,8) repre-
sentation.

It is not surprising to realize that the valence-quark ap-
proximation cannot be used to evaluate the penguin K-m.
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matrix element. Nonperturbative effects due to spontane-
ous breakdown of chiral symmetry must be taken into ac-
count to restore the quadratic momentum dependence of
the X-m matrix element.

For convenience we present here a more pedestrian way
to see the quadratic momentum dependence of the K-m
matrix element for the penguin operator. Using standard
current-algebra techniques we get

2 2

(K ~05 ~m )= ip& f d x exp(ip. x)(K
~

T[A&+' (x)05(0)] 0)+(K
~

[Q5+',0&] ~0)
m ' (26)

The commutator piece belongs to the (1,8) representation
of SU(3) )&SU(3) (isospin-rotated form of 0&) and in terms
of the phenomenological Lagrangian [see Eq. (8)] it is at
least bilinear in the pseudoscalar-meson field and hence
the second term in (26) vanishes. The T-product part can
be separated into terms regular as p&~0 and the pion-
intermediate-state contribution given by

P, (K-
[ 0, f

~-) .
m„

Thus, the matrix element (K
~
0&

~

m ) is given entirely
by the regular term and is therefore quadratic in momen-
tum. It may then be possible to calculate the K-m. matrix
element using (26) with PCAC constraints satisfied by the
vanishing of the matrix element of the commutator term.
We leave this question open to further analysis as we do
not know how to evaluate the T-product term at the quark
or hadronic level. When this is done, then the large
momentum-independent term in the SVZ estimate makes
no contribution and we are left with only the momentum-
dependent part (p term). Although we are unable to say
much about the magnitude of the p term, we feel it is
rather unlikely that this term, being of the same order as
the four-quark-operator matrix elements, could produce a
large LU = —, amplitude since C5 is quite small and there
are no other large mass scales besides m, in the factor
lnm, jp . If this qualitative argument is correct, then
some other mechanism for the LU = —,

' rule must be
sought. Such an additional contribution to the LU = —,

'

amplitude would probably come from long-distance non-
perturbative contributions which must be evaluated at the
hadronic level according to the prescription of Wilson.
These contributions come from the Born term and other
low-lying resonances which can be evaluated in the same
manner as in the calculation of the sr+ vr mass diff-erence.
The only difference are the contributions to K-~ matrix
elements from charmed hadron intermedi-ate states (D, D*,
etc.), which are purely M = 2. Assuming vector-meson
dominance for the form factors involved (e.g., p, F* domi-
nance, etc.), then the light hadrons contribute to K-m tran-
sition terms of the order 0(G+p mz ), while the D,D*
contributions are of the order 0(GFp mD ), which is
larger than the m.,co terms by a factor 5—10, quite suffi-
cient to produce a dd = —, amplitude of the right magni-
tude and to enhance the dd'= —,

' part relative 'to the
part which receives no contribution from D, D*,

etc. For details of the calculation we refer the reader to
the work' of Pham and Sutherland.

We shall devote the rest of this paper to a phenomeno-

(KL
~

W
~
2y) = (27)

(mx —m;~)

where a~; is the EI -i transition induced by nonleptonic
interactions defined as in (9a) or (1 la) and (i

~
WEM

~
2y)

is the electromagnetic (EM) decay amplitude for pseudo-
scalar mesons into two photons. In terms of qq states, the
pseudoscalar-meson nonet is defined as follows:

(uu —dd ),
2

1
( uu +dd —2ss ),

6
1

go — (uu+dd+ss) .
3

(28)

We shall assume in the following that the XI -i transition
is given by the b,I = —, (1,8) piece. In the SU(3) limit we
have

(29)

Because of the large cancellation between the m and g
poles in Eq. (27) in the exact-SU(3) limit, the
pseudoscalar-meson pole contributions are quite sensitive
to g-g' mixing as well as deviations from the exact-SU(3)
relation between a + and a& z [Eq. (29)]. These effects

L L~
must now be taken into account. Since (KL,

~
W~

~ qq)
are related to (0

~ qy&y5q ~ qq ), SU(3)-violation effects in

I

logical calculation of the EI —+2y decay rate to see the
importance of these new purely dd = —,

' interactions. For
this purpose, we shall assume that these additional M = —,

'

interactions come from an effective operator which
transforms as (1,8) under SU(3) &CSU(3) and behaves like
the s —+d off-shell transition with respect to ordinary
SU(3). We shall denote the sum of the SVZ penguin and
the nonperturbative contributions as simply the pure
LD= 2 contribution. Using this property we shall now
proceed to the calculation of the Kl ~2@ decay rate
which can give information on the M = —,, K mtransit'-ion.
The long-distance part of this amplitude is induced by the
mixing of KL to low-lying mesons (~, g, g', etc.), and the
short-distance part is given approximately by the sd~yy
transition caused by 8' exchange. The short-distance part
has been calculated' by Gaillard and Lee and found to be
quite small in the chiral-symmetry limit and can be ig-
nored. The long-distance part (dispersive contribution) is
given simply by the m, g, g' pole (pole-dominance approxi-
mation) contribution. We have
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ax; are given by the ratio fxlf to a good approxima-

tion. This can be most easily seen by noting that the ef-
fective Lagrangian responsible for the KL (qq)-transi-0
tion is of the A&A& type so that relative to a 0, W~ can

be written as

Gp
Wtg= C ~f7Tf p L ppw +~2 7T qq p (30)

(31)

where qv is the pseudoscalar-meson field operator associ-

ated with (qq)o state. Equation (30) gives rise to SU(3)-

violation effects of ax z and ax z relative to ax 0. As-
L~ L~ L 77

suming
2

m&

X(2.05 —1.15f)A (m. ~2y) . (38)

f being the fraction of the pure M = —,
' term in the Kr -m.

matrix element given in (23).
From (37) we see that for sin9p&0, effects of SU(3)

violation and g-g' mixing tend to cancel out largely, how-
ever, with a=0.28 the overall effect is still large and in-
creases the pole contributions. For a large f, the g' contri-
bution becomes considerable and tends to cancel out the g
contribution since A(g~2y) and A(q'~2y) are of the
same sign. Consequently, important cancellation between

q and g' contributions may occur depending on the value
of f.

In terms of the ~ ~2y amplitude, we thus obtain

GF rnp f
A(K1, ~2y)= —c

2

we have
For the purely penguin interaction, f=1 and the branch-
ing ratio of I (KL ~2y) is calculated to be

so that for the pure dd = —, part we have

(32) B (KL 2y),1,„~=6.57 X 10

to be compared with the measured value"

B(KL ~2y), „p,——(4.9+0.5)X10

(39)

(40)

=1+2@+0(e ) .
ax, dZ fdZ

(33)

The nonpenguin amplitude induced by 01 (sd ~uu transi-
tion) is simply proportional to f„„which is just f . Note

that to first order in the SU(3)-symmetry-breaking param-
eter e, (31) reproduces the Gell-Mann —Okubo —type rela-
tion' for the pseudoscalar-meson decay constants:

4' f =3f~, +O—«') (34)

'g = 'g 8cosOp + 'gasinOp

g'= —g8sinOp+ gacosOp .
(35)

Including also the nonpenguin contribution, we thus get

From the g'~2y decay rate, ' we know that the system

m -g-g' can be described by the pseudoscalar-meson nonet

with a g-g' mixing angle Op ——10.5' and a possible negligi-

bly small glueball component in the q'. The observed

g, g' —+2y decay amplitudes can also be parametrized in

terms of the m ~2y amplitude and Op using this nonet

structure. The physical 11,1)' can thus be defined as

Thus, theory agrees with experiment to within 30%. This
must be considered as a successful prediction for the de-

cay rate I (KL ~2y) considering the approximation in-

volved. Probably a better agreement can be obtained with

f=1.1—1.2 and we may conclude that the pure M = —,

part is likely to be of the opposite sign relative to the nor-
1nal amplitude given by the 01 contribution in (22).

In the preceding analysis we have seen that the LT = —,
'

K+~~+m amplitude can be qualitatively understood us-

ing QCD-suppressed effective currentXcurrent interac-
tions and the valence-quark approximation for the K-n.

matrix element (vacuum-insertion method). This allows
us to estimate the free-quark box diagram for the Ks KL-
mass difference using this approximation as usually done
in the literature. ' We give here some comments concern-
ing this matrix element.

In the standard model with left-handed currents, the
Ks-KL mass difference is given by the K -K transition
induced by the hS =2 operator Ojq of the
(V —&)X( V —A) type, ' '

Ozj ——.s y&(1+y 5)ds y&(1+ y 5)d:,

ax „= ' (1+5),

2v2
ax „——— ax 0(1+5')~3 KLm

with

(36)

which is of the same form as 01 and 04 but transforms as
a (1,27) representation of SU(3)X SU(3). Using (13) and

(16) we then get the usual expression obtained by the
vacuum-intermediate-state approximation,

(41)

which is quadratic in momentum in agreement with
PCAC constraints. Incidentally we note that the one-pion
intermediate-state contribution' given by Shrock and
Treiman is not actually needed. Also their expression has
a part which is independent of momentum and therefore
violates chiral-symmetry constraints. In fact, as pointed

5=4ef 2~2 sinep( ,f —,—+sf), ——
(37)

Sln8p&'=f(1+~)——,
' (1—f)+ (1+4ef) 1, —

2 2
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out in the preceding analysis, in the free-quark model, the
vacuum intermediate state is the only contribution to the
L -E matrix element for the simple reason that the
Wick-ordered operator:sy&(1+y&)d: must annihilate K .
To go beyond the valence-quark approximation one would
have to include the qq glue component in the wave func-
tion which is expected to increase the K -E matrix ele-

ment relative to the valence-quark approximation.
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